JPS63205482A - Discharge bypass valve for scroll compressor - Google Patents

Discharge bypass valve for scroll compressor

Info

Publication number
JPS63205482A
JPS63205482A JP3796787A JP3796787A JPS63205482A JP S63205482 A JPS63205482 A JP S63205482A JP 3796787 A JP3796787 A JP 3796787A JP 3796787 A JP3796787 A JP 3796787A JP S63205482 A JPS63205482 A JP S63205482A
Authority
JP
Japan
Prior art keywords
scroll member
discharge
scroll
wrap
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3796787A
Other languages
Japanese (ja)
Inventor
Tetsuya Arata
哲哉 荒田
Naoshi Uchikawa
内川 直志
Akira Murayama
朗 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3796787A priority Critical patent/JPS63205482A/en
Publication of JPS63205482A publication Critical patent/JPS63205482A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To maintain high efficiency under extensive pressure ratio conditions, by installing a bypass port, letting over compression escape to the discharge side, at the center of groove between laps, and also installing a check valve in this bypass port. CONSTITUTION:In this scroll compressor, a compressor part 1 and an electric motor part 2 are housed in a hermetically sealed vessel 3. A compression space of this compressor part 1 is made up of having a fixed scroll member 5 and a turning scroll member 7 engaged with each other. In a fixed scroll end plate 5a, there is provided with a bypass port 21, interconnecting the compression space to a discharge space 3a, at the groove center. In this bypass port 21, there is provided with a check valve 22, leading to only the direction of the discharge space 3a or the inside of a discharge pipeline from the compression space. Thus, high efficiency is maintainable under extensive pressure ratio conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスクロール圧縮機を使用した冷凍空調装置に係
り、特に回転数制御によシ容量制御するスクロール圧縮
機に好適な構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration and air conditioning system using a scroll compressor, and particularly to a structure suitable for a scroll compressor that controls capacity by controlling the rotation speed.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭57−137677号の確動変位
スクロール型ガス圧縮器に記載のものは、起動時の発生
トルクを削減するだめのものでノくイバス弁の孔の位置
については規定してない。
The conventional device described in JP-A-57-137677, Positive Displacement Scroll Type Gas Compressor, was designed to reduce the torque generated at startup, and the position of the hole in the bus valve was not specified. I haven't.

また特開昭58−128485号のスクロール圧縮機に
ついても圧縮空間の圧力が吐出圧力よりも高くなった時
に、圧縮ガスをバイパスさせる構造を示しているがバイ
パス弁の孔の位置については規定してない。
Furthermore, the scroll compressor of JP-A-58-128485 also shows a structure in which compressed gas is bypassed when the pressure in the compression space becomes higher than the discharge pressure, but the position of the hole in the bypass valve is not specified. do not have.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

゛ 上記従来技術はバイパス孔の位置の点については配
属されておらず、必らずしも効率を最適にするようには
なっていなかった。本発明はインノく−タ等回転数を変
化させて容量制御する冷凍空調装置において、運転時の
圧力比が設定圧力比の0.5〜0.75の範囲が最も多
いことに着目して、当該圧力比でバイパス弁を作動させ
るようにして省エネ効果を最大限得るものである。
゛ The above prior art does not address the location of the bypass holes and is not necessarily designed to optimize efficiency. The present invention focuses on the fact that the pressure ratio during operation is most often in the range of 0.5 to 0.75 of the set pressure ratio in a refrigeration air conditioner that controls capacity by changing the rotation speed of an inlet. By operating the bypass valve at this pressure ratio, the energy saving effect can be maximized.

〔問題点全解決するための手段〕[Means to solve all problems]

上記目的は、過圧縮圧力を吐出側に逃がすバイパス孔を
ラップ間溝中央に設け、逆止弁を装着することにより、
運転時に最も多い設定圧力比に対する圧力比0.5〜1
.0の範囲において、多くの効率向上効果が得られ、達
成される。
The above purpose is achieved by providing a bypass hole in the center of the groove between the wraps and installing a check valve to release overcompression pressure to the discharge side.
Pressure ratio 0.5 to 1 for the most common set pressure ratio during operation
.. In the range of 0, many efficiency-enhancing effects are obtained and achieved.

〔作用〕[Effect]

ラップ間溝中央の端板に設けたバイパス孔と圧縮室から
吐出室あるいは吐出配管内の方向にのみ通じる逆上弁を
設は構成された吐出バイパス弁は圧縮室圧力が、吐出室
あるいは吐出配管内の圧力より高くなると逆止弁が作動
して通路が開口し、圧縮室内作動流体はラップ中央に設
けた吐出孔に達する前に、該バイパス孔から、吐出室あ
るいは吐出配管内に流出する。しかし、圧縮室圧力が吐
出室あるいは吐出配管内圧力より低下すると開口〒3− していた逆止弁は、閉じ、吐出バイパス弁内通路を閉塞
する。上記の如く、該逆止弁は、升前後に作用する圧力
差により作動する自動弁を用いる。
The discharge bypass valve has a bypass hole provided in the end plate at the center of the groove between laps and a reverse valve that communicates only from the compression chamber to the discharge chamber or the discharge piping. When the pressure becomes higher than the internal pressure, the check valve operates to open the passage, and the working fluid in the compression chamber flows out from the bypass hole into the discharge chamber or the discharge pipe before reaching the discharge hole provided in the center of the wrap. However, when the pressure in the compression chamber becomes lower than the pressure in the discharge chamber or the discharge pipe, the check valve, which had been open, closes and closes the passage in the discharge bypass valve. As mentioned above, the check valve uses an automatic valve that is operated by a pressure difference acting before and after the cell.

又、バイパス孔をラップ間溝中央に、180°対向して
2ヶ設けることにより、圧縮開始から吐出完了までの過
程において上記2ケ所のバイパス孔は、順次、圧縮室に
開口する。従って、バイパス孔をラップ側壁に設けた場
合より、多く時間開口させることができ、広い圧力比範
囲で、過圧縮圧力を低減せる効果がある。
Furthermore, by providing two bypass holes at the center of the inter-wrap groove, facing each other at 180 degrees, the two bypass holes open into the compression chamber in sequence during the process from the start of compression to the completion of discharge. Therefore, the bypass hole can be left open for a longer period of time than when the bypass hole is provided in the wrap side wall, and this has the effect of reducing overcompression pressure over a wide pressure ratio range.

〔実施例〕〔Example〕

゛ゝ以下、本発明の一実施例を第1図〜第3図により説
明する。
゛゛Hereinafter, one embodiment of the present invention will be explained with reference to FIGS. 1 to 3.

第1図に示すスクロール圧縮機は、密閉容器3内に、圧
縮機部1と電動機部2が収納されている。圧縮機部1は
固定スクロール部材5と旋回スクロール部材6を互に噛
合せて圧縮室(密閉空間)が形成される。固定スクロー
ル部材5は、円板状の鏡板5aと、これに直立しインポ
リウド曲線あるいはこれに近似の曲線に形成されたラッ
プ5b=4− とからなり、その中心部に吐出口13、外周部に吸入口
11を備えている。旋回スクロール部材6は円板状の鏡
板6aと、これに直立し、固定スクロールのラップと同
一形状に形成されたラップ6bと、鏡板の反ラツプ面に
形成されたボス6Cとからなっている。フレーム7は中
央部に軸受部7aを形成し、この軸受部に回転軸4が支
承され、回転軸先端の偏心軸4aV−1、上記ボス6C
に旋回運動が可能なように挿入されている。またフレー
ム71Cは固定スクロール部材5が複数本のボルトによ
って固定され、旋回スクロール部材6けオルダムリング
およびオルダムキーよりなるオルダム−機−9によって
フレーム7に支承され、旋回スクロール部材6は固定ス
クロール部材5に対して、自転しないで旋回運動をする
ように形成されている。回転軸4には下部に電動機部2
を直結している。固定スクロール部材5の吸入口11に
は密閉容器3を貫通して吸入管a、が接続され、吐出口
13が開口している吐出室3ail′:1′通路(14
a)を介して下部室3bと連通し、更に、密閉容器3を
貫通する吐出管32に連通している。
The scroll compressor shown in FIG. 1 includes a compressor section 1 and a motor section 2 housed in a closed container 3. The scroll compressor shown in FIG. In the compressor section 1, a fixed scroll member 5 and an orbiting scroll member 6 are engaged with each other to form a compression chamber (sealed space). The fixed scroll member 5 consists of a disc-shaped end plate 5a and a wrap 5b standing upright on the end plate and formed in an impolied curve or a curve similar to this. A suction port 11 is provided. The orbiting scroll member 6 is composed of a disk-shaped end plate 6a, a wrap 6b standing upright thereon and formed in the same shape as the wrap of the fixed scroll, and a boss 6C formed on the opposite surface of the end plate. The frame 7 has a bearing part 7a formed in the center, and the rotating shaft 4 is supported by this bearing part, and the eccentric shaft 4aV-1 at the tip of the rotating shaft, the boss 6C mentioned above.
It is inserted in such a way that it can be rotated. Further, in the frame 71C, the fixed scroll member 5 is fixed by a plurality of bolts, and is supported on the frame 7 by an Oldham machine 9 consisting of an Oldham ring and an Oldham key with six orbiting scroll members, and the orbiting scroll member 6 is fixed to the fixed scroll member 5. On the other hand, it is formed so that it can rotate without rotating. The rotating shaft 4 has an electric motor section 2 at the bottom.
are directly connected. A suction pipe a is connected to the suction port 11 of the fixed scroll member 5 through the closed container 3, and a discharge chamber 3ail':1' passage (14
It communicates with the lower chamber 3b via a), and further communicates with a discharge pipe 32 that penetrates the closed container 3.

他方、旋回スクロール部材6の背面とフレーム7で囲ま
れた空間8(これを「背圧室」と称する)ニハ、旋回、
固定の両スクロールで形成される複数の密閉空間内のガ
ス圧によるスラスト方向のガス力(この力は、旋回スク
ロール部材6を下方に押し下げようとする離反力となる
。)に対抗するため吸入圧力(低圧側圧力)と吐出圧力
の中間の圧力が作用する。この中間圧力の設定は旋回ス
クロール6の鏡板6aに細孔16を設け、この細孔16
を介してスクロール内部のガスを背圧室8に導き、旋回
スクロールの背面にガスを作用させ゛て行う。
On the other hand, a space 8 (this is called a "back pressure chamber") surrounded by the back surface of the orbiting scroll member 6 and the frame 7,
Suction pressure is applied to counter the gas force in the thrust direction due to the gas pressure in the plurality of sealed spaces formed by both fixed scrolls (this force becomes a separation force that tries to push down the orbiting scroll member 6). (low pressure side pressure) and the pressure between the discharge pressure acts. This intermediate pressure is set by providing a pore 16 in the end plate 6a of the orbiting scroll 6.
The gas inside the scroll is introduced into the back pressure chamber 8 through the scroll, and the gas is applied to the back surface of the orbiting scroll.

、そ、。,So,.

・ 回転軸4及び偏心軸4aには各軸受部へ給油を行う
ための給油孔4Cが回転軸4の下端から偏心軸4aの上
端面まで穿設され、回転軸下端部4dは密閉容器3底部
の潤滑油内に浸漬されている。
- The rotating shaft 4 and the eccentric shaft 4a are provided with oil supply holes 4C for supplying oil to each bearing part from the lower end of the rotating shaft 4 to the upper end surface of the eccentric shaft 4a, and the lower end 4d of the rotating shaft is located at the bottom of the closed container 3. immersed in lubricating oil.

また、偏心軸部4aの下部には、旋回スクロールボス部
6Cの先端面に対向させる主軸受上部にバランスウェイ
トが、回転軸と係合し、一体化して形成されている。
In addition, a balance weight is formed in the lower part of the eccentric shaft part 4a to be engaged with and integrated with the rotating shaft at the upper part of the main bearing which is opposed to the tip end surface of the orbiting scroll boss part 6C.

詔2図、第3図で示したように、固定スクロール端板5
aには、圧縮室と吐出室3aとを連通ずるバイパス孔2
1が溝中央に設けられ、該バイパス孔21を閉塞するリ
ード弁22とリテーナ23及びボルト24とで構成され
る吐出バイパス弁25が装着されている。
As shown in Figures 2 and 3 of the imperial edict, the fixed scroll end plate 5
A has a bypass hole 2 that communicates the compression chamber and the discharge chamber 3a.
1 is provided in the center of the groove, and a discharge bypass valve 25 comprising a reed valve 22 for closing the bypass hole 21, a retainer 23, and a bolt 24 is mounted.

次に、バイパス孔の取付位置を具体的に説明する。渦巻
き線の基礎円半径aとラップ厚さt1旋回半径ε及び巻
き角λとで、バイパス孔の中心座標(x、y)を次式で
表わす。
Next, the mounting position of the bypass hole will be specifically explained. The center coordinates (x, y) of the bypass hole are expressed by the following equation using the basic circle radius a of the spiral line, the wrap thickness t1, the turning radius ε, and the winding angle λ.

x = a (邸λ+(λ+と巳)smλ)a ε+t y=a(訓λ−(λ+   )鳴λ) これは、ラップ間溝中央の渦巻き線の式となる渦巻き外
線の巻き初めをλ、とし、巻き終りをλ。
x = a (House λ + (λ + and Sn) smλ) a ε + t y = a (Kun λ - (λ + ) Ning λ) This means that the beginning of winding of the spiral outer line, which is the formula for the spiral line at the center of the groove between laps, is λ, Let the end of the winding be λ.

デ とすると、内線の巻き終りは、第2図の場合λ8+πと
なる。
If the winding end of the extension wire is λ8+π in the case of FIG.

圧縮室は、渦巻き内外線で別々に形成され、クランク軸
の回転に伴ない、中央に移動する。従って、それぞれの
圧縮室に等しく、その効果を得るために、180°対向
した位置に2ケ以上必要となる。第2図の場合は2ケで
ある。巻き初めに近い方のバイパス孔の巻き位置は、λ
5からλ、+2πの間が好ましい。さらに、バイパス孔
の太きさは、ラップ厚さと同等程度が良い。
The compression chamber is formed separately with inner and outer spiral lines, and moves to the center as the crankshaft rotates. Therefore, in order to obtain the same effect as each compression chamber, two or more are required at positions 180 degrees opposite to each other. In the case of Figure 2, there are two. The winding position of the bypass hole near the beginning of winding is λ
It is preferably between 5 and λ, +2π. Furthermore, it is preferable that the thickness of the bypass hole be approximately equal to the thickness of the wrap.

上記の如く構成した吐出バイパス弁25の特性を第4.
5図を用いて説明する。クラン軸の回転に伴ない圧縮室
が圧縮開始から吐出完了に到たる間、すなわち、圧縮室
が外側から中央部に向って移動する間に、まず外側のバ
イパス孔(巻き角位置の大きい方)の一端が圧縮室に開
口する。このとき圧縮室圧力が吐出室の圧力より太きい
と弁が押し上けられ、バイパス孔が吐出室と連通し、圧
縮ガスが圧縮室から吐出室へ流出する。さらにクランク
軸が回転すると上記バイパス孔は該圧縮室と連通しなく
なるが、代りに、内側のバイパス孔(巻き角位置の小さ
い方)の一端が該圧縮室【開78τ 口する。このように、2ケのバイパス孔が順次開口する
ため、圧縮室は広い範囲でバイパス孔と連通ずることが
できるようになる。
The characteristics of the discharge bypass valve 25 configured as described above are described in the fourth section.
This will be explained using Figure 5. While the compression chamber moves from the start of compression to the completion of discharge as the crankshaft rotates, that is, while the compression chamber moves from the outside toward the center, the outer bypass hole (the one with the larger winding angle position) is first opened. One end opens into the compression chamber. At this time, if the pressure in the compression chamber is greater than the pressure in the discharge chamber, the valve is pushed up, the bypass hole communicates with the discharge chamber, and the compressed gas flows out from the compression chamber to the discharge chamber. When the crankshaft further rotates, the bypass hole no longer communicates with the compression chamber, but instead, one end of the inner bypass hole (the one with the smaller winding angle position) opens into the compression chamber. In this way, since the two bypass holes open sequentially, the compression chamber can communicate with the bypass holes over a wide range.

従って、第5図に示したように広い圧力比の範囲で、扁
い効率を維持することができる。
Therefore, low efficiency can be maintained over a wide range of pressure ratios as shown in FIG.

一方、従来技術である、バイパス孔をラップ側壁近傍に
設けた場合を点線で示しているが、該圧縮室に対して一
ヶのバイパス孔しか有効に利用できず、低い圧力比にな
ると効率が低下する。
On the other hand, the conventional technique in which the bypass hole is provided near the side wall of the lap is shown by the dotted line, but only one bypass hole can be effectively used for the compression chamber, and the efficiency decreases when the pressure ratio becomes low. descend.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、圧縮室が圧縮開始から吐出完了まで移
動する間、バイパス孔を長い区間にわたり連通させるこ
とができるので、設計圧力比よシ低い条件において、広
い圧力比条件で高い効率を維持することができる効果が
ある。
According to the present invention, since the bypass hole can be communicated over a long section while the compression chamber moves from the start of compression to the completion of discharge, high efficiency can be maintained under a wide range of pressure ratio conditions even under conditions lower than the design pressure ratio. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すスクロール圧縮機の縦
断面図、第2図は第1図の固定スクロールの下面図、第
3図はバイパス弁部分の拡大断面図、第4図はクランク
回転角とバイパス孔開口面積との関係を示す線図、第5
図はバイパス孔位置と効率との関係を示す線図である。 5・・・第一スクロール部材  6・・・第二スクロー
ル部材  13・・・吐出孔  21・・・バイパス孔
22・・・逆止弁。
Fig. 1 is a vertical sectional view of a scroll compressor showing an embodiment of the present invention, Fig. 2 is a bottom view of the fixed scroll in Fig. 1, Fig. 3 is an enlarged sectional view of the bypass valve portion, and Fig. 4 is Diagram showing the relationship between crank rotation angle and bypass hole opening area, 5th
The figure is a diagram showing the relationship between bypass hole position and efficiency. 5... First scroll member 6... Second scroll member 13... Discharge hole 21... Bypass hole 22... Check valve.

Claims (1)

【特許請求の範囲】 1、端板に渦巻状のラップを直立してなる第一スクロー
ル部材及び第二スクロール部材を備え、一対のスクロー
ル部材を互いにラップを内側にして組合せ、第一スクロ
ール部材に対し、第二スクロール部材を相対的に自転し
ないように旋回運動させ、気体を圧縮する装置において
、第一スクロール部材の中央に設けた吐出孔に通ずる以
前の圧縮空間と吐出室あるいは吐出配管内とを通ずるバ
イバス孔を、ラップ間溝中央の端板に1ケ又は数ケ所設
け、該バイパス孔に、圧縮室から吐出室あるいは吐出配
管内の方向にのみ通じる逆止弁を設けたことを特徴とす
るスクロール圧縮機。 2、第一スクロール部材と第二スクロール部材のラップ
が、ラップ長さを同一とした対称型ラップ形状であり、
ラップ間溝中央端板に180°対向して設けたバイパス
孔を一対として、該一対のバイパス孔を数対設け、該バ
イパス孔に、逆止弁を設けた特許請求の範囲第1項記載
のスクロール圧縮機。 3、第一スクロール部材と第二スクロール部材のラップ
長さが異なる非対称型ラップ形状で、二つの対称圧縮室
の圧縮開始位置を同一とした装置であり、バイパス孔と
該バイパス孔を開閉する逆止弁を1ケ所設けた特許請求
の範囲第1項記載のスクロール圧縮機。 4.スクロール部材のラップ厚さをt、旋回半径をΣ、
渦巻き線の基礎円半径をa、巻き角をλとしたとき、バ
イパス孔の中心位置を下記x、y座標で表わし、 x=a[cosλ+{λ+(2Σ+t)/2a}sin
λ]y=a[sinλ−{λ+(2Σ+t)/2a}c
osλ]巻き角λの範囲を、巻き初め角λ_1からλ_
1+2πとした特許請求の範囲第1項記載のスクロール
圧縮機。
[Claims] 1. A first scroll member and a second scroll member each having a spiral wrap standing upright on an end plate are provided, the pair of scroll members are assembled with each other with the wraps inside, and the first scroll member is On the other hand, in a device that compresses gas by rotating the second scroll member so that it does not rotate relative to its axis, the compression space and the discharge chamber or the inside of the discharge piping before communicating with the discharge hole provided in the center of the first scroll member are One or several bypass holes are provided in the end plate at the center of the inter-lap groove, and a check valve is provided in each bypass hole to communicate only from the compression chamber to the discharge chamber or the inside of the discharge pipe. scroll compressor. 2. The wraps of the first scroll member and the second scroll member have a symmetrical wrap shape with the same wrap length,
A plurality of pairs of bypass holes are provided in the center end plate of the inter-lap groove facing each other at 180°, and a check valve is provided in each bypass hole. scroll compressor. 3. It is an asymmetrical wrap shape in which the first scroll member and the second scroll member have different wrap lengths, and the two symmetrical compression chambers have the same compression start position. A scroll compressor according to claim 1, wherein a stop valve is provided at one location. 4. The wrap thickness of the scroll member is t, the turning radius is Σ,
When the basic circle radius of the spiral line is a and the winding angle is λ, the center position of the bypass hole is expressed by the following x and y coordinates, x=a[cosλ+{λ+(2Σ+t)/2a}sin
λ]y=a[sinλ−{λ+(2Σ+t)/2a}c
osλ] The range of the winding angle λ is from the winding starting angle λ_1 to λ_
Scroll compressor according to claim 1, wherein 1+2π.
JP3796787A 1987-02-23 1987-02-23 Discharge bypass valve for scroll compressor Pending JPS63205482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3796787A JPS63205482A (en) 1987-02-23 1987-02-23 Discharge bypass valve for scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3796787A JPS63205482A (en) 1987-02-23 1987-02-23 Discharge bypass valve for scroll compressor

Publications (1)

Publication Number Publication Date
JPS63205482A true JPS63205482A (en) 1988-08-24

Family

ID=12512336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3796787A Pending JPS63205482A (en) 1987-02-23 1987-02-23 Discharge bypass valve for scroll compressor

Country Status (1)

Country Link
JP (1) JPS63205482A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142825A1 (en) * 2007-05-17 2008-11-27 Daikin Industries, Ltd. Scroll compressor
JP2011149376A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Scroll compressor
US20110206548A1 (en) * 2010-02-23 2011-08-25 Doepker Roy J Compressor including valve assembly
US9127677B2 (en) 2012-11-30 2015-09-08 Emerson Climate Technologies, Inc. Compressor with capacity modulation and variable volume ratio
US9303642B2 (en) 2009-04-07 2016-04-05 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US9435340B2 (en) 2012-11-30 2016-09-06 Emerson Climate Technologies, Inc. Scroll compressor with variable volume ratio port in orbiting scroll
US9790940B2 (en) 2015-03-19 2017-10-17 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US9989057B2 (en) 2014-06-03 2018-06-05 Emerson Climate Technologies, Inc. Variable volume ratio scroll compressor
US10066622B2 (en) 2015-10-29 2018-09-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US10094380B2 (en) 2012-11-15 2018-10-09 Emerson Climate Technologies, Inc. Compressor
US10378540B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermally-responsive modulation system
US10495086B2 (en) 2012-11-15 2019-12-03 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8408888B2 (en) 2007-05-17 2013-04-02 Daikin Industries, Ltd. Scroll compressor having relief ports to open first and second compression chambers
WO2008142825A1 (en) * 2007-05-17 2008-11-27 Daikin Industries, Ltd. Scroll compressor
US9303642B2 (en) 2009-04-07 2016-04-05 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11635078B2 (en) 2009-04-07 2023-04-25 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US10954940B2 (en) 2009-04-07 2021-03-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US9879674B2 (en) 2009-04-07 2018-01-30 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
JP2011149376A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Scroll compressor
US20110206548A1 (en) * 2010-02-23 2011-08-25 Doepker Roy J Compressor including valve assembly
US8517703B2 (en) * 2010-02-23 2013-08-27 Emerson Climate Technologies, Inc. Compressor including valve assembly
US10094380B2 (en) 2012-11-15 2018-10-09 Emerson Climate Technologies, Inc. Compressor
US11434910B2 (en) 2012-11-15 2022-09-06 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US10907633B2 (en) 2012-11-15 2021-02-02 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US10495086B2 (en) 2012-11-15 2019-12-03 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US9494157B2 (en) 2012-11-30 2016-11-15 Emerson Climate Technologies, Inc. Compressor with capacity modulation and variable volume ratio
US9127677B2 (en) 2012-11-30 2015-09-08 Emerson Climate Technologies, Inc. Compressor with capacity modulation and variable volume ratio
US9435340B2 (en) 2012-11-30 2016-09-06 Emerson Climate Technologies, Inc. Scroll compressor with variable volume ratio port in orbiting scroll
US9777730B2 (en) 2012-11-30 2017-10-03 Emerson Climate Technologies, Inc. Scroll compressor with variable volume ratio port in orbiting scroll
US9989057B2 (en) 2014-06-03 2018-06-05 Emerson Climate Technologies, Inc. Variable volume ratio scroll compressor
US10323639B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10323638B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US9790940B2 (en) 2015-03-19 2017-10-17 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10378540B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermally-responsive modulation system
US10087936B2 (en) 2015-10-29 2018-10-02 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US10066622B2 (en) 2015-10-29 2018-09-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11754072B2 (en) 2018-05-17 2023-09-12 Copeland Lp Compressor having capacity modulation assembly
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11879460B2 (en) 2021-07-29 2024-01-23 Copeland Lp Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Similar Documents

Publication Publication Date Title
JPS63205482A (en) Discharge bypass valve for scroll compressor
JPS62197684A (en) Scroll compressor
JPH0830471B2 (en) Air conditioner equipped with an inverter-driven scroll compressor
JPH1037869A (en) Scroll gas compressor
JPH0587074A (en) Two stage compressor
JPS58128485A (en) Scroll compressor
JP2606388B2 (en) Scroll compressor
JPH04295194A (en) Oil feeder for scroll compressor
JPH0610601A (en) Scroll type fluid device
JPH04325792A (en) Scroll compressor
JPH0791384A (en) Scroll compressor
JP2557533B2 (en) Hermetic variable speed scroll compressor
JPS6411834B2 (en)
JPH0152591B2 (en)
JPH0584394B2 (en)
JPS6256356B2 (en)
JP3252495B2 (en) Scroll compressor
JPH07103152A (en) Scroll compressor
JPH02227583A (en) Scroll compressor
JPS63215892A (en) Scroll compressor
JP2932013B2 (en) Scroll compressor
JP2000291573A (en) Scroll compressor
JPH04234591A (en) Scroll compressor
JPS63215891A (en) Scroll compressor
JPH0476290A (en) Scroll type compressor