JPS6320326A - Polyanthracene and its production - Google Patents

Polyanthracene and its production

Info

Publication number
JPS6320326A
JPS6320326A JP16338786A JP16338786A JPS6320326A JP S6320326 A JPS6320326 A JP S6320326A JP 16338786 A JP16338786 A JP 16338786A JP 16338786 A JP16338786 A JP 16338786A JP S6320326 A JPS6320326 A JP S6320326A
Authority
JP
Japan
Prior art keywords
polyanthracene
anthracene
film
anodic oxidation
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16338786A
Other languages
Japanese (ja)
Inventor
Masaharu Sato
正春 佐藤
Harumasa Yamazaki
山崎 晴正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP16338786A priority Critical patent/JPS6320326A/en
Publication of JPS6320326A publication Critical patent/JPS6320326A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a polyanthracene useful as a semiconductor material, by polymerizing, an anthracene which may be substituted by anodic oxidation. CONSTITUTION:To an o-dichlorobenzene solution of an electrolyte which is a salt of a halogen-containing anion with a tetraalkylammonium (e.g., tetrabutylammonium tetrafluoroborate), a Lewis acid-generating ionic compound (e.g., cupric chloride) and an anthracene which may be substituted are added, and the resulting solution is subjected to electrochemical polymerization by anodic oxidation at a temperature ranging from the freezing point of the solvent to its boiling point to obtain polyanthracene consisting of repeating anthracene units and having an electrical conductivity at room temperature of 10<-9>S/cm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体材料として有用な新規高分子化合物ポ
リアントラセン及びその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel polymer compound polyanthracene useful as a semiconductor material and a method for producing the same.

〔従来の技術〕[Conventional technology]

科学技術の進歩と共に新しい機能を有する電気・電子材
料、特に半導体の開発が求められており、高分子の分野
においても研究が活発に行われている。その結果、ポリ
アセチレン、ポリフェニレン等の共役系高分子、或いは
これに電子供与性化合物、電子吸引性化合物を添加した
有機半導体がこれまでに開発された。例えば、本発明者
らによる「ジャーナル・オブ・ジ・ケミカル・ソサエテ
ィ」誌、1985年、1629頁にはベンゼンの電解重
合によるポリパラフェニレンフィルl、が例示されてい
る。
With advances in science and technology, there is a need for the development of electrical and electronic materials with new functions, especially semiconductors, and research is also being actively conducted in the field of polymers. As a result, conjugated polymers such as polyacetylene and polyphenylene, or organic semiconductors in which electron-donating compounds and electron-withdrawing compounds are added have been developed. For example, "Journal of the Chemical Society", 1985, p. 1629, by the present inventors, exemplifies polyparaphenylene fill made by electrolytic polymerization of benzene.

しかしながら、これまでに合成された高分子半導体は、
ポリアセチレンやポリピロール、ポリチオフェン、ポリ
フラン、ポリアニリン、ポリピリダジン、ポリパラフェ
ニレン及びその誘導体に限られており、アントラセンの
重合体であるポリアントラセンは報告されていない。
However, the polymer semiconductors synthesized so far are
It is limited to polyacetylene, polypyrrole, polythiophene, polyfuran, polyaniline, polypyridazine, polyparaphenylene, and their derivatives, and polyanthracene, which is an anthracene polymer, has not been reported.

また、本発明のポリアントラセンの1体であるアントラ
センは有機化合物として初めて光導電性が認められたも
のであるが、この光導電性は有機半導体の代表的な特性
の一つであることが明らかとなっている。現在では、こ
の特性が電子写真、画像情報蓄積或いははデバイスホロ
グラムの分野に応用されている。しかしながら、実用に
際しては機械的強度に劣るアントラセン等の有機結晶は
用いられず、ポリビニルカルバゾール等の高分子有機半
導体、或いは無機材料であるセレンの蒸着膜等が用いら
れている。
Furthermore, anthracene, one of the polyanthracenes of the present invention, is the first organic compound to be recognized as having photoconductivity, and it is clear that this photoconductivity is one of the typical properties of organic semiconductors. It becomes. Currently, this characteristic is applied to the fields of electrophotography, image information storage, and device holograms. However, in practical use, organic crystals such as anthracene, which have poor mechanical strength, are not used, but polymeric organic semiconductors such as polyvinylcarbazole, or vapor-deposited films of selenium, which is an inorganic material, are used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

現在までの研究で、高分子半導体4体の電気的・光学的
性質は、その分子構造によって大きく変化することが知
られている。しかしながら先にも述べた通り、従来報告
されている高分子半導体はポリアセチレン、ポリフェニ
レン等の繰り返し単位が比較的低分子量であるものに限
られており、光導電性等の良好な電気的・光学的特性が
期待される高分子量化合物を繰り返し単位とする高分子
半導体は得られていない。
Research to date has shown that the electrical and optical properties of four polymer semiconductors vary greatly depending on their molecular structure. However, as mentioned above, conventionally reported polymer semiconductors are limited to those with relatively low molecular weight repeating units such as polyacetylene and polyphenylene, and have good electrical and optical properties such as photoconductivity. Polymer semiconductors whose repeating units are high molecular weight compounds with promising properties have not been obtained.

以上の点から、本発明は従来全く知られていなかったア
ントラセン或いはその置換体を繰り返し単位とする新規
な重合体、ポリアントラセン及びその製造法を提供する
ものである。
In view of the above, the present invention provides a novel polymer, polyanthracene, which has a repeating unit of anthracene or its substituted product, which has not been previously known, and a method for producing the same.

〔問題点を解決する為の手段〕[Means for solving problems]

即ち本発明は、置換基を有することもあるアントラセン
を繰り返し単位とする新規高分子化合物ポリアントラセ
ン及びその製造法に関するものである。
That is, the present invention relates to a novel polymer compound polyanthracene whose repeating unit is anthracene, which may have a substituent, and a method for producing the same.

次に本発明の高分子有機半導体ポリアントラセンの詳細
について述べる。本発明の重合体は、その製造条件によ
ってフィルム、或いは粉末として得られるが、特にフィ
ルムで得られるポリアントラセンが実用に有利である。
Next, details of the polymeric organic semiconductor polyanthracene of the present invention will be described. The polymer of the present invention can be obtained as a film or a powder depending on the manufacturing conditions, but polyanthracene obtained in the form of a film is particularly advantageous for practical use.

このポリアントラセンフィルムは均一で平滑な表面を有
しており、極めて柔軟性に冨んでいる。フィルムの膜厚
は本発明の製造法により、0.01μmから100μm
まで任意に制御可能である。
This polyanthracene film has a uniform, smooth surface and is extremely flexible. The thickness of the film is from 0.01 μm to 100 μm by the manufacturing method of the present invention.
can be controlled arbitrarily up to

本発明のポリアントラセンは、それ自体、室温で10−
 ’S/cmの電気伝導度を有する高分子有機半導体で
あるが、リチウム、カリウム、テトラアルキルアンモニ
ウムイオン等の電子供与性物質、或いはテトラフルオロ
ホウ酸、過塩素酸、ヘキサフルオロヒ素酸イオン等の電
子吸引性物質を7昆入(ドーピング)することにより、
1O−9S/cmからI S/cmまで任意に電気伝導
度を制御することができる。得られたフィルムは0.1
μ信の薄膜に於いても十分な機械的強度を有しており、
アセトンやメタノール等の通常用いられる全ての有機溶
媒に不溶で、化学的安定性に優れている。本発明のポリ
アントラセンの赤外吸収スペクトルは、105105O
’と770cm−’の2本のバンドが9,10−ジ置換
アントラセン環に帰属される。
The polyanthracene of the present invention itself has 10-
It is a polymeric organic semiconductor with an electrical conductivity of 'S/cm. By doping 7 electron-withdrawing substances,
The electrical conductivity can be arbitrarily controlled from 10-9S/cm to IS/cm. The obtained film was 0.1
It has sufficient mechanical strength even in the thin film of μ-rays.
It is insoluble in all commonly used organic solvents such as acetone and methanol, and has excellent chemical stability. The infrared absorption spectrum of the polyanthracene of the present invention is 105105O
The two bands at ' and 770 cm-' are assigned to the 9,10-disubstituted anthracene ring.

本発明のポリアントラセンは他の高分子半導体と同様に
電気化学的方法及び化学的方法で可逆的にドープ、脱ド
ープすることができ、任意の電荷移動状態とすることが
できる。それに伴って電気的性質のみならず光学的性質
も大きく変化する。
The polyanthracene of the present invention, like other polymer semiconductors, can be reversibly doped and dedoped by electrochemical and chemical methods, and can be put into any charge transfer state. Along with this, not only the electrical properties but also the optical properties change greatly.

本発明のポリアントラセンは置換基を有することもある
アントラセンを電気化学的陽極酸化法で重合(電解重合
)させることにより製造される。置換基を有するアント
ラセンとしては、2−メチルアントラセン等の9,10
位を除く位置がアルキル基、ハロゲン等で置換されたア
ントラセン化合物が挙げられる。電解重合は電解質を含
む極性溶媒中で行われるが、塩化第2銅、塩化アルミニ
ウム等のルイス酸を発生するイオン化合物を含む系で行
うのが有利であり、好ましくは塩化第2銅を含む系で行
うのが有利である。この際の極性溶媒としては、アセト
ニトリル、ニトロベンゼン、ニトロメタン、テトラヒド
ロフラン、ジメチルホルムアミド、オルトジクロルベン
ゼン等が挙げられるが、単量体及び電解質の溶解度の面
からオルトジクロルベンゼンが好ましく選ばれる。
The polyanthracene of the present invention is produced by polymerizing anthracene, which may have a substituent, by an electrochemical anodic oxidation method (electrolytic polymerization). As the anthracene having a substituent, 9,10 such as 2-methylanthracene
Examples include anthracene compounds substituted with alkyl groups, halogens, etc. at positions other than position. Electrolytic polymerization is carried out in a polar solvent containing an electrolyte, but it is advantageous to carry out in a system containing an ionic compound that generates a Lewis acid such as cupric chloride or aluminum chloride, preferably a system containing cupric chloride. It is advantageous to do so. Examples of the polar solvent in this case include acetonitrile, nitrobenzene, nitromethane, tetrahydrofuran, dimethylformamide, ortho-dichlorobenzene, and ortho-dichlorobenzene is preferably selected from the viewpoint of solubility of the monomer and electrolyte.

電解重合の電極材料には金属をはじめとして、通常の導
電性物質がすべて用いられる。
All conventional conductive substances, including metals, can be used as electrode materials for electrolytic polymerization.

支持電解質としては、テトラフルオロホウ酸テトラブチ
ルアンモニウム、過塩素酸テトラブチルアンモニウム等
のハロゲン化合物アニオンとテトラアルキルアンモニウ
ムカチオンとの塩、及びテトラフルオロホウ酸リチウム
、ヘキサフルオロヒ素酸リチウム等のハロゲン化合物ア
ニオンとアルカリ金属との塩などが挙げられる。
As the supporting electrolyte, salts of halogen compound anions such as tetrabutylammonium tetrafluoroborate and tetrabutylammonium perchlorate and tetraalkylammonium cations, and halogen compound anions such as lithium tetrafluoroborate and lithium hexafluoroarsenate are used. and alkali metal salts.

電解液は上記の支持電解質を含む極性溶媒から構成され
るが、好ましくは塩化第2銅を添加して用いられる。最
も好ましい電解液の組成は、溶媒としてオルトジクロル
ベンゼン、電解質としてテトラフルオロホウ酸テトラブ
チルアンモニウム及び塩化第2銅からなる系である。
The electrolytic solution is composed of a polar solvent containing the above-mentioned supporting electrolyte, and is preferably used with the addition of cupric chloride. The most preferred composition of the electrolytic solution is a system consisting of orthodichlorobenzene as a solvent and tetrabutylammonium tetrafluoroborate and cupric chloride as electrolytes.

電解重合は室温を中心として、溶媒の凝固点以上、沸点
以下の広い温度範囲で行うことができ、定電圧電解又は
定電流電解で行われる。フィルムは陽極表面上に形成さ
れ、通電時間を調節することで膜厚が制御される。生成
物は使用した支持電解質中のアニオンがドーピングされ
た構造で得られ、これは次に逆電圧を印加したり、アン
モニア蒸気に接触させたりすることによりアニオンが脱
離、或いは中和して脱ドープされる。
Electrolytic polymerization can be carried out in a wide temperature range from room temperature to above the freezing point and below the boiling point of the solvent, and is carried out by constant voltage electrolysis or constant current electrolysis. A film is formed on the surface of the anode, and the film thickness is controlled by adjusting the current application time. The product is obtained in a structure in which the anions in the supporting electrolyte used are doped, and the anions are then desorbed or neutralized by applying a reverse voltage or coming into contact with ammonia vapor. Be doped.

生成したポリアントラセンフィルムは、目的に応じて電
極に付着したまま、或いは電極から引き剥がしたフィル
ムの形で使用される。
The produced polyanthracene film is used either as it is attached to the electrode or in the form of a film that is peeled off from the electrode, depending on the purpose.

〔実 施 例〕〔Example〕

以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例のみに限定されるものではない。
The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 ガラス容器中にオルトジクロルベンゼンを入れ、これに
アントラセン、テトラフルオロホウ酸テトラブチルアン
モニウム、塩化第2銅をそれぞれ1.Omol/ l、
0.1mol/ 12.0.1mol/ lの濃度とな
るように添加して溶液を攪拌し、電解液とした。この電
解液に陽極としてインジウム、スズ酸化膜を被覆した導
電性ガラス、陰極としてニッケル板を浸漬して室温で電
解重合を行った。両電極間に20Vの定電圧を印加した
ところ、陽極上にテトラフルオロホウ酸イオンがドーピ
ングされた青色フィルムが得られた。10分間反応後、
生成したフィルムを取り出し、ベンゼンで洗浄、乾燥後
、電気伝導度を測定したところ、室温で0.1S/cm
の電気伝導度を持つ半導体であった。
Example 1 Orthodichlorobenzene was placed in a glass container, and 1.0% each of anthracene, tetrabutylammonium tetrafluoroborate, and cupric chloride were added thereto. Omol/l,
It was added to give a concentration of 0.1 mol/12.0.1 mol/l, and the solution was stirred to obtain an electrolytic solution. Electrolytic polymerization was carried out at room temperature by immersing a conductive glass coated with an indium and tin oxide film as an anode and a nickel plate as a cathode in this electrolyte solution. When a constant voltage of 20 V was applied between both electrodes, a blue film doped with tetrafluoroborate ions was obtained on the anode. After reacting for 10 minutes,
The produced film was taken out, washed with benzene, dried, and then its electrical conductivity was measured, and it was found to be 0.1 S/cm at room temperature.
It was a semiconductor with an electrical conductivity of .

実施例2 実施例1と同様の電解液を用いて、同様の条件で電解重
合を行って青色フィルム状生成物を得た。10分間の反
応後、直ちに電流の向きを逆にするとテトラフルオロホ
ウ酸イオンがフィルムより脱離し、淡黄色のフィルムが
得られた。
Example 2 Using the same electrolytic solution as in Example 1, electrolytic polymerization was carried out under the same conditions to obtain a blue film-like product. Immediately after 10 minutes of reaction, the direction of the current was reversed, and the tetrafluoroborate ions were desorbed from the film, yielding a pale yellow film.

ベンゼンで洗浄後、乾燥して電気伝導度を測定したとこ
ろ、室温で10−9S/caaの電気伝導度を持つ半導
体であった。このポリアントラセンフィルムの赤外吸収
スペクトルを第1図に示す。
After washing with benzene, drying and measuring the electrical conductivity, it was found that the semiconductor had an electrical conductivity of 10-9 S/caa at room temperature. The infrared absorption spectrum of this polyanthracene film is shown in FIG.

また、電解重合してアニオンを脱離させた淡黄色フィル
ムを、電極に付着させたまま0.1mol/ I!掘度
の過塩素酸リチウムを含む炭酸プロピレン溶液に浸漬し
、ニッケル板を対極として電圧を印加したところ、フィ
ルムの色相は電圧の上昇に伴って淡黄色から青色に変化
した。この時の吸収スペクトルの変化を第2図に示す。
In addition, a pale yellow film that was electrolytically polymerized to remove anions was left attached to the electrode at a rate of 0.1 mol/I! When the film was immersed in a propylene carbonate solution containing lithium perchlorate and a voltage was applied using a nickel plate as a counter electrode, the color of the film changed from pale yellow to blue as the voltage increased. Figure 2 shows the change in the absorption spectrum at this time.

この変化は可逆的であり、印加する電圧を調節すること
でフィルムの色相を淡黄色と青色の間で繰り返し変える
ことができた。
This change was reversible, and the hue of the film could be repeatedly changed between pale yellow and blue by adjusting the applied voltage.

実施例3 実施例1において、テトラフルオロホウ酸テトラブチル
アンモニウムの代わりに過塩素酸テトラブチルアンモニ
ウムを用いたほかは同様な操作を行った。20Vの定電
流で10分間反応させたところ、過塩素酸イオンがドー
ピングされた青色フィルムが得られた。このフィルムの
室温での電気伝導度は0.25/cmであり、実施例2
と同様の方法で脱ドーすると10−9S/cmとなった
Example 3 The same operation as in Example 1 was carried out except that tetrabutylammonium perchlorate was used instead of tetrafluoroborate tetrabutylammonium. When the reaction was carried out for 10 minutes at a constant current of 20 V, a blue film doped with perchlorate ions was obtained. The electrical conductivity of this film at room temperature was 0.25/cm, and Example 2
Dedoping was performed in the same manner as above, and the result was 10-9 S/cm.

実施例4 実施例1において、塩化第2銅の代わりに塩化アルミニ
ウムを用いたほかは同様な操作を行った。20vの定電
流で10分間反応させたところ、テトラフルオロホウ酸
イオンがドーピングされた青色フィルムが得られた。こ
のフィルムの室温での電気伝導度は2 X 10−’S
/cmであった。
Example 4 The same operation as in Example 1 was performed except that aluminum chloride was used instead of cupric chloride. When the reaction was carried out for 10 minutes at a constant current of 20 V, a blue film doped with tetrafluoroborate ions was obtained. The electrical conductivity of this film at room temperature is 2 x 10-'S
/cm.

実施例5 実施例1において、アントラセンの代わりに2−メチル
アントラセンを用いたほかは同様な操作を行った。30
Vの定電流で20分間反応させたところ、テトラフルオ
ロホウ酸イオンがドーピングされた黒色フィルムが得ら
れた。このフィルムの室温での電気伝導度はI X 1
0− ’S/cmであった。
Example 5 The same operation as in Example 1 was performed except that 2-methylanthracene was used instead of anthracene. 30
When the reaction was carried out for 20 minutes at a constant current of V, a black film doped with tetrafluoroborate ions was obtained. The electrical conductivity of this film at room temperature is I x 1
It was 0-'S/cm.

〔発明の効果〕〔Effect of the invention〕

本発明を実施することにより、電子デバイス分野に用い
られる半導体材料として有用な新規高分子化合物ポリア
ントラセンを提供することができ、工業的価値がある。
By implementing the present invention, it is possible to provide a novel polymer compound polyanthracene useful as a semiconductor material used in the field of electronic devices, which has industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例2で得られたポリアントラセンフィルム
の赤外吸収スペクトル、第2図は電気化学的にドーピン
グしたポリアントラセンフィルムの各ドープ電圧におけ
る吸収スペクトルである。
FIG. 1 shows the infrared absorption spectrum of the polyanthracene film obtained in Example 2, and FIG. 2 shows the absorption spectrum of the electrochemically doped polyanthracene film at various doping voltages.

Claims (1)

【特許請求の範囲】 1 アントラセンを繰り返し単位とする新規高分子化合
物ポリアントラセン。 2 置換基を有することもあるアントラセンを電気化学
的に陽極酸化重合することを特徴とするポリアントラセ
ンの製造方法。 3 陽極酸化重合が、ルイス酸を発生する化合物のイオ
ンを含む電解液中で行われるものである特許請求の範囲
第2項記載のポリアントラセンの製造方法。 4 電解液が、ハロゲンを含むアニオンとテトラアルキ
ルアンモニウムカチオンとの塩を電解質とするオルトジ
クロルベンゼン溶液である特許請求の範囲第3項記載の
ポリアントラセンの製造方法。
[Claims] 1. A novel polymer compound polyanthracene having anthracene as a repeating unit. 2. A method for producing polyanthracene, which comprises electrochemically anodic oxidation polymerization of anthracene that may have a substituent. 3. The method for producing polyanthracene according to claim 2, wherein the anodic oxidation polymerization is carried out in an electrolytic solution containing ions of a compound that generates a Lewis acid. 4. The method for producing polyanthracene according to claim 3, wherein the electrolytic solution is an orthodichlorobenzene solution containing a salt of a halogen-containing anion and a tetraalkylammonium cation as an electrolyte.
JP16338786A 1986-07-11 1986-07-11 Polyanthracene and its production Pending JPS6320326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16338786A JPS6320326A (en) 1986-07-11 1986-07-11 Polyanthracene and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16338786A JPS6320326A (en) 1986-07-11 1986-07-11 Polyanthracene and its production

Publications (1)

Publication Number Publication Date
JPS6320326A true JPS6320326A (en) 1988-01-28

Family

ID=15772921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16338786A Pending JPS6320326A (en) 1986-07-11 1986-07-11 Polyanthracene and its production

Country Status (1)

Country Link
JP (1) JPS6320326A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136003A1 (en) * 2011-04-07 2012-10-11 Tongji University Polyanthrylene materials and methods for their preparation and use
JP2013534936A (en) * 2010-06-04 2013-09-09 トンジ ユニバーシティ Method for producing polyanthracene and use thereof
CN107973900A (en) * 2017-11-06 2018-05-01 华南理工大学 A kind of poly- anthracene compound and its preparation method and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534936A (en) * 2010-06-04 2013-09-09 トンジ ユニバーシティ Method for producing polyanthracene and use thereof
US8735537B2 (en) 2010-06-04 2014-05-27 Tongji University Methods of producing polyanthracene and uses thereof
EP2576652A4 (en) * 2010-06-04 2014-09-03 Univ Tongji Methods of producing polyanthracene and uses thereof
US9290610B2 (en) 2010-06-04 2016-03-22 Tongji University Methods of producing polyanthracene and uses thereof
WO2012136003A1 (en) * 2011-04-07 2012-10-11 Tongji University Polyanthrylene materials and methods for their preparation and use
US8735166B2 (en) 2011-04-07 2014-05-27 Tongji University Polyanthrylene materials and methods for their preparation and use
US9063109B2 (en) 2011-04-07 2015-06-23 Tongji University Polyanthrylene materials and methods for their preparation and use
CN107973900A (en) * 2017-11-06 2018-05-01 华南理工大学 A kind of poly- anthracene compound and its preparation method and application

Similar Documents

Publication Publication Date Title
US4501686A (en) Anion-doped polymers of five-membered oxygen family heterocyclic compounds and method for producing same
US4568483A (en) Electrically conductive pyrrole copolymers and their preparation
US4880508A (en) Water-soluble conductive polymers
Pei et al. Electrochromic and highly stable poly (3, 4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue
US4795242A (en) Conducting substituted polyisothianaphthenes
US5011751A (en) Electrochemical device
US4929389A (en) Water-soluble conductive polymers
US4640748A (en) Polyisothianaphtene, a new conducting polymer
US4769115A (en) Process for preparing electrically conductive polymer
JP3234638B2 (en) Fluorinated thiophenes, polymers derived from these thiophenes and conductive polymers containing these polymers
US5159031A (en) Sulfonated polyaniline salt compositions and uses thereof
US4663001A (en) Electroconductive polymers derived from heterocycles polycyclic monomers and process for their manufacture
US4772940A (en) Polymer having isothianaphthene structure and electrochromic display
JPS6320326A (en) Polyanthracene and its production
EP0164974B1 (en) Polymer having isothianaphthene structure and electrochromic display
Jen et al. The Optical, Electrochemical and Structure/Property Relationships of Poly (Heteroaromatic Vinylenes
Jen et al. Low band-gap conjugated polymers: poly (thienylene vinylene) and poly (substituted thienylene vinylenes)
Nguyên et al. Polymerization and properties of poly (3-chlorodiphenylamine): a soluble electrochromic conducting polymer
JPS6183221A (en) Polypyridazine and its production
JPS61254620A (en) Polymer having naphtho(2,3-c)thiophene structure
JPS6236423A (en) Production of electroconductive polymer
JPS6411209B2 (en)
JPH07121983B2 (en) Process for producing polymer having isothianaphthene structure
JPS63241022A (en) Production of aromatic conjugated polymer film
Wudl et al. Recent Advances in Self Doped Conducting Polymers and Arylenevinylenes