JPS63205494A - Biaxial reversal centrifugal type fluid booster - Google Patents

Biaxial reversal centrifugal type fluid booster

Info

Publication number
JPS63205494A
JPS63205494A JP3886887A JP3886887A JPS63205494A JP S63205494 A JPS63205494 A JP S63205494A JP 3886887 A JP3886887 A JP 3886887A JP 3886887 A JP3886887 A JP 3886887A JP S63205494 A JPS63205494 A JP S63205494A
Authority
JP
Japan
Prior art keywords
impeller
shaft
bearing
fluid
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3886887A
Other languages
Japanese (ja)
Inventor
Miyo Kawanami
川浪 ミヨ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3886887A priority Critical patent/JPS63205494A/en
Publication of JPS63205494A publication Critical patent/JPS63205494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To make such a high efficiency as approximating to an axial-flow system giveable, by using a vaned rotary diffuser (a second impeller) in place of a stator diffuser, and constituting this diffuser so as to be rotated at proper speed in the opposite direction to the convertional impeller (a first impeller). CONSTITUTION:A high speed fluid to be discharged out of the outer circumference of a first impeller 3 is led into a second impeller 3 rotating in the opposite direction to the impeller 3 at once or after being decelerated and boosted properly by a vortex chamber 5, or if necessary, a vaned fixed diffuser. And, a large relative speed is produced at an inlet of the impeller 6, while an absolute speed of the fluid at an outlet of the impeller 6 is sharply reduced by deceleratization due to a blade spread of the impeller 6 and that due to rotation of itself. With this constitution, dynamic pressure is efficiently converted into static pressure, and it is led into a volute casing 9 on the circumference of the impeller 6 at low speed, whereby a fluid friction loss inside this casing 9 is reduced, thus a large pressure rise of the fluid is securable at a higher efficiency as a whole.

Description

【発明の詳細な説明】 (産業分野) 不発明は遠心型(斜流型は遠心型の一種であるので、斜
流型をも含むものとする)のターボ送風機またはタービ
ンポンプの効率改善を可能ならしめる二軸反転遠心型流
体昇圧装置に関する。
[Detailed description of the invention] (Industrial field) The invention makes it possible to improve the efficiency of centrifugal type (mixed flow type is a type of centrifugal type, so mixed flow type is also included) turbo blower or turbine pump. The present invention relates to a biaxial reversing centrifugal fluid booster.

(従来技術とその問題点) 元来遠心型は油流型に比較して効率が劣るのであるが、
比較回転度N8の小さい範囲、即ち比較的に高圧力で小
容量の用途には広く使用されている。なお、説明の都合
上、送a機、圧縮機について先ず説明する。
(Prior art and its problems) The centrifugal type is inherently less efficient than the oil flow type, but
It is widely used in applications where the comparative rotation angle N8 is in a small range, ie, relatively high pressure and small capacity. For convenience of explanation, the feeder and compressor will be explained first.

従来遠心型の効率が軸流型に劣るといわれている最大の
原因は翼単によって与えられる高い動圧を静圧に変換す
るためのディフューザーの効率の低さにある。むしろ、
翼車そのものの効率は決して悪くはなく設計次第では9
0チ以上を達成出来ることを本発明者は経験している。
The main reason why the efficiency of centrifugal type engines is said to be inferior to that of axial flow types is due to the low efficiency of the diffuser, which converts the high dynamic pressure provided by the blades into static pressure. Rather,
The efficiency of the blade wheel itself is not bad at all, but it depends on the design.9
The present inventor has experienced that it is possible to achieve 0chi or more.

にも拘らず、総合効率は普通低N8のもので65〜75
%である。大容量の高Nsのものでは総合効率85チを
達成しているものもあるか、しかし大容量軸流式の90
〜95チにはやはり及ばない。
Despite this, the overall efficiency is usually 65-75 for low N8.
%. Some large-capacity, high-Ns models have achieved an overall efficiency of 85 cm, but large-capacity axial flow models have achieved a total efficiency of 90 cm.
It's still not as good as ~95chi.

(本発明の目的) 本発明の目的は上記の従来の遠心式ターボ機械の欠点を
除き軸流式に近い高効率を発現できる二軸反転遠心型流
体昇圧装置を提供するにあり、然して、本発明の原理と
しては、静止ディフューザーの代りに有翼の回転ディフ
ューザー(これを第二翼車と呼ぶ)を用い、このディフ
ューザーを従来の翼車(これを第一翼車と呼ぶ)と反対
向きに適当な速度で回転させることにより、固定ディフ
ューザーよりもむしろ短かい翼で第一翼車によって与え
られた動圧の大部分を効率よく静圧に変換し、第二翼車
出口の流体の絶対速度を適[K小さくして出口渦巻ケー
シングないし適当な空間を有するケーシングにおける1
11擦損失を小さくシ、か(して低NsK対しても、軸
流式に近い高効率を与えることにある。
(Object of the present invention) The object of the present invention is to provide a biaxially reversing centrifugal type fluid booster that can achieve high efficiency close to that of an axial flow type, while eliminating the drawbacks of the conventional centrifugal type turbomachinery described above. The principle of the invention is to use a winged rotating diffuser (referred to as the second wheel) instead of a stationary diffuser, and to rotate this diffuser in the opposite direction to the conventional blade wheel (referred to as the first wheel). By rotating at a suitable speed, the short blades rather than a fixed diffuser efficiently convert most of the dynamic pressure imparted by the first wheel into static pressure, reducing the absolute velocity of the fluid at the exit of the second wheel. 1 in an outlet spiral casing or a casing with an appropriate space by reducing K appropriately.
11 The purpose is to reduce friction loss (and provide high efficiency close to that of the axial flow type even for low NsK).

したがって、また高N s K対しては軸流式に劣らぬ
高効率を与えることにもなる。
Therefore, for high N s K, it also provides high efficiency comparable to that of the axial flow type.

(本雫明の構成) すなわち、本発明によれば、基本的構成として。(Composition of Akira Honshizuku) That is, according to the present invention, as a basic configuration.

第一翼車の外周から吐出される高速の流体を第一翼車と
反対方向に回転する第二翼車に直ちに、あるいは渦室な
いし必要によっては有翼の固定ディフューザーによって
適当に減速昇圧させてから導入し、第二翼車入口におい
て大きな相対速度をつくりあげるとともに第二翼車の翼
の広がりによる減速化とそれ自体の回転による減速化と
によって第二翼車出口の該流体の給体速度を著しく低下
させることにより動圧を効率よく静圧に変換し、且つ低
速で第二翼車外周り渦巻型ケーシングまたは広い空間を
有する適当なケーシングに導入することにより該ケージ
フグ内における流体摩擦損失を小さくシ、全体として該
流体の大きな圧力上昇を高い効率をもって得るように構
成したことを峙徴とする二軸反転遠心型流体昇圧装置、
が得られる。
The high-speed fluid discharged from the outer periphery of the first impeller is transferred to the second impeller, which rotates in the opposite direction to the first impeller, immediately or appropriately decelerated and pressurized by a vortex chamber or, if necessary, a fixed winged diffuser. The feed velocity of the fluid at the outlet of the second impeller is increased by creating a large relative velocity at the inlet of the second impeller, and by decelerating it due to the expansion of the blades of the second impeller and decelerating it due to its own rotation. By significantly reducing dynamic pressure, dynamic pressure is efficiently converted to static pressure, and by introducing it at low speed into a spiral casing around the outside of the second impeller or an appropriate casing with a wide space, fluid friction loss within the cage puffer can be minimized. , a biaxially inverted centrifugal fluid pressure booster characterized by being configured to obtain a large pressure increase of the fluid with high efficiency as a whole;
is obtained.

ここで念のため、従来のターボ送風機ないし圧縮機の固
定ディフューザーとの比較をより明らかにして置くこと
とする。
Here, just to be sure, I would like to clarify the comparison with a fixed diffuser for a conventional turbo blower or compressor.

先ず渦巻型ケーシング、すなわち無翼のディフューザー
よりも効率が高いといわれている有翼の固定ディフュー
ザーとの比較について述べる。
First, we will discuss a comparison with a spiral casing, that is, a winged fixed diffuser, which is said to be more efficient than a winged diffuser.

有翼の固定ディフューザーで効率よく減速出来る限界は
ディフューザーの出口速度/入口速度の比にして1/3
ないし1/4といわれている。たとえば、入口で240
m/secのものは80〜60m/seeまでしか減速
出来ないで、そのあとの動圧はケークング内の摩擦に殆
ど奪われてしまうのである。
The limit for efficient deceleration with a fixed winged diffuser is 1/3 of the diffuser exit speed/inlet speed ratio.
It is said to be between 1/4 and 1/4. For example, 240 at the entrance.
m/sec can only be decelerated to 80 to 60 m/see, after which most of the dynamic pressure is absorbed by the friction within the caking.

この減速比をもつと大きくすると案内翼の長さが大きく
なって且つディフューザー、ケーシングも大型となり好
ましくない結果となる。
If this reduction ratio is increased, the length of the guide blades will become large, and the diffuser and casing will also become large, resulting in unfavorable results.

これに対して、回転ディフューザーを用いると、固定デ
ィフューザーと同様にディフューザーの翼が末広がり通
路を形成することによる流れの減速効果とともに、回転
することによる減速効果が如わり、さらにその流れを反
転させて適当な任意の従来型に比較して、著しく小さい
絶対速度で、翼車外周の渦巻型ケーシングないし広い空
間を有し、かつ流れの摩擦抵抗の小さい適宜のケーシン
グに導入することを可能ならしめ、しかも第=n車、す
なわち回転ディフューザーの翼の長さは第2図から知ら
れるように、固定ディフューザーの翼よりも短く出来る
ので、翼車内の摩擦損失も小さくなり、それらの総合効
果によって、高い静圧上昇を高い効率をもって達成出来
ることになるのであるが、以上の効果のすべては回転デ
ィフューザーによる効果である。
On the other hand, when a rotating diffuser is used, the diffuser blades form a path that spreads out in the same way as a fixed diffuser, which slows down the flow, and also rotates, which slows down the flow, and then reverses the flow. making it possible to introduce the impeller into a spiral casing around the outer periphery of the impeller or any suitable casing having a large space and low flow frictional resistance at a significantly lower absolute speed than any suitable conventional type; Moreover, as is known from Figure 2, the length of the n-th wheel, that is, the blade of the rotating diffuser, can be made shorter than the blade of the fixed diffuser, so the friction loss inside the wheel is also reduced, and the overall effect of these is to increase the length of the blade. This means that static pressure can be increased with high efficiency, and all of the above effects are due to the rotating diffuser.

なお第二翼車において、入口と出口の絶対速度の周方向
の分速度が反転しているということはそこで大きな圧力
上昇が達成されていることを示すものである。しかし、
この型式においては第二翼車出口の絶対速度の周方向の
分速度が設計流量を超えた範囲で逆方向になる場合もあ
り、このようなことを考慮して、渦巻型ケーシングより
はむしろ広い空間を有するケーシングにして、どの方向
にも流れ易くした刀がよい場合もある。
Note that in the second impeller, the fact that the inlet and outlet absolute velocities in the circumferential direction are reversed indicates that a large pressure increase is achieved there. but,
In this type, the circumferential minute velocity of the absolute velocity at the exit of the second impeller may be in the opposite direction in the range exceeding the design flow rate, and in consideration of this, the width is rather wider than that of the spiral type casing. In some cases, it is better to use a sword with a casing that has a space so that it can flow easily in any direction.

次に、本発明を図面によって説明する。Next, the present invention will be explained with reference to the drawings.

第1図は輻流型の本発明に基づく送風機の中で最も単純
に構成された実施例の側面から見た断面図、第2図は第
1図の実施例の吸込側から見た要部断面図、第3図と第
4図は第1図の実施例の第一翼車入口と出口の速度線図
、第5図とfs6図は第1図の実施例の第二翼車入口と
出口の速度線図である。
Fig. 1 is a cross-sectional view of the simplest embodiment of the radiation type blower according to the present invention, as seen from the side, and Fig. 2 is a main part of the embodiment of Fig. 1, as seen from the suction side. 3 and 4 are velocity diagrams at the inlet and outlet of the first impeller in the embodiment shown in FIG. It is a velocity diagram of an exit.

第1図の構成が最も簡単であるという理由は、第一、第
二各翼車が直接モーターの軸に固定されていることにあ
る。この型は吸込口が開放されているので、吸込口に配
管を接続することは出来ないが、このように吸込口開放
状態で使用する押込み送風機としての用途は少なくはな
い。第1図において、lは第−翼車用モーター、2は第
一翼車クヤ7ト、3は第−翼車一式、4は第一翼車の効
率を高めるためのインデューサーであるが、これは場合
によっては省略してもよい。5は第一翼車3と第二翼車
6との間に設けた渦室であって、これは半径方向にlO
ないし20關位の大きさを取り、騒音の低下と流れの均
一化、すなわち第二翼車6の効率の向上をはかるための
ものである。しかしながら、この渦室5をあまり大きく
するとむしろ第二翼・車6が大きくなり、その回転円板
損失が大きくなって不利となる。7は第二翼車6用モー
ター、8は第二翼車シャフト、9は渦巻型ケ、−シング
であるが場合によっては第二翼車出口の気流の絶対速度
の周速がほとんどゼロになるように設計出来た場合はむ
しろ回転対称のまたは適宜の広い空間にし′C流れ易く
した刀がよい。
The reason why the configuration shown in FIG. 1 is the simplest is that the first and second impellers are directly fixed to the shaft of the motor. Since this type has an open suction port, it is not possible to connect piping to the suction port, but there are many applications as forced air blowers that are used with the suction port open. In FIG. 1, l is a motor for the first impeller, 2 is a first impeller wheel, 3 is a complete set of impellers, and 4 is an inducer for increasing the efficiency of the first impeller. This may be omitted in some cases. Reference numeral 5 denotes a vortex chamber provided between the first impeller 3 and the second impeller 6, which has a vortex chamber of lO in the radial direction.
The size is about 20 to 20 degrees, and is intended to reduce noise and equalize the flow, that is, to improve the efficiency of the second impeller 6. However, if the vortex chamber 5 is made too large, the second blade/wheel 6 will become larger and the loss of its rotating disk will become larger, which is disadvantageous. 7 is the motor for the second impeller 6, 8 is the second impeller shaft, and 9 is the spiral casing, but in some cases the circumferential speed of the absolute velocity of the airflow at the exit of the second impeller becomes almost zero. If it can be designed like this, it would be better to use a sword that is rotationally symmetrical or has a suitably wide space so that it can flow easily.

10はケーシング前カバーで翼車の取付け、取外しの際
に開放する。
10 is a casing front cover that is opened when installing and removing the blade wheel.

遠心式ブロワ−の効率を高める上で、反転する第二翼車
は大変効果があるが、その反面、吐出側の流体が低圧側
に洩れる量を少なくするためのシールの工夫が必要とな
る。すなわち、第4図においては、第二翼車6のカバー
を第−翼車の外径より大きい円周を境として、大、小径
二つのリングに分割し、小径の部分11を大径の部分に
対して取付け、取外し自在に構成し、且つ第一翼車のマ
ウスリングと重なるようにマウスリングを設けるのが良
い。この小径の部分11はなる可り薄<軽快にバランス
よくつくり、取付け、堰外しによって動バランスが実質
的に変らぬようにすることが重要である。また、第一翼
車のマウスリング12ト該カバー11のマウスリング1
3とが適当の隙間を保ってシールの役目をよく果すよう
にする。
The reversing second impeller is very effective in increasing the efficiency of centrifugal blowers, but on the other hand, it is necessary to devise a seal to reduce the amount of fluid on the discharge side leaking to the low pressure side. That is, in FIG. 4, the cover of the second impeller 6 is divided into two rings with a large diameter and a small diameter, with a circumference larger than the outer diameter of the second impeller as a boundary, and the small diameter part 11 is divided into two rings with a large diameter. It is preferable that the mouth ring be configured such that it can be attached to and detached from the first impeller, and that the mouth ring be provided so as to overlap the mouth ring of the first impeller. It is important to make this small-diameter portion 11 as thin as possible, light and well-balanced so that the dynamic balance does not change substantially when it is attached or removed. In addition, the mouth ring 12 of the first impeller and the mouth ring 1 of the cover 11 are
3 and maintain an appropriate gap so that it can perform its role as a seal well.

場合によっては、マウスリング13の内部をラビリンス
クールに構成する。また、その外面は前カバー10[支
持されたラビリンス14でシールされ、第二翼車吐出側
の高圧流体の洩れを少な(する。第一翼車の背面にはバ
ランスピストン15を設け、それにかぶさるように、第
二翼車のバランスピストン16を設け、その間はラビリ
ンス17によってシールする。
In some cases, the inside of the mouth ring 13 is configured into a labyrinth school. In addition, its outer surface is sealed by a labyrinth 14 supported by the front cover 10 [to reduce leakage of high-pressure fluid on the discharge side of the second impeller. A balance piston 16 of the second impeller is provided, and a labyrinth 17 seals between them.

サラにバランスピストン]6の外周はケーシング9に支
持されたラビリンスシール1Bによってシールされてい
る。
The outer periphery of the balanced piston 6 is sealed by a labyrinth seal 1B supported by a casing 9.

第2図は本発明の思想に基づく好ましい翼車の形状の一
例を示す。すなわち、第一翼車は直線放射状の翼とイン
デューサーを有し、小さな外径で大きな動圧を発生させ
るようにしである。従来のような固定されたディフュー
ザーをもってしてはその大きな動圧を効率よく静圧に変
換することが困難であるため、普通には翼車具を後退翼
とし、なるべく反動度を高めて動圧の割合いを小さくし
ているが、それでも結局は前述のような効率しか得られ
ていない。本発明では第二翼車を第一翼車に対して反転
させることにより、以下に速lf線図を第3.4,5,
6各図によって、説明するように、第二翼車によって大
きな静圧上昇を得て吐出流体の動圧を著しく小さくする
ことが出来るのであり、且つ後述するように、第二翼車
の回転速度は第−翼車の1/2ないし1/lO程度です
むので円盤摩擦損失も大きくはならず、結局第一、第二
各翼車とも非常に高い効率を確保出来るのである。
FIG. 2 shows an example of a preferred blade wheel shape based on the idea of the present invention. That is, the first impeller has straight radial blades and an inducer, and is designed to generate large dynamic pressure with a small outer diameter. Since it is difficult to efficiently convert the large dynamic pressure into static pressure using a conventional fixed diffuser, the wing equipment is usually made with swept wings to increase the recoil as much as possible and reduce the dynamic pressure. However, in the end, only the efficiency described above is obtained. In the present invention, by inverting the second impeller with respect to the first impeller, the speed lf diagrams are shown below as 3.4, 5,
6 As explained in each figure, it is possible to obtain a large increase in static pressure by the second impeller and significantly reduce the dynamic pressure of the discharged fluid, and as described later, the rotational speed of the second impeller Since the amount is only about 1/2 to 1/1O of that of the first impeller, the disc friction loss does not become large, and after all, extremely high efficiency can be ensured for both the first and second impellers.

第3図は第一翼車入口の速度線図であり、インデューサ
ーの吸込口の翼端の平均径ハにおける周速をul j軸
方向の流速をemlとし、流体と巽との相対速度をW、
としている。Dlは小さいのでulは小さく、emlは
元来小さく取るのでwl  も小さく、シたがって入口
の流れの乱れや摩擦損失が小さい。これはインデューサ
ーの効果である。
Figure 3 is a velocity diagram at the inlet of the first impeller, where ul is the circumferential velocity at the average diameter of the blade tip of the inducer suction port, eml is the flow velocity in the j-axis direction, and the relative velocity between the fluid and Tatsumi is W,
It is said that Since Dl is small, ul is small, and eml is originally small, so wl is also small, and therefore turbulence in the flow at the inlet and friction loss are small. This is the effect of an inducer.

第4図は第−翼車出口の速度線図でありsueは周速、
Cm2に丁半組方向の流速で相対速度W、はCmt T
ic等しい。ここで説明を簡単にする為に、翼数は充分
に多く流体は正確に中径方向に渡れ、いわゆる渭ヤ係数
は1であるとすると、吐出流体の絶対速度はC!となる
。しかし、相対速度W、は小さく且つ翼長も短かいので
翼車内の摩擦抵抗は大変小さい。
Figure 4 is a velocity diagram at the exit of the second impeller, where sue is the circumferential speed,
The relative velocity W is the flow velocity in the half direction to Cm2, is Cmt T
ic equal. To simplify the explanation, let us assume that the number of blades is large enough to allow the fluid to cross accurately in the radial direction, and that the so-called wave coefficient is 1, then the absolute velocity of the discharged fluid is C! becomes. However, since the relative speed W is small and the blade length is short, the frictional resistance inside the blade wheel is very small.

すなわち、幅対型の翼車自体内での圧損は小さく翼車自
効率は大変高い翼車であると言うことが出来る。その代
り、出口の流体の絶対速度C!は大館<、ディフューザ
ーの効率如何が問題となるわけである。
In other words, it can be said that the pressure loss within the width-type blade wheel itself is small and the blade wheel self-efficiency is very high. Instead, the absolute velocity of the fluid at the outlet C! The problem is the efficiency of the diffuser.

第5図は第二翼車入口の速度線図である。ulは第二m
1iL入口の周速であるが、種々の関係からこれは第−
翼車出口周速の約1/2ないし1/10に取るのがよい
。Csgは第二翼車に流入する流体の局方肉分速度で、
前記速度C!の円周方向の分速度をCu、とするときは
FIG. 5 is a velocity diagram at the inlet of the second impeller. ul is the second m
1iL is the peripheral speed at the inlet, but due to various relationships, this is
It is preferable to set the speed to about 1/2 to 1/10 of the circumferential speed at the exit of the impeller. Csg is the local velocity of the fluid flowing into the second impeller,
Said speed C! When the minute velocity in the circumferential direction of is Cu.

ここで、D、は第−翼車出口径、D、は第二翼軍人ロ径
であって、渦室5を大きくして、D、を大きくすると、
Culはそれだけ大きく減速されてCubとなり、その
動圧の差に相当して静圧上昇が起る。渦室5を適当の大
きさに取ると、その動圧を静圧に変換する効率は高く、
かつ第二翼車内での摩擦損失を軽減する効果があるが、
大きくしすぎてはいけない。
Here, D is the exit diameter of the second wing wheel, D is the diameter of the second wing wheel, and when the vortex chamber 5 is enlarged and D is enlarged,
Cul is decelerated to a corresponding degree and becomes Cub, and static pressure increases corresponding to the difference in dynamic pressure. When the vortex chamber 5 is set to an appropriate size, the efficiency of converting the dynamic pressure into static pressure is high.
It also has the effect of reducing friction loss inside the second blade car,
Don't make it too big.

しかし、非常に高い圧力上昇を要求され、その結果第一
、第二翼車間の相対速度が音速を大巾に超えるような場
合は前記渦電5の外周に短い翼をもったディフューザー
を設けて適当に減速してから第二翼車に導入するのもよ
いが、図には省略する。
However, if a very high pressure rise is required, and as a result the relative speed between the first and second impellers greatly exceeds the speed of sound, a diffuser with short blades is provided around the outer periphery of the eddy electric 5. It is also possible to introduce it into the second impeller after appropriately decelerating it, but this is omitted from the diagram.

第6図は第二翼車出口の速度線図で、第5図と比較する
と、翼内の相対速度はw3からw4まで約半減して居り
、これは第二翼車内通路の末広がりによる減速によるも
のである。これに対して、周速度u4によって絶対速度
の円周方向速度Cu4は入口のそれに対して小さく反転
している。
Fig. 6 is a velocity diagram at the exit of the second impeller. Compared to Fig. 5, the relative speed inside the impeller has been reduced by about half from w3 to w4, and this is due to the deceleration due to the widening of the passage inside the second impeller. It is something. On the other hand, the absolute circumferential velocity Cu4 is slightly reversed from that at the entrance due to the circumferential velocity u4.

この反転した速度は翼車外周のケーシングに導入して排
出される間の摩擦損失を小さくするために小さく取るこ
とが貫要とされる。但し、流量が設計値より太き(なる
と、このCu4はゼロに近づき、さらに流量が大きくな
ると、その反対の方向に向くことになる。
It is essential that this reversed speed be kept low in order to reduce friction loss during introduction into and discharge from the casing on the outer periphery of the impeller. However, if the flow rate is thicker than the designed value, this Cu4 approaches zero, and if the flow rate becomes even larger, it will move in the opposite direction.

広い範囲の流量変化に対応させるようにする場合には、
ケーシングはi1%巻型にせずに、適当な広い空間にし
てどちらの方向にも流れ易くして置く万がよい。一般的
に、効率向上の上でもつとも大切なことは第一翼車に極
力高い回転数を採用し第一、第二翼車出口を小さくする
ことであり、その為には、軸受けの摩擦損失を小さくす
るため、第一翼車の軸受径を小さくし、且つ安定がよい
ように第一翼車な挾んで両持ち構造とするのがよく、そ
の為には、翼車前面の軸受を翼車の吸込側のノズル内に
設け、他の駆動側の軸受は第二翼車の軸を中空にして貫
通させ、さらに延長して第二翼車の軸外に投げる!7図
に示す構成が好ましい。なお、場合によっては、第二翼
車の回転速度を第一翼車のそれと同等稲度まで大きくシ
、大きな圧力上昇を達成することも勿論実用上ありうる
。この場合も通常の二段式より効率は改善できる。第7
図では、第1図との共通部分の符号は同一とする。
If you want to respond to a wide range of flow rate changes,
It is best to place the casing in a suitably wide space so that it can flow easily in either direction, rather than in an i1% form. Generally speaking, the most important thing to improve efficiency is to use as high a rotation speed as possible for the first impeller and to minimize the exits of the first and second impellers. In order to reduce the diameter of the first impeller, it is best to make the bearing diameter of the first impeller smaller, and to make it more stable, the first impeller should have a double-supported structure. It is installed inside the nozzle on the suction side of the car, and the other drive side bearing is made hollow and passes through the shaft of the second impeller, and is further extended and thrown outside the axis of the second impeller! The configuration shown in FIG. 7 is preferable. In some cases, it is of course possible in practice to increase the rotational speed of the second impeller to the same degree as that of the first impeller to achieve a large pressure increase. In this case as well, the efficiency can be improved over the normal two-stage system. 7th
In the figure, parts common to those in FIG. 1 are denoted by the same reference numerals.

この場合の第一減車側軸受の潤滑油は87図に示すリプ
19を経由して軸受に送られ且つリプ20を経由して排
出される。それ故に、油のシールにはメカニカルシール
を用いるか、または吐出流体による圧力タールを用いる
か、あるいは両シールを併用する。゛第7図の21は該
軸シール部分を示し、22は軸受部分を示す。
In this case, the lubricating oil in the first bearing on the reduced vehicle side is sent to the bearing via the lip 19 shown in FIG. 87, and is discharged via the lip 20. Therefore, a mechanical seal is used to seal the oil, a pressure tar caused by discharged fluid is used, or both seals are used in combination. 21 in FIG. 7 indicates the shaft seal portion, and 22 indicates the bearing portion.

なお、この場合第二翼車の翼車側の軸受はケーシング9
に固定された軸受ハウジングに支持され、もう一つの軸
受は核ハウジノグに印籠付き7ランジで結合された軸受
ハウジング23により支持される。又第一真東のもう−
7の軸受信ハウジング23に印籠付きフランジで結合さ
れた軸受)1クジング24により支持される。もつとも
、以上の軸受の支持の仕方は他の適宜な方法でもよい。
In addition, in this case, the bearing on the impeller side of the second impeller is in the casing 9.
The other bearing is supported by a bearing housing 23 which is connected to the core housing nog by a 7-flange with an inlet. Also, the first due east is already-
The bearing 7 is supported by a bearing 24 connected to the shaft receiving housing 23 by a flange with an inlet. However, the bearing may be supported in any other suitable manner.

第一翼車の駆動は軸2の末端で歯車、ベルト、ないしモ
ーター直結゛で行ない、第二翼車の駆動は軸8に固定し
たプーリーまたは歯車25で行なう。この構成は潤滑系
統とそのシールか若干コスト高にはなるが、第一翼車が
両持ちとなり且つ軸長もあまり長くはないので、高速回
転を出し、高い効率を達成させるのに適し、且つ吸込口
の構造が簡単になる。第7図では第−間車入口のインデ
ューサーは第1図のたりに別体とせず、一体としである
か効果に変りはない。第二翼車の軸受として、図では密
封型の玉軸受を示しであるが、軸受とその潤滑の選択は
適宜である。
The first impeller is driven by a gear, belt, or direct connection to a motor at the end of the shaft 2, and the second impeller is driven by a pulley or gear 25 fixed to the shaft 8. This configuration requires a slightly higher cost for the lubrication system and its seals, but since the first impeller is dual-supported and the shaft length is not very long, it is suitable for achieving high speed rotation and high efficiency. The structure of the suction port becomes simple. In FIG. 7, the inducer at the inlet of the intermediate wheel is not separated as in FIG. 1, but is integrated, and the effect remains the same. The figure shows a sealed ball bearing as the bearing for the second impeller, but the bearing and its lubrication can be selected as appropriate.

第一翼車側軸受のクールを簡易なものにして、しかも若
し洩れても機内に混入する恐れのないようにする方法の
一つとして、第−榎車のgN、側の軸受を翼車吸込口ケ
ーシングの外に出し、該軸は中空に構成された第二翼車
のlll1lI8を貫通して延長され、第二翼車の軸8
から分離した位置に設けられた軸受によって支持される
ような構成も実用的であり、それを第8図に示す。この
場合、第一翼車の軸はかなり長くなり、軸回転の安定の
為にそれに相当して太くする必要がある結果、第二翼車
の軸も太くなり、第二翼車の翼車側軸受損失が増大する
のは止むを得ないが、第二翼車の回転速度は小さく損失
そのものが元来あまり大きなものではないので、総合効
率に対する影響は小さい。なお、第8図には遠心型の変
形である斜流型翼車の一例を示しである。斜流型翼車は
シュラウド26と各翼車の翼との間の隙間を小さくする
ことに注童をすれば、高い効率を与える上に、第二翼車
の構成も簡単になるので本発明の二軸反転構造の昇圧機
としては好ましいものである。但しあまり低流量には適
さない。第8図には駆動手段として、第−翼車用は増速
歯車、gzi車用はベルト伝導とし、モーターは別々に
しであるが、全部ベルト伝導ないし全部歯車伝導とし、
モーターは別々でもよいし、1個で両刃を駆動してもよ
く、その選択は適宜に行なう。このことは他の例におい
ても同様である。
One way to simplify the cooling of the bearing on the side of the first blade wheel and to prevent any leakage from entering the aircraft is to cool the bearing on the gN side of the blade wheel. out of the suction port casing, the shaft is extended through the hollow second impeller lll1lI8, and the second impeller shaft 8 is extended.
It is also practical to provide support by a bearing located separate from the holder, as shown in FIG. In this case, the shaft of the first impeller becomes quite long and needs to be made correspondingly thicker in order to stabilize the rotation of the shaft.As a result, the shaft of the second impeller also becomes thicker, and Although it is unavoidable that the bearing loss increases, the rotational speed of the second impeller is small and the loss itself is not inherently large, so the effect on the overall efficiency is small. Note that FIG. 8 shows an example of a mixed flow type impeller, which is a modification of the centrifugal type. If attention is paid to reducing the gap between the shroud 26 and the blades of each impeller, the mixed flow type impeller can not only provide high efficiency but also simplify the configuration of the second impeller, so the present invention This is preferable as a booster with a biaxial inversion structure. However, it is not suitable for very low flow rates. In Fig. 8, the driving means is a speed increasing gear for the first impeller, a belt transmission for the GZI wheel, and although the motors are separate, they are all belt driven or all gear driven.
The motors may be separate, or one motor may drive both blades, and the selection is made as appropriate. This also applies to other examples.

一般に55kw以上の電動機は注文生渚であり、大型に
なる程割高となるので、むしろ二重に分けた万が安価に
なるし、起動も一台ずつ時開なずらして行なうことによ
り起動電流が小さく且つ容易となる。たとえば、55k
vr1台よりも小容量2台にする刀がモーター、スター
ター等がずっと安くなるとともに起動1!流が小さくて
済むこととなる。
In general, electric motors of 55kW or more are made to order, and the larger they are, the more expensive they become.In fact, it would be cheaper to divide them into two units, and the starting current would be reduced by staggering the start of each motor. Small and easy. For example, 55k
A sword that has two smaller capacity than one VR, motors, starters, etc. are much cheaper, and one startup! This means that the flow will be small.

@9図は第一翼車の吸込側の軸受は詔8図と同様吸込ケ
ーシングの外に分離して設けるか、もう−万の軸受は第
二翼車の軸内に設け、第8図のように第一翼車の軸が長
くなるのを防止し、且つ第二翼車の軸受も過大にならぬ
ようにした本発明装置の一例である。このように、第一
翼車の軸受を配置すると、第一翼車の軸を大変短かく出
来るので第一次の危険回転速度を大巾に高めることが出
来る上に、軸シールが故障して潤滑油が若し仮りに洩れ
ても機内に混入する恐れがない。その代りに第二翼車軸
内に設けた第一翼車の軸受の潤滑系統が少し複雑となる
。この軸受は略して軸内軸受と称し且つその外周にある
第二翼車の軸受と−しよにして二重軸受と称することと
し、その潤滑系統の概要を第9図により、次にその詳細
を第10図によって説明する。
In Figure 9, the bearing on the suction side of the first impeller is either installed separately outside the suction casing as in Figure 8, or the other bearing is installed inside the shaft of the second impeller, as shown in Figure 8. This is an example of the device of the present invention which prevents the shaft of the first impeller from becoming long and also prevents the bearing of the second impeller from becoming excessively large. By arranging the bearing for the first impeller in this way, the shaft of the first impeller can be made very short, which greatly increases the primary critical rotational speed, and also prevents the shaft seal from failing. Even if lubricating oil leaks, there is no risk of it getting into the machine. Instead, the lubrication system for the bearing of the first blade wheel provided in the second blade axle becomes a little more complicated. This bearing is called an in-shaft bearing for short, and together with the bearing of the second impeller located on its outer periphery, it is called a double bearing.The outline of its lubrication system is shown in Figure 9, and the details are as follows. will be explained with reference to FIG.

第9図において、第二翼車な支持する二つの軸受はケー
シング9に印籠付き7ランジで順次固定された軸受ハウ
ジング23.27によってそれぞれ支持され、二重軸受
の第−諷軍の軸受用潤滑油は軸受ハウジ/グ27の先ぎ
に印籠付きフランジによって固定された潤滑油ハウジン
グ28に設げられた給油口29から、第二翼車の軸8の
軸芯にあけられた長孔30を経て前記軸内軸受31を潤
滑し、該排出油は該軸受端周囲の空洞部の内周にあけら
れた多数の細孔を経て第二翼車の翼車側軸受に供給され
、且つ謎軸受ハウジ/グに設けられた集油機構によって
外部に洩れることなく集められ且つ排出される。
In FIG. 9, the two bearings supported by the second wheel are each supported by bearing housings 23 and 27, which are fixed in sequence to the casing 9 by seven flanges with locks. The oil is supplied from the oil inlet 29 provided in the lubricating oil housing 28, which is fixed to the tip of the bearing housing/g 27 by a flange with an inlet, through the elongated hole 30 drilled in the axis of the shaft 8 of the second impeller. The discharged oil is then supplied to the impeller side bearing of the second impeller through a number of pores drilled in the inner periphery of the cavity around the end of the bearing. The oil is collected and discharged without leaking to the outside by the oil collecting mechanism provided in the housing/g.

なお%32は軸8の端に設けられた潤滑油の軸シールで
あす、メカニカルシール、ねじシールその他適宜選択す
る。
Note that %32 is a lubricating oil shaft seal provided at the end of the shaft 8, which may be selected from a mechanical seal, a threaded seal, or the like as appropriate.

第10図は前記二重軸受部の詳細図であり、スラスト軸
受と潤滑油の排出系統の詳細をこれにより説明する。
FIG. 10 is a detailed view of the double bearing section, and details of the thrust bearing and the lubricating oil discharge system will be explained using this figure.

第10図において33はジャーナル34に隣接したねじ
部35によって第−翼車の軸に固定されたスラストリン
グであり、軸内軸受31の端面のスラスト軸受36によ
って、第一翼車のスラストを受は且つ軸方向の位置を安
定させる。
In FIG. 10, 33 is a thrust ring fixed to the shaft of the first impeller by a threaded portion 35 adjacent to the journal 34, and receives the thrust of the first impeller by a thrust bearing 36 on the end face of the in-shaft bearing 31. and stabilize the axial position.

潤滑油はスラストリング33とスラスト軸受36との間
を通り、鋭角に仕上げられたスラストリングの17&に
よって振り切られて、第二翼車ハブ37の内面に設けら
れた集油溝3BK集まり、その周辺に設けられた多数り
通油孔39を経て第二翼車の翼車側軸受40に供給され
る。軸受40の潤滑油の翼車側のシールはバランスピス
トン15とラビリンス17との間を洩れて来る気流の圧
力との兼ね合いがあり特別の考慮を払わねばならない。
The lubricating oil passes between the thrust ring 33 and the thrust bearing 36, is shaken off by the sharply finished thrust ring 17&, gathers in the oil collection groove 3BK provided on the inner surface of the second impeller hub 37, and flows around it. The oil is supplied to the impeller side bearing 40 of the second impeller through multiple oil passage holes 39 provided in the . The seal on the impeller side of the lubricating oil of the bearing 40 has to be balanced against the pressure of the airflow leaking between the balance piston 15 and the labyrinth 17, and special consideration must be given to it.

すなわち、U!気流は第二gmのバランスピストン16
の奥の角の円周上にあけられた多数の通気孔41を通っ
て外気に逃がされるのであるが、なおパラノスピストン
16内に若干の圧力が残る、−万前記スラストリング3
3はm車側に円筒形に形成され、そのスラスト軸受は側
にくびれを設け、縁を鋭くして油の切れをよくしである
とともに#円筒部の周囲にラビリンス42を設けて潤滑
油の漏れを防止するのであるが、とのラビリンスに前記
気流の一部が流れ込むので、これが潤滑油の本流に混ら
ぬように前記通気孔4Bを通って軸受ノ\クジング23
の翼車側に設けられた空間44に集められ、その下部に
設けられた排出口45から排出されるようにする。この
気流には微量の油が混入する恐れがあるのでその油を分
離出来るようにバッファーを設けて置く。
In other words, U! Airflow is the second gm balance piston 16
Although the outside air is released through a number of ventilation holes 41 drilled on the circumference of the inner corner of the thrust ring 3, some pressure still remains inside the paranos piston 16.
3 is formed in a cylindrical shape on the m wheel side, and its thrust bearing has a constriction on the side and sharp edges to facilitate oil drainage. To prevent leakage, a part of the airflow flows into the labyrinth of the bearing nozzle 23 through the ventilation hole 4B so that it does not mix with the main flow of lubricating oil.
The air is collected in a space 44 provided on the side of the impeller, and is discharged from an outlet 45 provided at the bottom of the space 44. Since there is a possibility that a small amount of oil may be mixed into this airflow, a buffer is provided to separate the oil.

前記空間44の構成はバランスピストン16から更に薄
肉のスリーブ46を出し、その外周をかこむラビリンス
を有するカバー47を軸受ハウジング23に取りつける
ことによって構成する。
The space 44 is constructed by extending a thin-walled sleeve 46 from the balance piston 16 and attaching a cover 47 having a labyrinth surrounding the outer periphery to the bearing housing 23.

他方、軸受40を潤滑した油は軸受ハウジング23の他
の側に設けられた空間48に集められ、その下部に設け
られた排油口49から排出される。
On the other hand, the oil that has lubricated the bearing 40 is collected in a space 48 provided on the other side of the bearing housing 23, and is discharged from an oil drain port 49 provided at the bottom thereof.

軸内輪受31はジャーナル34と反対方向に回転するた
めその相対速度が大きく抵抗と発熱がそれだけ太き(な
るわけであるが、それを緩和するために軸受のクリヤラ
ンスを若干大ぎくするのがよい。それは相対速度が大き
いのでクリヤランスを若干大きくしても軸の安定性が保
たれるからである。この構成は第一翼車の軸の長さを最
も短かく、且つその中央部を光分に太くすることが出来
、軸の高速安定性を高めることが出来るので非常に高い
高速を要求される場合に適している。
Since the shaft inner ring bearing 31 rotates in the opposite direction to the journal 34, its relative speed is large and the resistance and heat generation are correspondingly large (this is why it is better to slightly increase the clearance of the bearing to alleviate this). This is because the shaft stability is maintained even if the clearance is increased slightly due to the large relative speed.This configuration allows the shaft length of the first impeller to be the shortest, and the central part of the shaft is optically separated. It can be made thicker and the high-speed stability of the shaft can be improved, making it suitable for cases where extremely high speeds are required.

第11図は第一翼車3が片持ちに固定された軸を中空の
第二翼N6の軸に貫通させその翼車側の軸受は第二翼車
6の中空軸内の翼車側に設け、もう−万の軸受は第−翼
Jg3の軸が第二Y(車6を貫通して出外れた位置に固
定的に設けたところの単純で好ましい構成を示す。
FIG. 11 shows that the shaft of the first impeller 3 fixed in a cantilever manner passes through the shaft of the hollow second blade N6, and the bearing on the impeller side is inserted into the hollow shaft of the second impeller 6 on the impeller side. A simple and preferable configuration is shown in which the second bearing is fixedly provided at a position where the shaft of the second wing Jg3 passes through the second Y (wheel 6) and extends out.

311図において記入されている記号の中4個の部品2
3m、40g、44a、47mを除く他のすべてはすで
に記述した内容と同一の要素を示す。また、軸内軸受3
1を潤滑した油は第9図、第1O図の例ではさらVc第
二翼車6の軸受に導かれているが、筒11図では第二j
I車6の翼車側軸受40 a、に、は導くことを止め、
同軸受を支持するブラケット23aと同カバー47aの
凹み部とで構成される空間44aを経由して上下の排出
口45から排出される。排出口45を上下に設けた理由
は、上の万からはバランスピストンを洩れた気体の一部
が潤滑油に混入するのを逃がすためであり、下からは油
を排出するためである。
4 parts 2 among the symbols written in Figure 311
All the others except 3m, 40g, 44a, and 47m indicate the same elements as already described. In addition, the shaft bearing 3
In the examples shown in FIGS. 9 and 1O, the oil lubricating the cylinder 1 is further led to the bearing of the Vc second impeller 6, but in the example shown in FIG.
Stop guiding to the impeller side bearing 40a of the I wheel 6,
The liquid is discharged from the upper and lower discharge ports 45 through a space 44a formed by the bracket 23a that supports the bearing and the recessed portion of the cover 47a. The reason why the discharge ports 45 are provided at the top and bottom is to release part of the gas leaking from the balance piston from the lubricating oil from the top, and to discharge oil from the bottom.

潤滑油は第二翼車6のもう一部の軸受40を支持する軸
受ハウジングに設けた給油孔29から供給され、軸内軸
受31に対しては第二翼]E6の中空軸8のもう一部の
端の第一翼車3の軸2との間のすきまから軸2に沿って
進入し、またハウジング24の軸受に対してはその反対
方向に進入して@清し且つそれぞれ排出される。
Lubricating oil is supplied from the oil supply hole 29 provided in the bearing housing that supports the other bearing 40 of the second impeller 6, and the lubricating oil is supplied to the in-shaft bearing 31 from the second impeller 6 of the hollow shaft 8 of the second impeller 6. It enters along the shaft 2 from the gap between the end of the shaft and the shaft 2 of the first impeller 3, and also enters the bearing of the housing 24 in the opposite direction to be cleaned and discharged respectively. .

第−R車3の軸2の端にはカップリングを付し駆動軸1
aと連結してあり、駆動軸】耐ま適宜の増速装置で増速
される。しかし、カップリングの代りにプーリーまたは
ギヤをつけてベルhm速tたは歯車増速してもよい。こ
の場合のベルトは左右から均等の力で引張るようにし、
二重のモーターで駆動する。第二翼車はプーリー25で
駆動するように示しであるが、これは歯車でもよい。
A coupling is attached to the end of the shaft 2 of the R-th wheel 3, and the drive shaft 1
The drive shaft is connected to a and the speed of the drive shaft is increased by an appropriate speed increasing device. However, instead of a coupling, a pulley or a gear may be attached to increase the bell hm speed or gear speed. In this case, the belt should be pulled with equal force from both sides,
Driven by dual motors. Although the second impeller is shown as being driven by a pulley 25, this may also be a gear.

なお、第11図の第−翼車には側板がなく、マウスリン
グだけがつけであるが、このマウスリングは入口の羽根
の遠心力に対する補強の意味と流体の洩れ防止とを兼ね
ている。
Note that the No. 1 impeller in FIG. 11 does not have a side plate and only has a mouth ring, which serves both to reinforce against the centrifugal force of the inlet blade and to prevent fluid leakage.

また第二翼車の外周には渦室はなく広いケーシングの中
で回転する形となっているが、第二B車6そのものが改
良された渦室の一種と見てもよい。
Further, although there is no vortex chamber on the outer periphery of the second impeller, and the second impeller rotates within a wide casing, the second B wheel 6 itself may be regarded as a type of improved vortex chamber.

(発明の効果) 」す上の構成により、本発明の送1機また田縮模はそれ
ぞれ従来型機の全効率゛65ないl−し’7’5優を、
85ないし90チにまで向上出来るので、相対的には2
0ないし30%の電力節減を期待出来るため、二軸反転
式にすることによる価格の上昇分は電力節約によって一
ケ年以内に償却出来ることとなる。たとえば、3013
kWの汚水処理用高圧ブロワ−を例になると、その年間
電力費は、単価を1kwについて20円とし、年間36
0日稼動とするとき3t10X20X24X36(1=
51,840,000円となシ、その20チが節約出来
たとすると、節約分は年間約i、ooo万円となるのに
対し、価格上昇分はその数分の1であり、−年以内の償
却はもちろんであるし、むしろ在来の送風機を廃止して
新規に本発明の送風機に取り替えることが考えられるか
も知れない。特にモーター直結の8段式ターボプロワ−
はその低速の故に、また流れの折れ曲り損失のために効
率が65係程度しか出ないので、それを85優の効率の
ものに交換すると、30−前後の効率上昇、即ち30憾
程の電力節約となるので、メリットは大変大きい。また
、本型式の送風機は床面積も小さくなるので同一床面積
でより大容量の送風機を置くことも出来る。
(Effects of the Invention) With the above configuration, the feeder machine and the compact machine of the present invention have a total efficiency of 65 to 75 liters compared to the conventional machine, respectively.
It can be improved to 85 to 90 inches, so relatively speaking it is 2
Since power savings of 0 to 30% can be expected, the price increase due to the biaxial reversing type can be amortized within a year due to the power savings. For example, 3013
Taking a kW high-pressure blower for sewage treatment as an example, the annual electricity cost is 36 yen per 1 kW.
When operating for 0 days, 3t10X20X24X36 (1=
51,840,000 yen, and if we were to be able to save 20 yen, the savings would be about i,ooo million yen per year, while the price increase would be a fraction of that, and within - years. Of course, it is possible to depreciate the cost, and it may be possible to abolish the conventional blower and replace it with the blower of the present invention. Especially the 8-stage turbo blower that is directly connected to the motor.
Because of its low speed and the bending loss of the flow, the efficiency is only about 65%, so if you replace it with one with an efficiency of 85%, you will get an efficiency increase of about 30%, which means a power consumption of about 30%. This is a huge benefit as it saves money. Additionally, this type of blower requires less floor space, so a larger capacity blower can be placed on the same floor space.

以上、主として本発明の送風機について述べたが、本発
明はそれに限定されるものでなく、シールの点に若干の
違いがあるものの、タービンポンプとしても、同様に構
成でき、同様な効率の上昇とメリットとが得られる。
Although the blower of the present invention has been mainly described above, the present invention is not limited thereto, and although there are some differences in sealing, it can be configured similarly as a turbine pump and achieves the same increase in efficiency. Benefits can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は軸流型の本発明に基づく送風機の中で最も単純
に構成された実施例の側面から見た断面図、第2図は第
1図の実施例の吸込側から見た要部断面図、第3図及び
棺4図は第1図の実施例の第−翼車入口と出口の速度線
図、第5図及び第6図は第1図の実施例の第二翼車入口
と出口の速度線図、第7図は第1図の実施例の−7の駆
動側の軸受を延長して第二翼車の軸外に設けた側断面図
、第8図は本発明の遠心型の変型である斜流型翼車の一
例の側断面図、第9図は第8図の実施例の変形で−7の
軸受を第二翼車の軸内に設けた場合の潤滑系統の概略を
示す側断面図、第1O図は第9図の潤滑系統の詳細を示
す側断面図、第11図は第一翼車の軸が第二翼車を貫い
て設けられた場合の断面図である。 図において
Fig. 1 is a cross-sectional view of the simplest embodiment of the axial flow type blower according to the present invention, seen from the side, and Fig. 2 is a main part of the embodiment shown in Fig. 1, seen from the suction side. The sectional view, FIG. 3 and Coffin 4 are speed diagrams of the inlet and outlet of the second impeller of the embodiment shown in FIG. 1, and FIGS. 5 and 6 are the inlet of the second impeller of the embodiment of FIG. 1. FIG. 7 is a side sectional view of the -7 drive side bearing of the embodiment shown in FIG. 1 extended and installed outside the axis of the second impeller, and FIG. A side sectional view of an example of a mixed-flow type impeller, which is a modification of the centrifugal type, and Fig. 9 shows a lubrication system when a -7 bearing is provided in the shaft of the second impeller, which is a modification of the embodiment shown in Fig. 8. Figure 1O is a side sectional view showing the details of the lubrication system in Figure 9, Figure 11 is a cross-section when the shaft of the first impeller is provided through the second impeller. It is a diagram. In the figure

Claims (7)

【特許請求の範囲】[Claims] (1)第一翼車の外周から吐出される高速の流体を第一
翼車と反対方向に回転する第二翼車に直ちに、或は渦室
ないし必要によつては有翼の固定ディフューザーによつ
て適当に減速昇圧させてから導入し、第二翼車入口にお
いて大きな相対速度をつくりあげるとともに第二翼車の
翼の広がりによる減速化とそれ自体の回転による減速化
とによつて第二翼車出口の該流体の絶体速度を著しく低
下させることにより動圧を効率よく静圧に変換し、且つ
低速で第二翼車外周の渦巻型ケーシングまたは広い空間
を有する適当なケーシングに導入することにより該ケー
シング内における流体摩擦損失を小さくし、全体として
該流体の大きな圧力上昇を高い効率をもつて得るように
構成したことを特徴とする二軸反転遠心型流体昇圧装置
(1) High-speed fluid discharged from the outer periphery of the first impeller is immediately transferred to the second impeller, which rotates in the opposite direction to the first impeller, or to a vortex chamber or, if necessary, to a fixed winged diffuser. Therefore, it is introduced after being appropriately decelerated and pressurized, and a large relative speed is created at the inlet of the second impeller, and the second impeller is decelerated by the spread of the blades of the second impeller and by its own rotation. Dynamic pressure is efficiently converted into static pressure by significantly reducing the absolute velocity of the fluid at the car outlet, and the fluid is introduced at low speed into the spiral casing around the outer periphery of the second impeller or an appropriate casing having a wide space. A biaxially inverted centrifugal fluid pressurizing device characterized in that it is configured to reduce fluid friction loss within the casing and to obtain a large pressure increase of the fluid as a whole with high efficiency.
(2)第一翼車の軸はその吸込側に延伸されるとともに
、該軸は原動機の軸のそのものであるかまたは原動機に
よつて回転されるように軸受けによつて支持されて居り
、且つ第二翼車の軸は第一翼車の軸と反対方向に延伸さ
れるとともに該軸は原動機の軸そのものであるか、また
は原動機によつて回転されるように軸受けによつて支持
されることを特徴とする特許請求の範囲(1)に記載の
二軸反転遠心型流体昇圧装置。
(2) the shaft of the first impeller extends to its suction side, and the shaft is either the shaft of the prime mover or is supported by a bearing so as to be rotated by the prime mover; The axis of the second wheel extends in the opposite direction to the axis of the first wheel, and the axis is either the axis of the prime mover itself or is supported by a bearing so as to be rotated by the prime mover. A biaxially inverted centrifugal fluid pressure booster according to claim (1).
(3)第二翼車の軸を中空に形成し、且つ第一翼車の吸
込側に延伸する第一翼車軸の端部は吸込ノズルの周壁か
らリブによつて支持された軸受及び軸シールによつて支
承され、該リブ内に潤滑油の供給と排出用の通路及び必
要によりシール流体の通路を設け、第一翼車の背面に延
伸する第一翼車軸は前記第一翼車の中空軸を貫通し、該
中空軸外に設けられた軸受けによつて支承されることを
特徴とする特許請求の範囲(1)に記載の二軸反転遠心
型流体昇圧装置。
(3) The shaft of the second impeller is formed hollow, and the end of the first impeller axle extending toward the suction side of the first impeller is supported by a bearing and a shaft seal from the peripheral wall of the suction nozzle by a rib. The first blade axle extends from the back of the first impeller, and is supported by the ribs, and has passages for supplying and discharging lubricating oil and, if necessary, passages for sealing fluid in the ribs. The two-shaft reversible centrifugal fluid booster according to claim 1, characterized in that the device extends through the shaft and is supported by a bearing provided outside the hollow shaft.
(4)第一翼車の翼車側の軸端を中空とし、その中に第
一翼車の一方の軸端を保持する軸受けを装置し、該軸受
けの潤滑油は第二翼車の中心を貫通する長孔を経由して
供給し、その排出油をさらに第二翼車の翼車側軸受けに
導き、第一翼車の他方の軸受けは翼車吸込側に設けた吸
込ケーシング外に設けたことを特徴とする特許請求の範
囲(1)に記載の二軸反転遠心型流体昇圧装置。
(4) The shaft end of the first impeller on the impeller side is hollow, and a bearing is provided therein to hold one shaft end of the first impeller, and the lubricating oil for this bearing is supplied to the center of the second impeller. The discharged oil is further guided to the impeller side bearing of the second impeller, and the other bearing of the first impeller is installed outside the suction casing provided on the impeller suction side. A biaxially inverted centrifugal fluid pressurization device according to claim (1).
(5)第二翼車の軸を中空にし、第一翼車の片持ち軸を
同心に貫通させ第一翼車の翼車側の軸受けは前記中空軸
の翼車側端の軸内に設け、もう一方の軸受けは第一翼車
の前記軸が前記中空軸を出外れた所に固定して設け、且
つ第一翼車軸受け用の潤滑油は第二翼車の軸受けハウジ
ングと第一翼車のもう一方の軸受けハウジングとの中間
に供給し、前記中空軸端と第一翼車の軸との間のすきま
から前記軸内軸受けえ、またその反対方向にもう一方の
固定軸受けえと第一翼車の軸に沿つて進入させ、且つ適
宜排出させるように構成したことを特徴とする特許請求
の範囲(1)に記載の二軸反転遠心型流体昇圧装置。
(5) The shaft of the second impeller is hollow, and the cantilever shaft of the first impeller is passed through concentrically, and the bearing on the impeller side of the first impeller is installed within the shaft at the end of the hollow shaft on the impeller side. , the other bearing is fixedly provided at a location where the shaft of the first impeller is out of the hollow shaft, and the lubricating oil for the first impeller bearing is provided between the bearing housing of the second impeller and the first impeller. The inner shaft bearing is supplied from the gap between the hollow shaft end and the shaft of the first impeller, and in the opposite direction, the other fixed bearing housing and the first impeller are connected to each other. The biaxially reversible centrifugal fluid pressure boosting device according to claim 1, characterized in that the device is configured to enter along the axis of the impeller and discharge as appropriate.
(6)第一翼車の軸を中空に形成し、第一翼車の吸込側
に延伸する軸は吸込ケーシング外に設けた軸受けにより
、他の側に延伸する軸は第二翼車の軸を貫通して該中空
軸外に設けた軸受けにより、それぞれ支承されることを
特徴とする特許請求の範囲(1)に記載の二軸反転遠心
型流体昇圧装置。
(6) The shaft of the first impeller is formed hollow, and the shaft extending to the suction side of the first impeller is supported by a bearing provided outside the suction casing, and the shaft extending to the other side is the shaft of the second impeller. The biaxial reversible centrifugal fluid pressurizing device according to claim (1), wherein the two-shaft reversing centrifugal fluid pressurizing device is supported by bearings provided outside the hollow shaft and passing through the hollow shaft.
(7)第一翼車の側板を第一翼車の外径よりも大きい円
周を境として大、小径二つのリングに分割し、小径の部
分を大径の部分に対して取りつけ取り外し自在に構成し
且つ小径の部分にマウスリングを設けたことを特徴とす
る特許請求の範囲(1)に記載の二軸反転遠心型流体昇
圧装置。
(7) The side plate of the first impeller is divided into two rings with a large diameter and a small diameter ring with a circumference larger than the outer diameter of the first impeller as the border, and the small diameter part can be attached to and removed from the large diameter part at will. A biaxially inverted centrifugal fluid pressurizing device according to claim 1, characterized in that a mouth ring is provided in the small diameter portion.
JP3886887A 1987-02-21 1987-02-21 Biaxial reversal centrifugal type fluid booster Pending JPS63205494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3886887A JPS63205494A (en) 1987-02-21 1987-02-21 Biaxial reversal centrifugal type fluid booster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3886887A JPS63205494A (en) 1987-02-21 1987-02-21 Biaxial reversal centrifugal type fluid booster

Publications (1)

Publication Number Publication Date
JPS63205494A true JPS63205494A (en) 1988-08-24

Family

ID=12537190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3886887A Pending JPS63205494A (en) 1987-02-21 1987-02-21 Biaxial reversal centrifugal type fluid booster

Country Status (1)

Country Link
JP (1) JPS63205494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299573A (en) * 2004-04-14 2005-10-27 Mitsubishi Heavy Ind Ltd Diffuser of wind force machine, diffuser of mixed flow compressor, and diffuser
JP2009236121A (en) * 2009-07-17 2009-10-15 Mitsubishi Heavy Ind Ltd Diffuser for diagonal flow compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299573A (en) * 2004-04-14 2005-10-27 Mitsubishi Heavy Ind Ltd Diffuser of wind force machine, diffuser of mixed flow compressor, and diffuser
JP2009236121A (en) * 2009-07-17 2009-10-15 Mitsubishi Heavy Ind Ltd Diffuser for diagonal flow compressor

Similar Documents

Publication Publication Date Title
US5713727A (en) Multi-stage pump powered by integral canned motors
US5215448A (en) Combined boiler feed and condensate pump
US5209650A (en) Integral motor and pump
US4334821A (en) Regenerative rotodynamic machines
RU2111384C1 (en) Multi-stage reduction-type multi-motor turbocompressor with return motion stage and radial expander
US5755554A (en) Multistage pumps and compressors
US3069071A (en) Fans having radial flow rotors in axial flow casings
KR950009062B1 (en) Centrifugal compressor with pipe diffuser and collector
US2842306A (en) Turbine driven multi-stage blower or pump
US2827261A (en) Fluid propulsion apparatus
US5297942A (en) Porous rotor
JPH04276142A (en) Turbo pump
US4067665A (en) Turbine booster pump system
JPS6193295A (en) Fluid machine
US5265348A (en) Porous rotor
JPS63205494A (en) Biaxial reversal centrifugal type fluid booster
US1787655A (en) Apparatus and method of controlling fans
WO2020134517A1 (en) Compressor
JPH01216095A (en) Double shaft inversion centrifugal type fluid booster
US4074954A (en) Compressor
US4035108A (en) Axial flow pump for a pivotal rotor
JPH04314952A (en) Turbo pump
US3692420A (en) Inlets of centrifugal compressors, blowers and pumps
JPS6258096A (en) Inverted biaxial centrifugal fluid booster
JP2022107182A (en) Propulsion device