JPS6320412B2 - - Google Patents

Info

Publication number
JPS6320412B2
JPS6320412B2 JP14078780A JP14078780A JPS6320412B2 JP S6320412 B2 JPS6320412 B2 JP S6320412B2 JP 14078780 A JP14078780 A JP 14078780A JP 14078780 A JP14078780 A JP 14078780A JP S6320412 B2 JPS6320412 B2 JP S6320412B2
Authority
JP
Japan
Prior art keywords
group
reaction
lower alkyl
formula
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14078780A
Other languages
Japanese (ja)
Other versions
JPS5764635A (en
Inventor
Masayoshi Minamii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP14078780A priority Critical patent/JPS5764635A/en
Priority to CH3765/81A priority patent/CH648282A5/en
Priority to FR8111320A priority patent/FR2498592A1/en
Priority to DE3153651A priority patent/DE3153651C2/de
Priority to DE19813122995 priority patent/DE3122995A1/en
Priority to FR8117412A priority patent/FR2485520A1/en
Publication of JPS5764635A publication Critical patent/JPS5764635A/en
Priority to US06/831,067 priority patent/US4970345A/en
Publication of JPS6320412B2 publication Critical patent/JPS6320412B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一般式() (R1は水素原子または低級アルキル基を示し、
R2は低級アルキル基、低級アルケニル基、シク
ロアルキル基またはフエニル基を示す。但し、
R1がメチル基であつて、かつR2がn−アミル基
である場合を除く。) で示されるヒドロキシシクロペンタノン類およ
びその製造方法に関する。前記一般式()で示
されるヒドロキシシクロペンタノン類は文献未記
載の新規化合物であり、本発明者によつて始めて
見出された化合物であるが、該化合物はシスジヤ
スモン、トランスジヤスモンをはじめとするシク
ロペンテノン類合成の重要な中間体となり、また
農薬の中間体としても価値あるものである。 たとえば、ジヤスモンは本発明化合物を原料と
して以下の方法で合成することができる。 一般式()示される本発明化合物は、一般式
() (R1は水素原子または低級アルキル基を示し、
R3は低級アルキル基、低級アルケニル基、低級
アルキニル基、シクロアルキル基またはフエニル
基を示す。但し、R1がメチル基であつて、かつ
R3がアミル基である場合を除く。) で示されるヒドロキシシクロペンテノン類を還
元することにより製造されるが、かかるヒドロキ
シシクロペンテノン類はたとえば5−置換−フル
フリルアルコール誘導体の転位反応によつて容易
に製造することができる。 本発明における一般式()で示されるヒドロ
キシシクロペンテノン類から一般式()で示さ
れるヒドロキシシクロペンタノン類への還元反応
は、通常のオレフインを還元する方法が適用され
るが、接触水素添加反応がもつとも有利であり、
好ましい。 接触水素添加反応において用いられる触媒とし
ては、たとえばパラジウム−炭素、酸化パラジウ
ム、塩化パラジウム等のパラジウム触媒や白金、
ラネ−ニツケル、銅−クロム、ルテニウム、ロジ
ウム等が挙げられる。 反応溶媒には特に制限されないが、反応に不活
性なものが適当であり、無溶媒でも実施可能であ
る。 反応温度は一般的には−20〜200℃であるが、
この範囲外でも適用可能である。 尚、原料である一般式()化合物において、
置換基R3がアルケニル基やアルキニル基である
場合に、前記の還元反応を実施したときに、同時
に置換基R3が還元されて、生成した一般式()
化合物におけるR2がアルキル基やアルケニル基
となる場合がある。 従つて、置換基を還元反応の前後で同じ基にす
る必要がある場合には、該還元反応における触媒
を選択使用したり、或いは他の還元方法を採用す
る必要がある。 たとえば、原料化合物におけるR3がアルケニ
ル基であつて、しかも還元反応におけるR2がこ
れと同一であることが必要な場合には、通常の触
媒の活性を低下させた、たとえばパラジウム−鉛
−炭酸カルシウム、パラジウム−硫酸バリウム−
キノリン等の一般にリンドラ−触媒と呼ばれる触
媒を使用することによつて、置換基の二重結合に
対しては不活性であつて、ケトンと共役した二重
結合を選択的に還元することができる。この場合
の反応溶媒や反応温度については先に述べたと同
様であるが、原料に対して理論量の1〜1.1当量
倍の水素が消費された時点で反応を止めることが
好ましい。 また、他の方法としてアルカリ金属を利用して
還元反応を実施することができ、この反応によつ
ても置換基の二重結合に対しては不活性であつ
て、ケトンと共役した二重結合を選択的に還元す
ることができる。 この還元反応におけるアルカリ金属としてはナ
トリウム、カリウム、リチウムあるいはこれらの
アマルガムが例示される。また、反応溶媒として
は反応に不活性なものが適当であり、アルコール
類、アミン類、液体アンモニア等やあるいはこれ
らと他の不活性溶媒との混合物などが例示され
る。反応温度は通常−60〜150℃であるが、この
範囲外でも実施可能である。 このように、リンドラー触媒やアルカリ金属を
用いる還元方法においては、ケトンと共役した二
重結合に対しては活性であるが、原料化合物にお
ける置換基R3の二重結合に対しては不活性であ
るため、二重結合を有する置換基をもつた原料化
合物に対してはケトンと共役した二重結合のみを
選択的に還元し、本発明のヒドロキシシクロペン
タノン類を得ることができる。もちろん、原料化
合物の置換基が二重結合や三重結合を有さないア
ルキル基などのような場合には該置換基は何ら影
響を受けるものではない。 尚、上述したように上記還元反応においては三
重結合に対しては活性であるため、原料化合物の
置換基R3がアルキニル基である場合に、ケトン
と共役した二重結合と共に還元されてアルケニル
基となるが、リンドラー触媒等を用いた水素添加
反応による場合にはシス配位のアルケニル基に、
またアルカリ金属を用いた還元反応による場合に
はトランス配位のアルケニル基にすることができ
る。 このように一般式()で示されるヒドロキシ
シクロペンテノン類を還元することによつて、目
的とする一般式()で示されるヒドロキシシク
ロペンタノンが得られ、これは通常の分離手段、
たとえば抽出、分液、濃縮、蒸留等により容易に
単離することができる。 以下、実施例により本発明を説明する。 実施例 1 温度計を装着したオートクレーブに2−n−プ
ロピル−3−ヒドロキシ−3−メチル−4−シク
ロペンテノン0.7モル、原料に対し1重量%の5
%パラジウム−炭素触媒および2倍重量部のエタ
ノールを加え、温度20〜30℃、水素圧2〜5Kg/
cm3にて接触水添した。3時間にて反応は完結し
た。反応終了後触媒を取し、液を濃縮して2
−n−プロピル−3−ヒドロキシ−3−メチルシ
クロペンタノンを98%の収率で得た。 カラムクロマトグラフイーにて精製し、純粋な
2−n−プロピル−3−ヒドロキシ−3−メチル
シクロペンタノンを得た。 n21 D1.4676 実施例 2 実施例1と同様の装置に2−アリル−3−ヒド
ロキシ−3−メチル−4−シクロペンテノン0.6
モル、原料に対して2重量%のリンドラー触媒お
よび2倍重量部のイソプロピルアルコールを仕込
み、水素圧1〜3Kg/cm3にて接触水添した。水素
吸収量が原料に対して1.05当量倍になつてところ
で反応を止めた。 以下、実施例1に準じて後処理して2−アリル
−3−ヒドロキシ−3−メチルシクロペンタノン
を85%の収率で得た。 n20 D1.4661 実施例 3 実施例1と同様の装置に2−(2−シス−ペン
テニル)3−ヒドロキシ−3−メチル−4−シク
ロペンテノン0.7モル、原料に対して3重量%の
リンドラー触媒および2倍重量部のエタノールを
仕込み、温度20℃、水素圧1Kg/cm3にて水素添加
した。原料に対して1.1当量倍の水素を吸収した
ところで反応を止め、以下実施例1に準じて後処
理して2−(2−シス−ペンテニル)−3−ヒドロ
キシ−3−メチルシクロペンタノンを85%の収率
で得た。 n25 D1.4690 実施例 4〜8 実施例1に準じ、第1表に示す条件で還元反応
を行い、第1表に示す結果を得た。 尚、表中において原料および生成物のR1,R2
およびR3は本文中の一般式()および()
に対応するものである。
The present invention is based on the general formula () (R 1 represents a hydrogen atom or a lower alkyl group,
R 2 represents a lower alkyl group, a lower alkenyl group, a cycloalkyl group or a phenyl group. however,
Except when R 1 is a methyl group and R 2 is an n-amyl group. ) and a method for producing the same. The hydroxycyclopentanones represented by the general formula () are novel compounds that have not been described in any literature and were discovered for the first time by the present inventor. It is an important intermediate for the synthesis of cyclopentenones, and is also valuable as an intermediate for agricultural chemicals. For example, diasmone can be synthesized by the following method using the compound of the present invention as a raw material. The compound of the present invention represented by the general formula () has the general formula () (R 1 represents a hydrogen atom or a lower alkyl group,
R 3 represents a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a cycloalkyl group or a phenyl group. However, R 1 is a methyl group, and
Except when R 3 is an amyl group. ) These hydroxycyclopentenones can be easily produced by, for example, a rearrangement reaction of 5-substituted furfuryl alcohol derivatives. In the present invention, the reduction reaction from the hydroxycyclopentenones represented by the general formula () to the hydroxycyclopentanones represented by the general formula () is carried out by a conventional method for reducing olefins, but by catalytic hydrogenation. The reaction is also advantageous,
preferable. Catalysts used in the catalytic hydrogenation reaction include palladium catalysts such as palladium-carbon, palladium oxide, palladium chloride, platinum,
Raney-nickel, copper-chromium, ruthenium, rhodium, etc. are mentioned. The reaction solvent is not particularly limited, but one that is inert to the reaction is suitable, and the reaction can be carried out without a solvent. The reaction temperature is generally -20 to 200℃,
It is also applicable outside this range. In addition, in the compound of general formula () which is a raw material,
When the substituent R 3 is an alkenyl group or an alkynyl group, when the above reduction reaction is carried out, the substituent R 3 is simultaneously reduced and the generated general formula ()
R 2 in a compound may be an alkyl group or an alkenyl group. Therefore, if it is necessary to use the same substituent group before and after the reduction reaction, it is necessary to selectively use a catalyst in the reduction reaction or to employ another reduction method. For example, if R 3 in the raw material compound is an alkenyl group and R 2 in the reduction reaction needs to be the same, a catalyst with reduced activity of a conventional catalyst, such as palladium-lead-carbonate, may be used. Calcium, palladium - barium sulfate -
By using a catalyst generally called a Lindlar catalyst such as quinoline, it is inert to the double bond of a substituent and can selectively reduce the double bond conjugated with a ketone. . The reaction solvent and reaction temperature in this case are the same as those described above, but it is preferable to stop the reaction when 1 to 1.1 equivalents of hydrogen relative to the raw material is consumed. In addition, as another method, a reduction reaction can be carried out using an alkali metal, and even with this reaction, it is inactive against the double bond of the substituent, and the double bond conjugated with the ketone is can be selectively reduced. Examples of the alkali metal used in this reduction reaction include sodium, potassium, lithium, and amalgams thereof. In addition, as the reaction solvent, it is appropriate to use a solvent inert to the reaction, and examples thereof include alcohols, amines, liquid ammonia, and mixtures of these and other inert solvents. The reaction temperature is usually -60 to 150°C, but it can also be carried out outside this range. In this way, reduction methods using Lindlar catalysts or alkali metals are active against double bonds conjugated with ketones, but are inactive against double bonds of substituent R 3 in the starting compound. Therefore, for a raw material compound having a substituent having a double bond, only the double bond conjugated with the ketone can be selectively reduced to obtain the hydroxycyclopentanones of the present invention. Of course, if the substituent of the starting compound is an alkyl group having no double bond or triple bond, the substituent is not affected in any way. As mentioned above, the reduction reaction is active against triple bonds, so if the substituent R 3 of the raw material compound is an alkynyl group, it is reduced together with the double bond conjugated with the ketone to form an alkenyl group. However, in the case of a hydrogenation reaction using a Lindlar catalyst etc., the cis-coordinated alkenyl group has
Further, in the case of a reduction reaction using an alkali metal, a trans-coordinated alkenyl group can be obtained. By reducing the hydroxycyclopentenones represented by the general formula () in this way, the desired hydroxycyclopentanone represented by the general formula () is obtained, which can be separated using conventional separation means.
For example, it can be easily isolated by extraction, liquid separation, concentration, distillation, etc. The present invention will be explained below with reference to Examples. Example 1 In an autoclave equipped with a thermometer, 0.7 mol of 2-n-propyl-3-hydroxy-3-methyl-4-cyclopentenone and 1% by weight of 5% based on the raw material were added.
% palladium-carbon catalyst and 2 parts by weight of ethanol were added at a temperature of 20 to 30°C and a hydrogen pressure of 2 to 5 kg/kg.
Catalytic hydrogenation was carried out at cm3 . The reaction was completed in 3 hours. After the reaction is complete, remove the catalyst and concentrate the liquid.
-n-propyl-3-hydroxy-3-methylcyclopentanone was obtained with a yield of 98%. Purification was performed by column chromatography to obtain pure 2-n-propyl-3-hydroxy-3-methylcyclopentanone. n 21 D 1.4676 Example 2 0.6 2-allyl-3-hydroxy-3-methyl-4-cyclopentenone was added to the same apparatus as in Example 1.
Lindlar catalyst in an amount of 2% by weight and isopropyl alcohol in an amount twice the weight of the raw material were charged, and catalytic hydrogenation was carried out at a hydrogen pressure of 1 to 3 kg/cm 3 . The reaction was stopped when the amount of hydrogen absorbed was 1.05 times the equivalent of the raw material. Thereafter, post-treatment was performed according to Example 1 to obtain 2-allyl-3-hydroxy-3-methylcyclopentanone in a yield of 85%. n 20 D 1.4661 Example 3 In an apparatus similar to Example 1, 0.7 mol of 2-(2-cis-pentenyl)3-hydroxy-3-methyl-4-cyclopentenone and 3% by weight of Lindlar catalyst based on the raw material were added. and 2 parts by weight of ethanol, and hydrogenation was carried out at a temperature of 20° C. and a hydrogen pressure of 1 Kg/cm 3 . The reaction was stopped when 1.1 equivalents of hydrogen was absorbed relative to the raw material, and the following post-treatment was performed according to Example 1 to produce 2-(2-cis-pentenyl)-3-hydroxy-3-methylcyclopentanone. % yield. n 25 D 1.4690 Examples 4 to 8 According to Example 1, a reduction reaction was carried out under the conditions shown in Table 1, and the results shown in Table 1 were obtained. In addition, in the table, R 1 and R 2 of raw materials and products
and R 3 are general formulas () and () in the text
This corresponds to

【表】【table】

【表】 実施例 9 撹拌装置、温度計を装置した4ツ口フラスコに
2−(2−ペンチニル)−3−ヒドロキシ−3−メ
チル−4−シクロペンテノン0.1モルおよび液体
アンモニア50mlを仕込み、−35℃にて金属ナトリ
ウム0.25モルを注意深く加える。同温度にてさら
に5時間反応させる。反応終了後反応混合物にエ
ーテル50mlを加え、徐々に昇温し、アンモニアを
気化蒸発させる。さらに反応混合物に水−アルコ
ール溶液を注意深く加え未反応のナトリウムを分
解する。有機層を分液し、さらに水洗し、得られ
る有機層からエーテルを留去すれば2−(2−ト
ランス−ペンテニル)−3−ヒドロキシ−3−メ
チルシクロペンタノンを86%の収率で得た。 n20 D1.4695
[Table] Example 9 0.1 mol of 2-(2-pentynyl)-3-hydroxy-3-methyl-4-cyclopentenone and 50 ml of liquid ammonia were charged into a four-necked flask equipped with a stirrer and a thermometer. Carefully add 0.25 mol of sodium metal at 35°C. The reaction was continued for an additional 5 hours at the same temperature. After the reaction is completed, 50 ml of ether is added to the reaction mixture, and the temperature is gradually raised to evaporate the ammonia. Further, a water-alcohol solution is carefully added to the reaction mixture to decompose unreacted sodium. The organic layer is separated, further washed with water, and the ether is distilled off from the resulting organic layer to obtain 2-(2-trans-pentenyl)-3-hydroxy-3-methylcyclopentanone in a yield of 86%. Ta. n 20 D 1.4695

Claims (1)

【特許請求の範囲】 1 式 (式中、R1は水素原子または低級アルキル基
を示し、R2は低級アルキル基、低級アルケニル
基、シクロアルキル基またはフエニル基を示す。
但し、R1がメチル基であつて、かつR2がn−ア
ミル基である場合を除く。) で示されるヒドロキシシクロペンタノン類。 2 式 (式中、R1は水素原子または低級アルキル基
を示し、R3は低級アルキル基、低級アルケニル
基、低級アルキニル基、シクロアルキル基または
フエニル基を示す。但し、R1がメチル基であつ
て、かつR3がn−アミル基ある場合を除く。) で示されるヒドロキシシクロペンテノン類を還
元することを特徴とする式 (式中、R1は前記と同じ意味を有し、R2は低
級アルキル基、低級アルケニル基、シクロアルキ
ル基またはフエニル基を示す。但し、R1がメチ
ル基であつて、かつR2がn−アミル基である場
合を除く。) で示されるヒドロキシシクロペンタノン類の製
造方法。
[Claims] 1 formula (In the formula, R 1 represents a hydrogen atom or a lower alkyl group, and R 2 represents a lower alkyl group, a lower alkenyl group, a cycloalkyl group, or a phenyl group.
However, this excludes the case where R 1 is a methyl group and R 2 is an n-amyl group. ) Hydroxycyclopentanones represented by 2 formulas (In the formula, R 1 represents a hydrogen atom or a lower alkyl group, and R 3 represents a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a cycloalkyl group, or a phenyl group. However, if R 1 is a methyl group and , and R 3 is an n-amyl group.) A formula characterized by reducing a hydroxycyclopentenone represented by (In the formula, R 1 has the same meaning as above, and R 2 represents a lower alkyl group, a lower alkenyl group, a cycloalkyl group, or a phenyl group. However, if R 1 is a methyl group and R 2 is (Excluding the case where it is an n-amyl group.) A method for producing hydroxycyclopentanones represented by the following.
JP14078780A 1980-06-10 1980-10-07 Hydroxycyclopentanone and its preparation Granted JPS5764635A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14078780A JPS5764635A (en) 1980-10-07 1980-10-07 Hydroxycyclopentanone and its preparation
CH3765/81A CH648282A5 (en) 1980-06-10 1981-06-09 METHOD FOR PRODUCING OXOCYCLOPENTEN.
FR8111320A FR2498592A1 (en) 1980-06-10 1981-06-09 PROCESS FOR THE PREPARATION OF OXOCYCLOPENTENE DERIVATIVES AND NEW PRODUCTS THUS OBTAINED
DE3153651A DE3153651C2 (en) 1980-06-10 1981-06-10
DE19813122995 DE3122995A1 (en) 1980-06-10 1981-06-10 Process for the preparation of oxocyclopentenes
FR8117412A FR2485520A1 (en) 1980-06-10 1981-09-15 SUBSTITUTED HYDROXYCYCLOPENTANONES
US06/831,067 US4970345A (en) 1980-06-10 1986-02-20 Process for preparing oxocyclopentene derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14078780A JPS5764635A (en) 1980-10-07 1980-10-07 Hydroxycyclopentanone and its preparation

Publications (2)

Publication Number Publication Date
JPS5764635A JPS5764635A (en) 1982-04-19
JPS6320412B2 true JPS6320412B2 (en) 1988-04-27

Family

ID=15276725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14078780A Granted JPS5764635A (en) 1980-06-10 1980-10-07 Hydroxycyclopentanone and its preparation

Country Status (1)

Country Link
JP (1) JPS5764635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500583A (en) * 1988-10-14 1992-01-30 オックスフォード メディカル リミテッド Magnetic field generating composition and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031271A (en) * 2015-07-30 2017-02-09 東レフィルム加工株式会社 Coating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500583A (en) * 1988-10-14 1992-01-30 オックスフォード メディカル リミテッド Magnetic field generating composition and method

Also Published As

Publication number Publication date
JPS5764635A (en) 1982-04-19

Similar Documents

Publication Publication Date Title
Gabriele et al. A general and facile synthesis of substituted furans by palladium-catalyzed cycloisomerization of (Z)-2-en-4-yn-1-ols
Ortiz et al. Silver (II) oxide as a reagent. Reactions with aromatic amines and miscellaneous related compounds
JP5391155B2 (en) Process for producing hydroxyethylcyclohexane and hydroxyethylpiperidine
US3442910A (en) Preparation of hydrocoumarin,coumarin and alkyl substituted derivatives
EP2953920B1 (en) Process for the isomerisation of an exo double bond
JPS6320412B2 (en)
JPH11236341A (en) Production of alcohol
JPH0359051B2 (en)
SK19372001A3 (en) Process for the synthesis of (r)-1-(3,5-bis(trifluoromethyl)- phenyl)ethan-1-ol by asymmetric transfer hydrogenation
EP0127536B1 (en) Process for the preparation of alpha-delta-diethylenic carbonyl compounds
Mitsui et al. Stereochemistry and the mechanism of the hydrogenation of substituted cyclopentanones and methylenecyclopentanes
JPS5826890B2 (en) Method for producing methyl-nonyl-acetaldehyde
Bonnet et al. Liquid-phase catalytic hydrogenation of 1, 4-cyclohexanedione: activity and selectivity
EP0024770B1 (en) Hydrolysis of allyl ethers and ketones thus prepared
US6600079B2 (en) Process for production of 5-arylpentanols
JP4222206B2 (en) Method for producing aminostilbene derivative
Nightingale et al. The Preparation of Some Alicyclic Amines
JPH0627091B2 (en) Method for producing 2-alkyl-cyclopentanone
JPH0558618B2 (en)
JP3873399B2 (en) Method for producing ketones
JPS623817B2 (en)
JPH03206076A (en) Production of vitamin a aldehyde
JP4171345B2 (en) Method for producing labdenic acid
JP2004506034A5 (en)
JPH0832690B2 (en) Method of synthesizing piperidine