JPS63205544A - Laser magnetic resonance device - Google Patents

Laser magnetic resonance device

Info

Publication number
JPS63205544A
JPS63205544A JP3791587A JP3791587A JPS63205544A JP S63205544 A JPS63205544 A JP S63205544A JP 3791587 A JP3791587 A JP 3791587A JP 3791587 A JP3791587 A JP 3791587A JP S63205544 A JPS63205544 A JP S63205544A
Authority
JP
Japan
Prior art keywords
laser
measurement
magnetic resonance
magnetic field
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3791587A
Other languages
Japanese (ja)
Inventor
Yoshiaki Haniyu
羽生 孔昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3791587A priority Critical patent/JPS63205544A/en
Publication of JPS63205544A publication Critical patent/JPS63205544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To detect the laser magnetic resonance spectrum of paramagnetic molecules of a short life by providing a pair of comb-shaped electrodes for high-frequency discharge which impress an electric field to the same direction as a magnetostatic direction for measurement to the inside or outside of a measuring pipe in a magnetostatic field for measurement. CONSTITUTION:The electrodes 13 for high-frequency discharge are installed between the measuring pipe 7 and an electromagnet 8. The magnetostatic direction by the electromagnet 8 and the electric field direction of the electrode 13 are made to coincide with each other, by which the instability of low-temp. plasma is prevented as the electrons and ions in the low-temp. plasma does not receive the force in the axial direction of the measuring pipe even in the magnetostatic field. Since the AC magnetic field by a coil 9 for modulation to detect the laser magnetic resonance spectrum with high sensitivity is not shut off by the electrodes 13 which are formed of comb-shape, said magnetic field is effectively impressed to the paramagnetic molecules. The laser magnetic resonance spectrum of the paramagnetic molecules of a short life is detected by detecting a far IR laser 11 radiated from the window 10 by a detecting and amplifying system 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高効率な常磁性分子生成が可能なレーザ磁気
共鳴装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser magnetic resonance apparatus that is capable of highly efficient production of paramagnetic molecules.

〔従来の技術〕[Conventional technology]

レーザ磁気共鳴装置の常磁性分子発生部については、従
来、「レーザ研究」15.蝿9(1985)第674頁
から第689頁における広田「高分解能レーザ分光によ
る化学反応中間体の分子構造」K論じられている。上記
従来技術で論じられている常磁性分子発生部は、測定用
の静磁場の外のマイクロ波放電によつ−ていた。
Regarding the paramagnetic molecule generating part of a laser magnetic resonance apparatus, conventionally, "Laser Research" 15. Hirota K. ``Molecular structure of chemical reaction intermediates determined by high-resolution laser spectroscopy'' is discussed in Flies 9 (1985), pp. 674-689. The paramagnetic molecule generator discussed in the above prior art relies on a microwave discharge outside of the static magnetic field for measurement.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、常磁性分子生成部と測定部とが離れて
いるため、常磁性分子が測定部に導入されるまでに減衰
したり消滅してしまうことがあり、特に寿命が短い常磁
性分子は測定できなくなるという問題があった。上記現
象は、(1)伝統的に常磁性分子を作るためにマイクロ
波放電を使用していたので、構造的に放電部を磁場内に
設置することができなかった、(2)磁場間放電により
雑音が多くなるというおそれがあった、(3)レーザ磁
気共鳴(LMR)が主に常磁性分子の構造解析に利用さ
れていたため、必ずしも放電を磁場間に設置する必要が
なかつたためである。
In the above conventional technology, since the paramagnetic molecule generation section and the measurement section are separated, the paramagnetic molecules may attenuate or disappear before they are introduced into the measurement section. There was a problem that it became impossible to measure. The above phenomenon is caused by (1) Traditionally, microwave discharge was used to create paramagnetic molecules, so it was structurally impossible to place the discharge part in a magnetic field, (2) Intermagnetic field discharge (3) Since laser magnetic resonance (LMR) was mainly used for structural analysis of paramagnetic molecules, it was not necessary to place a discharge between magnetic fields.

本発明は、磁場内で高周波放電を行なうことにより、短
い寿命の常磁性分子のLMRスペクトルを検出可能にす
ることが目的である。
An object of the present invention is to enable detection of LMR spectra of short-lived paramagnetic molecules by performing high-frequency discharge in a magnetic field.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、常磁性分子を生成するための低温プラズマ
発生に、測定静磁場内における高周波放電を採用し、放
電電場方向と測定磁場方向とを一致させ、かつ、高周波
放電用電極を櫛状にすることによって達成される。
The above purpose is to use high-frequency discharge in a static measuring magnetic field to generate low-temperature plasma to generate paramagnetic molecules, to align the discharge electric field direction with the measuring magnetic field direction, and to arrange the high-frequency discharge electrodes in a comb shape. This is achieved by

〔作用〕[Effect]

高周波放電電極は1対の薄い銅等の金属板で作製できる
ため、測定管と磁場発生用磁石との間に容易に設置でき
、静磁場方向と高周波放電電極の電場方向とを一致させ
ることにより、低温プラズマ中の電子やイオンは静磁場
中でも測定管軸方向への力を受けず、低温プラズマは不
安定になることがない。また、静磁場が大きくない範囲
(数1000ガウス)では、電子の測定管軸方向の拡散
は、電子の静磁場方向を中心とするテーマの才差運動に
より小さくなり、常磁性分子の生成効率をあげることが
期待できる。
Since the high-frequency discharge electrode can be made from a pair of thin metal plates such as copper, it can be easily installed between the measurement tube and the magnetic field generating magnet. The electrons and ions in the low-temperature plasma do not receive any force in the axial direction of the measurement tube even in a static magnetic field, and the low-temperature plasma does not become unstable. In addition, in a range where the static magnetic field is not large (several 1000 Gauss), the diffusion of electrons in the measurement tube axis direction becomes smaller due to the precession of the electrons around the direction of the static magnetic field, which reduces the production efficiency of paramagnetic molecules. I can hope to give it to you.

さらに、高周波放電用電極は、1対の薄板ではなく櫛状
にすることにより、LMRスペクトルを高感度に検出す
るための変調に使用するコイルを用いた交流磁場が、放
電用電極に遮られることなく常磁性分子に有効に印加で
きる。
Furthermore, by making the high-frequency discharge electrode comb-shaped instead of a pair of thin plates, the alternating current magnetic field used by the coil used for modulation to detect the LMR spectrum with high sensitivity is blocked by the discharge electrode. It can be applied effectively to paramagnetic molecules without any problems.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明によるレーザ磁気共鳴装置の一実施例に
おける高周波放電電極付近の縦断面図、第2図は上記第
1図の断面を示す図、第3図は他の実施例における高周
波放電電極付近の縦断面図、第4図は上記第3図の断面
を示す図である。第1図および第2図において、測定管
の遠泳外レーザガス励起部5のg2より炭酸ガスレーザ
1を入射し、前もりて上記遠赤外レーザガス励起部5に
導入された遠赤外レーザガスを励起する。遠赤外レーザ
は可動凹面鏡4と固定凹面ff15とによる共振により
発振する。プリー−スタ膜6により上記遠赤外レーザガ
ス励起部3かも分けられている測定管7は、電磁石8に
よる測定用静磁場および吸収変調用コイル9による交流
磁場中にあるので、測定管7中の常磁性分子が遠赤外レ
ーザな吸収すれば1発振すべき遠赤外レーザ出力は減少
する。
FIG. 1 is a longitudinal cross-sectional view of the vicinity of the high-frequency discharge electrode in one embodiment of the laser magnetic resonance apparatus according to the present invention, FIG. 2 is a cross-sectional view of the above-mentioned FIG. 1, and FIG. 3 is a high-frequency discharge in another embodiment. FIG. 4, a longitudinal cross-sectional view of the vicinity of the electrode, is a cross-sectional view of FIG. 3 above. In FIGS. 1 and 2, the carbon dioxide laser 1 is input from g2 of the far-infrared laser gas excitation section 5 of the measurement tube to excite the far-infrared laser gas introduced into the far-infrared laser gas excitation section 5 in advance. . The far-infrared laser oscillates due to resonance between the movable concave mirror 4 and the fixed concave surface ff15. The measurement tube 7, which is also separated from the far-infrared laser gas excitation section 3 by the Priester film 6, is in the static magnetic field for measurement by the electromagnet 8 and the alternating magnetic field by the absorption modulation coil 9. If paramagnetic molecules absorb far-infrared laser, the far-infrared laser output required for one oscillation decreases.

したがって、窓10より放射される遠赤外レーザ11を
測定用静磁場を掃引しながら検出・増幅系12で検出す
れば、常磁性分子の寿命の影響なくLMRスペクトルを
得ることができる。上記測定管7の外側もしくは内側に
プラズマを発生させるための高周波放電用櫛状電極13
を、その発生する電場方向が磁場方向と一致するように
設置する。
Therefore, if the far-infrared laser 11 emitted from the window 10 is detected by the detection/amplification system 12 while sweeping the static magnetic field for measurement, an LMR spectrum can be obtained without being affected by the lifetime of paramagnetic molecules. High-frequency discharge comb-shaped electrode 13 for generating plasma outside or inside the measurement tube 7
is installed so that the direction of the electric field it generates matches the direction of the magnetic field.

外部より測定管7中に導入された試料ガス14は。The sample gas 14 is introduced into the measuring tube 7 from the outside.

高周波放電により分解して常磁性分子を発生し、排気管
15により排気される。今、静磁場方向と放電電場の方
向とが一致しているので、放電により生成した電子やイ
オンは、測定管7の軸方向への力をうけず、低温プラズ
マは安定であり、低磁場領域ではむしろ測定管7の軸方
向における電子の拡散が小さくなり、常磁性分子の生成
効率が向上する。
It is decomposed by high frequency discharge to generate paramagnetic molecules, which are exhausted through the exhaust pipe 15. Now, since the direction of the static magnetic field and the direction of the discharge electric field match, the electrons and ions generated by the discharge are not subjected to force in the axial direction of the measurement tube 7, and the low-temperature plasma is stable, and the low-magnetic field region Rather, the diffusion of electrons in the axial direction of the measuring tube 7 is reduced, and the production efficiency of paramagnetic molecules is improved.

LMRスペクトルを高感度に検出するための変調コイル
9による交流磁場は、放電電極13が櫛状になつ℃いる
ため、放電電極1S上に渦電流が流れることなく、有効
に常磁性分子に印加される。
Since the discharge electrode 13 has a comb shape, the alternating current magnetic field generated by the modulation coil 9 for detecting the LMR spectrum with high sensitivity is effectively applied to the paramagnetic molecules without causing any eddy current to flow on the discharge electrode 1S. Ru.

第3図および第4図に示した他の実施例は、高周波放電
用櫛形電極13を測定管7の内側に設置したものであり
、その他は前記実施例と同様で、その作用効果も同じで
ある。
In the other embodiments shown in FIGS. 3 and 4, a comb-shaped electrode 13 for high-frequency discharge is installed inside the measuring tube 7, and the other embodiments are the same as the embodiments described above, and the effects are also the same. be.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によるレーザ磁気共鳴装置は、レー
ザ発振部と測定用静磁場と測定管と検出系とを備えたレ
ーザ磁気共鳴装置におい曵、上記渕定用靜磁場内にある
測定管の内側または外側に、上記測定用静磁方向と同方
向に電場を印加する1対の櫛状高周波放電用電極を設け
たことにより、測定磁場内に高周波放電プラズマを作る
ことかできるので、寿命が短い常磁性分子を検出できる
という効果がある。
As described above, the laser magnetic resonance apparatus according to the present invention includes a laser oscillation section, a static magnetic field for measurement, a measurement tube, and a detection system. By providing a pair of comb-shaped high-frequency discharge electrodes on the inside or outside that apply an electric field in the same direction as the magnetostatic direction for measurement, high-frequency discharge plasma can be created within the measurement magnetic field, resulting in a long service life. This has the effect of being able to detect short paramagnetic molecules.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるレーザ磁気共鳴装置の一実施例に
おける高周波放電電極付近の縦断面図、第2図は上記第
1図の断面を示す図、第3図は他の実施例における高周
波放電電極付近の縦断面図、    −第4図は上記第
3図の断面を示す図である。 3・・・・・・遠赤外レーザガス励起部、7・・・・・
・測定管。 8・・・・・・電磁石、11・・・・・・遠赤外レーザ
、12・・・・・・検出・増幅系、13・・・・・・櫛
状高周波放電用電極。
FIG. 1 is a longitudinal cross-sectional view of the vicinity of the high-frequency discharge electrode in one embodiment of the laser magnetic resonance apparatus according to the present invention, FIG. 2 is a cross-sectional view of the above-mentioned FIG. 1, and FIG. 3 is a high-frequency discharge in another embodiment. Vertical sectional view near the electrode - FIG. 4 is a diagram showing the cross section of FIG. 3 above. 3...Far-infrared laser gas excitation section, 7...
・Measuring tube. 8... Electromagnet, 11... Far infrared laser, 12... Detection/amplification system, 13... Comb-shaped high frequency discharge electrode.

Claims (1)

【特許請求の範囲】[Claims] 1、レーザ発振部と、測定用静磁場と、測定管と、検出
系とを備えたレーザ磁気共鳴装置において、上記測定用
静磁場内にある測定管の内側または外側に、上記測定用
静磁場方向と同方向に電場を印加する1対の櫛状高周波
放電用電極を設けたことを特徴とするレーザ磁気共鳴装
置。
1. In a laser magnetic resonance apparatus equipped with a laser oscillation unit, a static magnetic field for measurement, a measurement tube, and a detection system, the static magnetic field for measurement is placed inside or outside of the measurement tube that is within the static magnetic field for measurement. A laser magnetic resonance apparatus characterized in that a pair of comb-shaped high-frequency discharge electrodes are provided to apply an electric field in the same direction.
JP3791587A 1987-02-23 1987-02-23 Laser magnetic resonance device Pending JPS63205544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3791587A JPS63205544A (en) 1987-02-23 1987-02-23 Laser magnetic resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3791587A JPS63205544A (en) 1987-02-23 1987-02-23 Laser magnetic resonance device

Publications (1)

Publication Number Publication Date
JPS63205544A true JPS63205544A (en) 1988-08-25

Family

ID=12510840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3791587A Pending JPS63205544A (en) 1987-02-23 1987-02-23 Laser magnetic resonance device

Country Status (1)

Country Link
JP (1) JPS63205544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170040103A1 (en) * 2015-08-04 2017-02-09 Murata Manufacturing Co., Ltd. Variable inductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170040103A1 (en) * 2015-08-04 2017-02-09 Murata Manufacturing Co., Ltd. Variable inductor
US11043323B2 (en) * 2015-08-04 2021-06-22 Murata Manufacturing Co., Ltd. Variable inductor

Similar Documents

Publication Publication Date Title
JP3623025B2 (en) Mixed gas component analyzer
Goehlich et al. On absolute calibration with xenon of laser diagnostic methods based on two-photon absorption
US20190215943A1 (en) Microwave Plasma Spectrometer Using Dielectric Resonator
US6452168B1 (en) Apparatus and methods for continuous beam fourier transform mass spectrometry
Ivanov et al. Experimental and theoretical investigation of oxygen glow discharge structure at low pressures
US4581533A (en) Mass spectrometer and method
Grosshans et al. General theory of excitation in ion cyclotron resonance mass spectrometry
US6255648B1 (en) Programmed electron flux
Kempkens et al. Scattering diagnostics of low-temperature plasmas (Rayleigh scattering, Thomson scattering, CARS)
JPH07118295B2 (en) Mass spectrometer
JP3334878B2 (en) Fourier transform mass spectrometer
JPS63205544A (en) Laser magnetic resonance device
JPH0114665B2 (en)
US2694151A (en) Mass spectrometry
Yoshimura et al. Application of optical vortex to laser-induced fluorescence velocimetry of ions in a plasma
US4588888A (en) Mass spectrometer having magnetic trapping
US3348135A (en) Method and apparatus for analysis of gaseous discharge products from flames by electron-paramagnetic resonance
US7855557B2 (en) Gas nuclear magnetic resonance apparatus
JP3349258B2 (en) Hydrogen isotope ratio analysis
Friedmann et al. Ion-cyclotron-resonance mass spectrometry with a microwave plasma source
Shearer-Izumi et al. Electron impact ionization of long-lived excited helium atoms
Mammosser et al. Large-volume resonant microwave discharge for plasma cleaning of a CEBAF 5-cell SRF cavity
JPS6264043A (en) Inductively coupled plasma mass spectrometer
Hassanpour et al. Characterization of RF-driven atmospheric pressure plasma micro-jet plume
Soriano Novel plasma-based ambient desorption/ionization source