JPS63205103A - Mixer settler extractor with porous wall - Google Patents

Mixer settler extractor with porous wall

Info

Publication number
JPS63205103A
JPS63205103A JP62034415A JP3441587A JPS63205103A JP S63205103 A JPS63205103 A JP S63205103A JP 62034415 A JP62034415 A JP 62034415A JP 3441587 A JP3441587 A JP 3441587A JP S63205103 A JPS63205103 A JP S63205103A
Authority
JP
Japan
Prior art keywords
mixer
settler
chamber
extractor
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62034415A
Other languages
Japanese (ja)
Other versions
JPH084681B2 (en
Inventor
Toshio Ichihashi
利夫 市橋
Masamitsu Okamoto
岡本 眞實
Yasuhiko Fujii
靖彦 藤井
Kazuya Yamada
和矢 山田
Masakazu Ota
正和 太田
Junichi Taga
多賀 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP3441587A priority Critical patent/JPH084681B2/en
Publication of JPS63205103A publication Critical patent/JPS63205103A/en
Publication of JPH084681B2 publication Critical patent/JPH084681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To reduce the volume of a setter to shorten extraction time and, obtain an extractor with high extraction efficiency by forming a porous wall of porous material in a partition between a mixer room and a settler room. CONSTITUTION:A mixer settler extractor with a porous wall 1 is composed of a mixer room 2, a settler room 3 and a porous material layer 4 which is arranged between both rooms and filled with, for instance, cubic particles of less than 1cm diameter in a laminar form. A stirrer 5 is provided in the mixer room 2. Subsequently, the residence time of an extract liquid in an extractor 1 becomes short by reduction of the volume of the settler room 3. Thus a continuous multi-stage extractor is operated efficiently.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は多孔壁付きミキサセトラ抽出器に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a porous walled mixer settler extractor.

(従来の技術) 一般に、ミキサセトラ抽出器は、異なる二相の液体の間
で一方の液相におる目的物質を他相に抽出するため混合
攪拌操作を行なうミキサ室と、それに接続し混合分散し
た液相をもとの二液に相分離するセトラ室から構成され
る。この型の抽出器はミキサ室で十分な攪拌が行なわれ
るために、比較的容易に抽出平衡が達成され一台当たり
の段効率は抽出平衡達成率で95%以上にもなるという
利点を有している。このためミキサセトラ抽出器は核燃
料の精製、再処理等に特に大規模に使用されてきており
、最も構造の簡単な重力式、処理流但の大きいポンプ式
ミキサセ1ヘラ抽出器、さらには高速処理の遠心分離式
ミキサ上1ヘラ抽出器等が開発されている。
(Prior art) In general, a mixer-settler extractor includes a mixer chamber that performs a mixing and stirring operation between two different liquid phases to extract the target substance in one liquid phase into the other phase, and a mixer chamber that is connected to the mixer chamber and mixes and disperses the target substance in one liquid phase in order to extract the target substance in the other phase. It consists of a settler chamber that separates the liquid phase into the original two liquids. This type of extractor has the advantage that extraction equilibrium is achieved relatively easily due to sufficient stirring in the mixer chamber, and the stage efficiency per unit is over 95% in extraction equilibrium achievement rate. ing. For this reason, mixer-settler extractors have been used on a particularly large scale in nuclear fuel refining and reprocessing, etc., and include the gravity type, which has the simplest structure, the pump-type mixer-settler extractor, which has a large processing flow rate, and even the high-speed processing type. A centrifugal mixer and one spatula extractor have been developed.

多段の連続抽出器としてミキサセトラを用いるには、構
造、操作性など最適のタイプを選ぶ必要がある。一般的
にいえば、重力式は多段化がむずかしく、遠心式は構造
が複雑すぎるため、ポンプ式が多く用いられている。し
かし、ポンプ式ミキサセトラ抽出器ではセトラ室の容積
がミキサ室の3乃至10倍と大きくなることがこれまで
の欠点であった。
In order to use a mixer settler as a multi-stage continuous extractor, it is necessary to select the optimal type in terms of structure and operability. Generally speaking, the gravity type is difficult to multistage, and the centrifugal type has a too complicated structure, so the pump type is often used. However, the pump-type mixer-settler-extractor has hitherto had a drawback in that the volume of the settler chamber is 3 to 10 times larger than that of the mixer chamber.

ところで、抽出器及びそれに含まれる溶媒の量が大きく
なる事は特に核燃料の再処理において次の如き問題があ
る。具体的には抽出器内での滞溜時間が長くなって有機
溶媒が放射線分解を受けること、また装置内に滞溜する
核燃料物質の母が増大し臨界安全性により注意をしなけ
ればならないこと、あるいは抽出装置全体を包む遮蔽体
の大きさが大きくなること等が問題となっており、これ
らがミキサセトうによる再処理プラントの経済性を低下
させる原因となっていた。また、原理的にはミキサセト
ラ抽出法はイオン交換カラム法と同等に一般的な化学試
料の分析や分離分取の目的のため有効である筈であるが
、セトラ部分の大きいことが分離器としての効率を低下
させることになり、このため現実にはあまり利用されて
いない。
Incidentally, the increase in the amount of the extractor and the amount of solvent contained therein poses the following problems, particularly in the reprocessing of nuclear fuel. Specifically, the residence time in the extractor becomes longer and the organic solvent undergoes radiolysis, and the amount of nuclear fuel material that accumulates in the equipment increases, requiring greater attention to criticality safety. However, problems such as the increase in the size of the shield that envelops the entire extraction device, etc., have been a cause of reducing the economic efficiency of reprocessing plants using mixer cement. In addition, in principle, the mixer settler extraction method should be as effective as the ion exchange column method for the purpose of analysis and separation of general chemical samples, but the large settler portion makes it difficult to use as a separator. This reduces efficiency and is therefore not widely used in practice.

従来のミキサセトラ抽出器は、ミキυ至とセトラ室の間
を仕切られた仕切板の上をオーバーフローで通過したり
、仕切板に窓があけられており、この窓が混合液のため
の通路となっている。抽出操作では、まずミキナ室に水
相と有機相など相異なる二相が供給され、攪拌器により
混合され、一方の相が他方の相に液滴となって分散し所
謂分散相が形成される。攪拌のもう一つの役割はミキサ
室内に循環流を作ることである。分散相がミキサ室内で
循環運動をしている間に抽出反応が進行するので、抽出
の効率を上げるには攪拌器の回転数を高くし循環流速度
を高くすることが一つの方法である。攪拌器の回転数が
高くなると分散相液滴が小さくなるが、分散相液滴が小
さくなり過ぎると、セトラ室内で液滴が凝集し元の二相
に分離するまでの時間が長くなり抽出器全体としての効
率は低下する。ざらに、液滴が小さくなり乳化状態とな
ると、簡単には元の二相に戻らずそのまま抽出器外へと
流出し分離作業は不可能となる。従ってセトラ室の液−
液相分離の能力によって適当な攪拌回転数が選ばれる。
In conventional mixer settler extractors, the overflow passes over a partition plate that separates the mixer and settler chamber, or a window is opened in the partition plate, and this window serves as a passage for the mixed liquid. It has become. In the extraction operation, two different phases, such as an aqueous phase and an organic phase, are first supplied to the mixer chamber, mixed by a stirrer, and one phase is dispersed in the other phase as droplets, forming a so-called dispersed phase. . Another role of stirring is to create a circulating flow within the mixer chamber. Since the extraction reaction progresses while the dispersed phase circulates within the mixer chamber, one way to increase the efficiency of extraction is to increase the rotational speed of the stirrer and increase the circulating flow rate. As the rotation speed of the stirrer increases, the dispersed phase droplets become smaller, but if the dispersed phase droplets become too small, the time required for the droplets to coagulate in the settling chamber and separate into the original two phases becomes longer and the extractor Overall efficiency decreases. Roughly speaking, when the droplets become small and become emulsified, they do not easily return to the original two-phase state and simply flow out of the extractor, making separation impossible. Therefore, the liquid in the settler chamber-
An appropriate stirring speed is selected depending on the ability of liquid phase separation.

攪拌による分散相の形成は、攪拌によって流体に与えら
れた運動エネルギーが一部表面エネルギーとなって液滴
を形成するものと解釈されている。
The formation of a dispersed phase by stirring is interpreted as the kinetic energy imparted to a fluid by stirring partially becoming surface energy to form droplets.

従って分散相を含む混合溶媒が速かに元の二相に戻るた
めには、ミキリ゛至から出た分散相の運動エネルギーと
液層の表面エネルギーを速やかに取り去ることが重要で
おる。
Therefore, in order for the mixed solvent containing the dispersed phase to quickly return to its original two-phase state, it is important to quickly remove the kinetic energy of the dispersed phase and the surface energy of the liquid layer released from the mixture.

従来の方法ではミキサ室で得た運動エネルギーと表面エ
ネルギーを分散相が直接セトラ室に持ち込んだため、セ
トラ室内でのこれらのエネルギーの放出にI′!1間が
かかった。即ら放出時間を確保するためセトラ室内での
溶W、滞溜時間を長くする必要があった。滞沼時間を十
分長く取れない場合は混合分散相が二相に分離せずに抽
出器外に出る所謂フラッディング現象を引き起こす。こ
れが従来ミキサセトラ抽出器でセトラ容積が大きい理由
であった。従来セトラ室内に邪魔板を入れ分散相の拡が
りを押さえることも行なわれているが、邪魔板の効果は
分散相をセトラ室内の一部に集積させるものであり、本
質的に分散相それ自体の体積を減じるものでないことが
知られている。
In the conventional method, the dispersed phase directly brings the kinetic energy and surface energy obtained in the mixer chamber into the settling chamber, so I'! is required for the release of these energies in the settling chamber. It took 1 minute. That is, in order to secure the release time, it was necessary to lengthen the residence time of the molten W in the settling chamber. If the retention time is not long enough, a so-called flooding phenomenon occurs in which the mixed dispersed phase does not separate into two phases and flows out of the extractor. This was the reason why the settler volume was large in conventional mixer settler extractors. Conventionally, a baffle plate has been placed in the settling chamber to suppress the spread of the dispersed phase, but the effect of the baffle plate is to allow the dispersed phase to accumulate in a part of the settling chamber, and essentially prevents the spread of the dispersed phase itself. It is known that it does not reduce volume.

次に、ミキサ室内で攪拌器の回転によって生じる液滴の
粒径は小さいものから大きいものまで広く分布しており
、大きい液滴は抽出平衡達成速度が遅くこれがミキサ室
内での抽出反応の律速となる。また、攪拌器の回転数を
高くして、大きい液滴を無くすると非常に細かな液滴が
発生し抽出時間は短くなるがセトラ至内で凝集するのに
時間がかかるという問題があった。
Next, the particle size of the droplets generated by the rotation of the stirrer in the mixer chamber is widely distributed from small to large, and larger droplets have a slower rate of achieving extraction equilibrium, which is the rate-limiting factor for the extraction reaction in the mixer chamber. Become. In addition, if the rotational speed of the stirrer is increased to eliminate large droplets, very fine droplets will be generated, and although the extraction time will be shortened, there is a problem that it will take time for the droplets to coagulate in the settler.

(発明が解決しようとする問題点) 本発明は上記事情に鑑みてなされたもので、その目的は
セトラ容積を小さくして抽出時間を短くするとともに抽
出効率の良いミキサセトラ抽出器を提供することにある
(Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and its purpose is to provide a mixer settler extractor that reduces the settler volume, shortens the extraction time, and has high extraction efficiency. be.

[発明の構成] (問題点を解決するための手段) 本発明は上記目的を達成するために、攪拌器を有するミ
キサ室とこのミキサ室と流通するセトラ至とを備えたポ
ンプ式ミキサセトラ抽出器において、前記ミキサ室とセ
トラ至との仕切部の少くとも一部に多孔質からなる多孔
壁が形成されている多孔壁付きミキサセトラ抽出器を特
徴とするものであり、またこの多孔壁付きミキサセトラ
抽出器を多段に構成することも特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a pump-type mixer-settler extractor equipped with a mixer chamber having an agitator and a settler that communicates with the mixer chamber. The mixer-settler extractor with porous walls is characterized in that a porous wall made of porous material is formed in at least a part of the partition between the mixer chamber and the settler, and the mixer-settler extractor with porous walls Another feature is that the vessels are constructed in multiple stages.

次に、本発明の原理について説明する。Next, the principle of the present invention will be explained.

ミキサ室とセトラ至の間を開放とせずここに適当な多孔
質で出来た仕切り壁を設けると、この多孔壁は分散相を
含む二相混合液の流れに対して適当な抵抗となり、従来
の邪魔板と異なり流体の運動エネルギーを吸収する。さ
らに、多孔壁はその内部に細い流路を形成しこのため大
きい表面積を有しており、分散相液滴がこの細い流路を
流れる間に周囲の壁に衝突し液滴の表面エネルギーを失
うことによってより大きな液滴に凝集されてくる。
If a partition wall made of an appropriate porous material is provided between the mixer chamber and the settler chamber instead of leaving it open, this porous wall will provide appropriate resistance to the flow of the two-phase mixed liquid containing the dispersed phase, which is different from the conventional method. Unlike baffles, they absorb the kinetic energy of fluid. Furthermore, the porous walls form narrow channels within them and thus have a large surface area, and while the dispersed phase droplets flow through these narrow channels, they collide with the surrounding walls and lose surface energy of the droplets. This causes the droplets to aggregate into larger droplets.

以上で述べた運動エネルギーの吸収と液滴衝突による凝
集が多孔壁の主要な作用である。
Absorption of kinetic energy and aggregation due to droplet collisions described above are the main functions of the porous walls.

また、他の作用として多孔壁の分散相液)^に対する分
級(ふるい別け)作用を挙げることができる。即ち、ミ
キサ室内で多孔壁表面に達した液滴のうち表面の孔断面
よりも小さい断面を持つ液滴は直ちに孔内に流入するが
、孔より大きい断面積を持つ液滴は、またミキサ室内に
戻るか、あるいは分裂し小粒径となった一部が多孔壁内
に流入し残りがミキサ室内に戻り循環する。このため大
きい液)肉をなくすため攪拌型回転数をそれほど高くす
る必要がなく極端に小さな液滴も作らなくてすむ。
In addition, as another function, there is a classification (sieving) function of the porous walls on the dispersed phase liquid). That is, among the droplets that reach the porous wall surface in the mixer chamber, droplets with a cross section smaller than the surface pore cross section immediately flow into the pore, but droplets with a cross section larger than the pore also flow into the mixer chamber. A portion of the particles that have been split into small particles flows into the porous wall, and the remainder returns to the mixer chamber and circulates. Therefore, in order to eliminate large liquid particles, it is not necessary to increase the rotational speed of the stirring mold so high, and there is no need to create extremely small droplets.

ざらに、多孔壁の内部が充@層あるいは多孔板を積層し
た構造となっている場合には、分散混合相が表面積の大
きい充填相中を流れるので、ここで二相の混合接触が促
進され、抽出反応が充填塔カラムのように速やかに進行
することが副次的な作用として期待できる。
Roughly speaking, if the inside of the porous wall has a structure of a filled layer or a stack of perforated plates, the dispersed mixed phase flows through the packed phase with a large surface area, so mixing contact between the two phases is promoted here. As a side effect, the extraction reaction can be expected to proceed as quickly as in a packed column.

上述した理由で多孔壁の孔の大きさは重要である。なお
、大きすぎると多孔壁としての役割をなさない。
The pore size of the porous wall is important for the reasons mentioned above. Note that if it is too large, it will not function as a porous wall.

本発明の多孔壁構成はこのような検討の結果児つCノら
れた最適条件である。tmm待時間1分以下であれば液
滴の大きさが半径3mm以下のものが抽出平衡に達して
いるので、これらは通過できる多孔壁となっていること
が必要でおる。即ら半径3mm以下あるいは断面積で3
0mm2程度以下の孔が使用される。ミキサ内の)m温
時間が長くてもよい抽出処理の場合は液滴の径も大きく
なり、従って多孔壁大断面も大きなものとなる。例えば
滞溜時間が10分程度であれば液滴の最大断面は100
mm2まで大きくてもよく、この大きさの孔が有効であ
る。
The porous wall structure of the present invention is the optimum condition determined as a result of such studies. If the tmm waiting time is 1 minute or less, the extraction equilibrium is reached for droplets with a radius of 3 mm or less, so it is necessary that these droplets have a porous wall through which they can pass. That is, the radius is 3 mm or less or the cross-sectional area is 3
Holes of approximately 0 mm2 or less are used. In the case of an extraction process that requires a long temperature time (in the mixer), the diameter of the droplet becomes large, and therefore the large cross section of the pore wall becomes large. For example, if the residence time is about 10 minutes, the maximum cross section of the droplet is 100.
It may be as large as mm2, and holes of this size are useful.

実際の多孔壁の作成において、原料となるビーズの大き
さや、多孔板の孔径の大きざに分布があることは避けら
れない。請求の範囲で述べた領域から外れるビーズや孔
の量はそれらの断面積の合h1が全体のビーズや孔の全
断面積の10%以内であれば特性の大きな低下がなくて
使用が許容される。
In the actual production of porous walls, it is inevitable that there will be a distribution in the size of beads serving as raw materials and the size of the pores in the porous plate. The amount of beads and holes that fall outside the range stated in the claims is acceptable if the sum of their cross-sectional areas h1 is within 10% of the total cross-sectional area of the beads and holes, and there is no significant deterioration in the characteristics. Ru.

ただし、小粒径ガラスピーズの場合は密に充填されるの
で、ここを通過する液の流れ抵抗が大となる。
However, in the case of small-sized glass beads, since they are densely packed, the flow resistance of the liquid passing through them is large.

また、多孔壁の材質は接触する溶液、溶媒に対して物理
的、化学的に安定な物であればどんな物でもよく、例え
ばステンレススチール、セラミック、ガラス、フッソ樹
脂等は一般的に用いられる望ましい材料である。その他
、各種の金属材料。
Furthermore, the material of the porous walls may be any material as long as it is physically and chemically stable to the solutions and solvents that come into contact with it; for example, stainless steel, ceramic, glass, fluorocarbon resin, etc. are commonly used and desirable materials. It is the material. Other various metal materials.

炭素材料、有機プラスチック材料等も用いられ得る。ざ
らに、多孔壁は網、布状のものを1あるいは2枚以上重
合わせたもので、8精またはイfiの網目格子間隔が平
均10mm以下のものが望ましい。
Carbon materials, organic plastic materials, etc. may also be used. Roughly speaking, the porous wall is preferably made of one or two or more overlapping nets or cloths, and the average lattice spacing of the octa or ifi mesh is 10 mm or less.

ところで、多孔壁をミキサセトラ抽出器に導入した結果
は実施例に示されるが、従来ミキサ室の3倍以上の容積
を必要としたセトラ室がミキサ室よりも小さくなり、セ
トラ室と多孔壁部分を合わせた装置容積としてもミキサ
室と大体同じかあるいは小さい程度となる。また、多孔
壁部分とセトラ室に保持される抽出処理液量はミキサ市
内に保持される量の半分程度となり溶媒抽出が格段に効
率的になる。さらに、セトラ室容積減少によって抽出液
のミキサセトラ内の滞留時間が短くなり一段当たり0.
5ないし1程度度とすることもできるようになる。した
がって、ミキサセトラを10ないし20段連結した連続
抽出器も非常に効率良く運転できる。
By the way, the results of introducing a porous wall into the mixer-settler extractor are shown in the examples, but the settler chamber, which conventionally required more than three times the volume of the mixer chamber, is now smaller than the mixer chamber, and the settler chamber and the porous wall part are now smaller than the mixer chamber. The combined volume of the equipment is approximately the same or smaller than that of the mixer chamber. Further, the amount of extraction processing liquid held in the porous wall portion and the settler chamber is about half of the amount held within the mixer, making solvent extraction much more efficient. Furthermore, by reducing the volume of the settler chamber, the residence time of the extract in the mixer settler becomes shorter, resulting in 0.0% per stage.
It will also be possible to set it to about 5 to 1 degree. Therefore, a continuous extractor in which 10 to 20 mixer settlers are connected can be operated very efficiently.

(作 用) 本発明の多孔壁付きミキサセトラ抽出器によると、セト
ラ室がミキサ室よりも小さくなり、かっこのセトラ室容
積の減少により抽出液のミキサセトラ内の滞留時間が短
くなり10〜20段連結した連続抽出器は非常に効率良
く運転することができる。
(Function) According to the mixer-settler extractor with porous walls of the present invention, the settler chamber is smaller than the mixer chamber, and the residence time of the extract in the mixer-settler is shortened due to the reduction in the volume of the settler chamber of the parentheses, and 10 to 20 stages are connected. The continuous extractor can be operated very efficiently.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図(a)は本発明の一実施例の概略構成図であり、
同図において、多孔壁付きミキサセトラ抽出器1は、ミ
キサ室2と、セトラ室3と、両室の間に配置された多孔
質層4とから構成されており、ミキサ室2内には攪拌器
5が設けられている。また、ミキサ室には異なる二相の
液体を流入するノズル5a 、5bが設けられている。
FIG. 1(a) is a schematic configuration diagram of an embodiment of the present invention,
In the figure, a mixer settler extractor 1 with a porous wall is composed of a mixer chamber 2, a settler chamber 3, and a porous layer 4 disposed between the two chambers. 5 is provided. Further, the mixer chamber is provided with nozzles 5a and 5b through which liquids of different two phases flow into the mixer chamber.

一方、セトラ室には相分離した二液を取り出すためのノ
ズル7aとノズル7bとが配設されている。
On the other hand, the settling chamber is provided with a nozzle 7a and a nozzle 7b for taking out the phase-separated two liquids.

また、上記多孔質層としては、直径1cm以下の球状粒
子又はこれと体積的に等価な粒子を層状に充填したもの
又はこの形状の粒子を焼結し板状にした多孔質層(第1
図b)、あるいは網、布状のものを1または2枚以上重
合わせたもので、台網または布の網目格子間隔が平均1
0mm以下の多孔質壁(第1図C)、あるいは板または
薄膜状であって断面積が100 mm以下の貫通した多
数の孔を有するものを少くとも1枚用いた多孔質壁(第
1図d)を用いてもよい。
The above-mentioned porous layer may be a layer filled with spherical particles having a diameter of 1 cm or less or particles volumetrically equivalent thereto, or a porous layer formed by sintering particles of this shape into a plate shape (first
Figure b), or one or two or more overlapping nets or cloth-like items, with an average mesh lattice spacing of 1
A porous wall with a diameter of 0 mm or less (Figure 1C), or a porous wall with at least one plate or thin film having a large number of penetrating pores with a cross-sectional area of 100 mm or less (Figure 1) d) may also be used.

第2図は本発明の他の実施例の概略構成図であり、同図
は多孔壁ミキサセトラ抽出器1を用いてウランの精製を
行なう場合を示している。ミキサ室2は有効容積101
、セトラ室3は有効容積41でそれらの間にガラスピー
ズ4a(平均直径2m1ll)を1cmの厚さに充填し
、ざらにそれに接して大きいガラスピーズ4b(平均直
径5mm)を1.3cmの厚さに充填した多孔質層4を
設けている。六価ウラン(硝酸ウラニル)をO,17/
βの濃度で含む3mnf7/β硝酸水溶液とTBP30
V%を含むnドデカン溶媒を水溶液、溶媒共に1oe 
/minの流量でミキサ室2に供給した。ミキサ室2内
の攪拌器5は4枚羽根艮ざ10cmで回転数は500r
pmであった。
FIG. 2 is a schematic configuration diagram of another embodiment of the present invention, and this figure shows a case where uranium is purified using the porous wall mixer settler extractor 1. Mixer chamber 2 has an effective volume of 101
The settler chamber 3 has an effective volume 41, and between them, glass beads 4a (average diameter 2ml) are filled to a thickness of 1cm, and in contact with it, large glass beads 4b (average diameter 5mm) are filled to a thickness of 1.3cm. A porous layer 4 is provided. Hexavalent uranium (uranyl nitrate) O,17/
3mnf7/β nitric acid aqueous solution containing β concentration and TBP30
1 oe of n-dodecane solvent containing V% for both aqueous solution and solvent
The mixture was supplied to the mixer chamber 2 at a flow rate of /min. The agitator 5 in the mixer chamber 2 has four blades with a pitch of 10 cm and a rotation speed of 500 r.
It was pm.

この条件で分散相はフラッディングを起こさずセトラ室
3より水溶液と溶媒が各相に分離して抽出器1外に取り
出された。また、この運転条件による一段のみの抽出操
作において、ウランの抽出効率は95%、処理時間(ミ
キサ室に入ってからセトラ室より出るまでの滞留時間)
は約45秒であった。
Under these conditions, the dispersed phase did not cause flooding, and the aqueous solution and solvent were separated into each phase from the settler chamber 3 and taken out of the extractor 1. In addition, in a single-stage extraction operation under these operating conditions, the uranium extraction efficiency is 95%, and the processing time (residence time from entering the mixer chamber to exiting the settling chamber)
was about 45 seconds.

第3図は上記の多孔壁ミキサセトラ抽出器1を多段にし
た概略構成図である。
FIG. 3 is a schematic diagram showing the structure of the porous wall mixer-settler extractor 1 in multiple stages.

多孔壁付きミキサセトう抽出器IA、1B、IC,II
) b<4合名抽出器の間に二相の液体を移送するポン
プ8を介して連結されている。各ミキサセトラ抽出器1
八、IB、IC,1[)は有効容積500m1のミキサ
室2八。
Mixer extractor with porous wall IA, 1B, IC, II
) b<4 The extractor is connected via a pump 8 that transfers two-phase liquid between the extractors. Each mixer settler extractor 1
8. IB, IC, 1 [) is a mixer chamber 28 with an effective volume of 500 m1.

2B、 2C,2Dと有効容積200dのセトラ室3^
、38.3C。
2B, 2C, 2D and settling room 3 with effective volume of 200d
, 38.3C.

3Dから成り、その間に厚さ0.1mmのステンレスス
チール製の多孔板(直径0.2mmの孔が仝而に穿って
いる)を1mm間隔に5枚重ね、それに連結してさらに
直径が1.2,3,4.5mmの孔の開イタステンレス
スチール板、各一枚をこの順序で1mm間隔に重合わせ
た多孔質層4A、 48.4C,40を設けである。第
一段の抽出器1Aに0.5m0f!/j!の硝酸ウラニ
ル(U  120(]/! )を含む3 mnj7 /
 l硝酸水溶液500d / m i n、の流mでミ
キサ’?2Aに供給し、同相をセトラ室3^からポンプ
8で扱取り、二段目の抽出器1Bのミキサ¥2Bに送る
。一方、TBP30V%を含むnドデカン溶媒を第四段
目のミキサ室2Dに5007/min、の流量で供給し
、同相を四段目の廿トラ至3Dより俵取り、第三段目の
ミキサ室2Cに送る。このように四段のミキサセトラ抽
出器を用いて向流接触によるウランの抽出を行なった。
Five 0.1 mm thick stainless steel perforated plates (holes with a diameter of 0.2 mm are actually bored) are stacked at 1 mm intervals between them, and are connected to each other with a diameter of 1 mm. Porous layers 4A, 48.4C, and 40 are provided by stacking stainless steel plates with holes of 2, 3, and 4.5 mm in this order at 1 mm intervals. 0.5m0f for the first stage extractor 1A! /j! 3 mnj7 / containing uranyl nitrate (U 120 (] /! )
mixer with a flow of 1 nitric acid aqueous solution 500d/min. 2A, the same phase is handled by the pump 8 from the settler chamber 3^, and sent to the mixer ¥2B of the second stage extractor 1B. On the other hand, n-dodecane solvent containing 30 V% of TBP is supplied to the fourth stage mixer chamber 2D at a flow rate of 5007/min, and the same phase is bagged from the fourth stage's third stage mixer chamber 3D. Send to 2C. In this way, uranium was extracted by countercurrent contact using a four-stage mixer settler extractor.

この結果、第四段目のミキサセトラ抽出器から出た水溶
液のウラン濃度は0.01cl/! = 10ppmで
おり、第一段目のミキサセトラ抽出器から出る有機溶媒
中のウラン濃度は0 、4moN / f!であった。
As a result, the uranium concentration of the aqueous solution discharged from the mixer settler extractor in the fourth stage was 0.01 cl/! = 10 ppm, and the uranium concentration in the organic solvent coming out of the first stage mixer settler extractor is 0.4 moN/f! Met.

各段でウランの抽出効率は平衡値の95%と高い効率で
あった。
The uranium extraction efficiency at each stage was as high as 95% of the equilibrium value.

第4図(a)は本発明の多孔壁ミキサセトラ抽出器を多
段に用いた場合の他の例の概略構成図を示すもので、こ
の例では多孔壁ミキサセトラ抽出器10のミキサ室11
には攪拌器15が設けられており、またセトラ室12に
は移送用ポンプ14を内蔵した多段連続抽出器が示され
ている。
FIG. 4(a) shows a schematic configuration diagram of another example in which the porous wall mixer settler extractor of the present invention is used in multiple stages. In this example, the mixer chamber 11 of the porous wall mixer settler extractor 10 is shown in FIG.
is equipped with an agitator 15, and a multi-stage continuous extractor incorporating a transfer pump 14 is shown in the settler chamber 12.

同図において、各ミキサ室11は容積150d、セトラ
室12は容積50戒、これらの間に置かれた多孔壁13
の部分は50m1の容積を有している。各セトラ室ポン
プ出口は三方バルブとなっており、セトラ室12て分離
された抽出液は次の段に送られるか必るいは処理済み液
として抽出器外に送り出される構成となっている。各ミ
キサ室11には隣接するセトラ室12から抽出液が供給
されると共に外部から抽出液を供給するための導入口1
6がついている。
In the figure, each mixer chamber 11 has a volume of 150 d, the settler chamber 12 has a volume of 50 d, and a porous wall 13 placed between them.
The section has a volume of 50 m1. Each settling chamber pump outlet is a three-way valve, and the extract separated in the settling chamber 12 is sent to the next stage or is sent out of the extractor as a treated liquid. Each mixer chamber 11 is supplied with an extract from an adjacent settler chamber 12, and an inlet 1 for supplying an extract from the outside.
It has a 6 on it.

これらの出入口によって任意の段で抽出液の交換、ある
いは溶液の組成変更等を行なうことができる。
Through these ports, it is possible to exchange the extract liquid or change the composition of the solution at any stage.

ミキサ室11とセトラ室12の間には200meshの
ステンレス網が4mm間隔で3枚重ねられ、台網の間に
合計2層直径2mmのステンレスビーズを焼結した板が
挿入されている。更にこの網とビーズからなる多孔壁の
出口側に直径4mmの黒鉛ビーズを焼結した厚さ8mm
の板を取り付けである。
Between the mixer chamber 11 and the settler chamber 12, three sheets of 200 mesh stainless steel mesh are stacked at intervals of 4 mm, and a plate made of two layers of sintered stainless steel beads each having a diameter of 2 mm is inserted between the base meshes. Furthermore, graphite beads with a diameter of 4 mm are sintered on the outlet side of the porous wall made of the net and beads, and the thickness is 8 mm.
Attach the board.

次に、上記の多段連続抽出器を用いてウランとトリウム
の分別抽出を行なった具体例を第4図(b)を参照して
説明する。
Next, a specific example of separate extraction of uranium and thorium using the above multi-stage continuous extractor will be described with reference to FIG. 4(b).

この多段連続抽出装置の一端の抽出器にウランとトリウ
ムを各0.1mcj/1の濃度で含むHNO3水溶液を
50d/minの流量で供給し、他端10段目にTBP
30%を含むドデカンを50m1の流量で供給し、向流
抽出を行なう。但し六段目で一端TBP有機相を抽出器
外に失敗、五段目で改めて新しい30%TBP/’nド
デカンを50m1/minの流mで供給する。また、六
段目には濃硝酸を10rId;!/minの流■で添加
する。第4図(b)では抽出液の流れを矢印で示してい
る。これらの操作の結果1段目出口より、0.1mJ/
lのウランを抽出した有機相が19られ、六段目出口よ
り、0.1mnj/4のトリウムを抽出した有機相が得
られた。
An aqueous HNO3 solution containing uranium and thorium at a concentration of 0.1 mcj/1 each is supplied to the extractor at one end of this multi-stage continuous extraction device at a flow rate of 50 d/min, and the TBP at the 10th stage of the other end is supplied.
Dodecane containing 30% is fed at a flow rate of 50 ml and a countercurrent extraction is carried out. However, in the sixth stage, the TBP organic phase failed to flow out of the extractor, and in the fifth stage, fresh 30% TBP/'n dodecane was supplied at a flow rate of 50 ml/min. Also, in the sixth stage, add 10 rId of concentrated nitric acid;! Add at a flow rate of /min. In FIG. 4(b), the flow of the extract is shown by arrows. As a result of these operations, 0.1 mJ/
An organic phase from which 19 liters of uranium had been extracted was obtained, and an organic phase from which 0.1 mnj/4 of thorium had been extracted was obtained from the sixth stage exit.

[発明の効果] 以上説明したように、本発明によると、セトラ室容積の
減少により抽出液のミキサセトラ抽出器内の滞留時間が
短くなるので、多段連結した連続抽出器は非常に効率よ
く運転することができるというすぐれた効果を奏する。
[Effects of the Invention] As explained above, according to the present invention, the retention time of the extract in the mixer-settler extractor is shortened due to the reduction in the volume of the settler chamber, so the continuous extractor connected in multiple stages can operate very efficiently. It has the excellent effect of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の概略断面図、第1図
(b)〜(d)は第1図(a)の多孔質層の他の例の斜
視図、第2図は本発明の他の実施例の概略構成図、第3
図は本発明のミキサセトラ抽出器を多段に連結した概略
構成図、第4図(a)は本発明のミキサセトラ抽出器を
多段に連結した他の概略構成図、第4図(b)は同図(
a)の抽出液の流れを示す図でおる。 1.1A〜10.10・・・多孔壁付きミキサセトラ抽
出器2.2A〜20.11・・・ミキサ室 3.3A〜30.12・・・セトラ室 4.4A〜40.13・・・多孔壁 5.15・・・攪拌器 8.14・・・ポンプ (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) (d) 1  2  3 4  5  6  7  8  9 
 10   才山土如灸叔(b) 第4図
FIG. 1(a) is a schematic sectional view of one embodiment of the present invention, FIGS. 1(b) to (d) are perspective views of other examples of the porous layer of FIG. 1(a), and FIG. 3 is a schematic configuration diagram of another embodiment of the present invention.
The figure is a schematic diagram of the mixer-settler extractor of the present invention connected in multiple stages, FIG. 4(a) is another schematic diagram of the mixer-settler extractor of the present invention connected in multiple stages, and FIG. 4(b) is the same diagram. (
This is a diagram showing the flow of the extract in a). 1.1A~10.10...Mixer settler extractor with porous wall 2.2A~20.11...Mixer chamber 3.3A~30.12...Settler chamber 4.4A~40.13... Porous wall 5.15...Agitator 8.14...Pump (8733) Agent Patent attorney Yoshiaki Inomata (and others)
1 person) (d) 1 2 3 4 5 6 7 8 9
10 Saishan Toyo Moxibustion Shu (b) Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)攪拌器を有するミキサ室と、このミキサ室と流通
するセトラ室とを備えたミキサセトラ抽出器において、
前記ミキサ室と前記セトラ室との仕切部に多孔質からな
る多孔壁が形成されていることを特徴とする多孔壁付き
ミキサセトラ抽出器。
(1) In a mixer settler extractor equipped with a mixer chamber having an agitator and a settler chamber communicating with the mixer chamber,
A mixer-settler extractor with a porous wall, characterized in that a porous wall made of porous material is formed in a partition between the mixer chamber and the settler chamber.
(2)多孔壁は直径1cm以下の球状粒子又はこれと体
積的に等価な粒子を層状に充填したもの又はこの形状の
粒子を焼結し板状にしたものである特許請求の範囲第1
項記載の多孔壁付きミキサセトラ抽出器。
(2) The porous wall is filled with spherical particles with a diameter of 1 cm or less, or particles volumetrically equivalent thereto, or particles of this shape are sintered into a plate shape.
A mixer settler extractor with porous walls as described in Section 1.
(3)多孔壁は網、布状のものを1あるいは2枚以上重
合わせたもので、各網または布の網目格子間隔が平均1
0mm以下のものである特許請求の範囲第1項記載の多
孔壁付きミキサセトラ抽出器。
(3) A porous wall is made up of one or two or more overlapping nets or cloths, and the mesh lattice spacing of each net or cloth is 1 on average.
A mixer settler extractor with a porous wall according to claim 1, which has a porous wall of 0 mm or less.
(4)多孔壁は板または薄膜状であって断面積が100
mm^2以下の貫通した多数の孔を有するものを少くと
も1枚用いている特許請求の範囲第1項記載の多孔壁付
きミキサセトラ抽出器。
(4) The porous wall is plate-like or thin-film-like and has a cross-sectional area of 100
2. The mixer-settler extractor with porous walls according to claim 1, wherein at least one plate has a large number of penetrating holes of 2 mm or less.
(5)多孔壁は特許請求の範囲第2乃至第4項記載の多
孔質の組合せである特許請求の範囲第1項記載の多孔壁
付きミキサセトラ抽出器。
(5) A mixer settler extractor with porous walls according to claim 1, wherein the porous walls are a combination of porous materials according to claims 2 to 4.
(6)攪拌器を有するミキサ室と、このミキサ室と流通
するセトラ室と、前記ミキサ室と前記セトラ室との仕切
部に多孔質からなる多孔壁が形成された多孔壁付きミキ
サセトラ抽出器を多段に構成したことを特徴とする多孔
壁付きミキサセトラ抽出装置。
(6) A mixer settler extractor with a porous wall, which includes a mixer chamber having an agitator, a settler chamber communicating with the mixer chamber, and a porous wall made of porous material formed in a partition between the mixer chamber and the settler chamber. A mixer settler extraction device with a porous wall characterized by a multi-stage configuration.
JP3441587A 1987-02-19 1987-02-19 Mixer settra extractor with perforated walls Expired - Lifetime JPH084681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3441587A JPH084681B2 (en) 1987-02-19 1987-02-19 Mixer settra extractor with perforated walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3441587A JPH084681B2 (en) 1987-02-19 1987-02-19 Mixer settra extractor with perforated walls

Publications (2)

Publication Number Publication Date
JPS63205103A true JPS63205103A (en) 1988-08-24
JPH084681B2 JPH084681B2 (en) 1996-01-24

Family

ID=12413565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3441587A Expired - Lifetime JPH084681B2 (en) 1987-02-19 1987-02-19 Mixer settra extractor with perforated walls

Country Status (1)

Country Link
JP (1) JPH084681B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109985415A (en) * 2019-04-19 2019-07-09 杭州天易成环保设备股份有限公司 The energy-efficient automatic control extracting system of one kind and its extracting process
CN109985414A (en) * 2019-04-19 2019-07-09 杭州天易成环保设备股份有限公司 New and effective hybrid extraction system and its extracting process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109985415A (en) * 2019-04-19 2019-07-09 杭州天易成环保设备股份有限公司 The energy-efficient automatic control extracting system of one kind and its extracting process
CN109985414A (en) * 2019-04-19 2019-07-09 杭州天易成环保设备股份有限公司 New and effective hybrid extraction system and its extracting process
CN109985414B (en) * 2019-04-19 2023-12-08 杭州天易成新能源科技股份有限公司 Novel efficient mixed extraction system and extraction method thereof
CN109985415B (en) * 2019-04-19 2023-12-08 杭州天易成新能源科技股份有限公司 Efficient energy-saving automatic control extraction system and extraction method thereof

Also Published As

Publication number Publication date
JPH084681B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
Mckay Analytical solution using a pore diffusion model for a pseudoirreversible isotherm for the adsorption of basic dye on silica
JP5053296B2 (en) Method for decontaminating solid organic substrates contaminated with solid radioactive particulate inorganic contaminants using high density pressurized CO2
CN106139638B (en) A kind of extraction equipment and extracting process
US2893846A (en) Fluid mixer with rotating baffles
US6446815B2 (en) Multiple phase extractor
JPH04219102A (en) Internal circulation-type centrifugal extractor
JP2010082531A (en) Countercurrent emulsion flow continuous liquid-liquid extraction apparatus
JP3316007B2 (en) Equipment for solvent extraction
Gu et al. Ligand-accelerated liquid membrane extraction of metal ions
JPS63205103A (en) Mixer settler extractor with porous wall
CH618105A5 (en)
JPS62294410A (en) Method and device for treating fluid containing floating or suspended particle
US3926807A (en) Device for the continuous treatment of liquid streams
JPS6031521B2 (en) Material extraction and separation equipment
EP1175255B1 (en) Method and device for processing a substance or substance mixture which is situated in a container and rotates about the container axis, notably because of a mixing or stirring action
DE2620848C3 (en) Column for heat and mass exchange processes between gas and liquid
US4820343A (en) Process for transferring metal ions using microporous membranes
DE1769752A1 (en) Crystallization process and equipment
WO2022220017A1 (en) Liquid-liquid system multi-stage device and method for producing specific substance using same
FI107236B (en) Ways to reduce the size of the phases of the extraction process and a cell used in the extraction process
JP3731818B2 (en) Reprocessing process equipment
US5609764A (en) Extraction column or tower with separate volumes
RU46677U1 (en) DEVICE FOR EXTRACTION AND SEPARATION SEPARATION
Zuo et al. Membrane extraction for separation of copper cations from acid solution using polypropylene hollow fibre membrane
Gupta et al. Mass transfer studies in liquid membrane hydrocarbon separations