JPS63202723A - Optical connecting device for connection between substrates - Google Patents

Optical connecting device for connection between substrates

Info

Publication number
JPS63202723A
JPS63202723A JP3666387A JP3666387A JPS63202723A JP S63202723 A JPS63202723 A JP S63202723A JP 3666387 A JP3666387 A JP 3666387A JP 3666387 A JP3666387 A JP 3666387A JP S63202723 A JPS63202723 A JP S63202723A
Authority
JP
Japan
Prior art keywords
light
optical
substrate
diffraction grating
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3666387A
Other languages
Japanese (ja)
Inventor
Ken Yamashita
山下 建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP3666387A priority Critical patent/JPS63202723A/en
Publication of JPS63202723A publication Critical patent/JPS63202723A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • G02F1/2955Analog deflection from or in an optical waveguide structure] by controlled diffraction or phased-array beam steering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To vary a connection point by providing a light emitting element, an optical waveguide, and a diffraction grating, supplying an electric signal and varying an angle of deflection, and converging projection light on a light receiving element on a substrate for reception. CONSTITUTION:The optical deflector 11 consisting of an optical waveguide layer 2, the light emitting element 3, and the diffraction grating 1 formed at the other end side of the layer 2 is provided on a substrate 10 for transmission. Further, a converging lens 12 is arranged above the grating 1 and the substrate 13 for reception is arranged opposite on the focal plane of the lens 12; and a couple of electrodes 4A and 4B are provided across the grating 1 and also connected to a voltage controller 6. Then a voltage applied to the electrodes 4A and 4B is varied to vary the interference relation between light propagated in the layer 2 and the grating 1, and the angle of the projection light 7 to the substrate surface normal is varied to switch light incident on the substrate 13 from a light receiving element 8 to another element 8. Consequently, optical connections between the substrates are changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子装置基板間の光接続に関し、特に光の接続
点を高速で変更可能とした装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to optical connections between electronic device boards, and particularly to a device that allows optical connection points to be changed at high speed.

〔従来の技術〕[Conventional technology]

VLSIなど電子装置の基板間を接続する多数の電気配
線を光による接続で置き換える技術は、高速化、ノイズ
対策な、どの観点から重要であり、従来いくつかの方式
が提案されてきた。
BACKGROUND ART The technology of replacing a large number of electrical wirings that connect the boards of electronic devices such as VLSIs with optical connections is important from the viewpoints of speeding up, noise countermeasures, etc., and several methods have been proposed in the past.

代表的なものとして例えば第3図に示す装置が知られて
いる( J、 W、Goodman他、proc、 I
EEE72巻、1qra年、tSO頁)。
For example, the device shown in FIG. 3 is known as a typical device (J. W. Goodman et al., proc. I
EEE Vol. 72, 1qra, tSO page).

この装置では、送信側基板20上の光源21がら発する
光を受信側基板22上の受光素子23に入射させるに当
り、これら基板λ0.22上方にホログラムコタを対向
配置し、光源光をホログラム2’lで所望の方向へ分配
することにより、多数の受光素子−3への光接続を可能
としている。
In this device, in order to make the light emitted from the light source 21 on the transmitting side substrate 20 enter the light receiving element 23 on the receiving side substrate 22, holograms are placed facing each other above these substrates λ0.22, and the light source light is directed to the hologram 22. By distributing the light in a desired direction with 'l', it is possible to optically connect to a large number of light receiving elements 3.

上記装置は、必要な接続点の位置に対応してホ 。The above-mentioned device is installed according to the location of the required connection point.

ログラム2ダを設計することにより比較的簡単に複雑な
接続ができる利点をもっており、またホログラムJ41
を交換することにより接続を変更することもできる。
By designing the hologram J41, it has the advantage of allowing complex connections to be made relatively easily.
You can also change the connection by replacing the .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の光接続方式では、装置を動作させながら高速
で接続点を変更することはできず、複数の光回路を必要
に応じて随時切り換える方式の装置には使えないという
問題があった。
The conventional optical connection system described above has a problem in that it is not possible to change the connection point at high speed while the device is operating, and it cannot be used in a device that switches between multiple optical circuits as needed.

〔間1点を解決するための手段〕 送信側光源の出射光を電気信号により偏向できる光偏向
器を、発光素子と、発光素子の光を導く光導波路と、こ
の光導波路に付設され伝搬光を導波路外に出射させる回
折格子結合器で構成し、外部からの電気信号により光の
出射方向を制御するとともに、出射光を光学系で収束す
ることによって、受信側基板上にある多数の受光素子の
いずれかに入射させて回路を切り換える。
[Means for solving the problem] An optical deflector capable of deflecting the light emitted from the transmitting light source by an electric signal is connected to a light emitting element, an optical waveguide that guides the light of the light emitting element, and an optical deflector that is attached to the optical waveguide and is attached to the optical waveguide to guide the light of the light emitting element. It consists of a diffraction grating coupler that emits the light out of the waveguide, and the direction of the light output is controlled by an external electrical signal.The output light is converged by an optical system, and multiple light receivers on the receiving board are connected to each other. Switch the circuit by making the light incident on one of the elements.

以下さらに詳しく説明する。This will be explained in more detail below.

第ψ図に示すように、一般に光導波路2を伝搬する光が
、導波路2に付設された回折格子lを通して空間に放射
されるときの位相整合条件は次式%式% ここでθは光の出射角、nは実効屈折率、?は回折の次
数、λは自由空間における光の波長、tは回折格子の周
期である。
As shown in FIG. The exit angle of , n is the effective refractive index, ? is the order of diffraction, λ is the wavelength of light in free space, and t is the period of the diffraction grating.

(1)式かられかるように、λまたはnを変化させるこ
とによりθを変えるすなわち光偏向を行なうことができ
、本発明では上記いずれの方式も使用できる。例えば波
長λを変える場合は光源として出力波長可変のものを用
いる。
As can be seen from equation (1), by changing λ or n, θ can be changed, that is, light can be deflected, and any of the above methods can be used in the present invention. For example, when changing the wavelength λ, a light source with variable output wavelength is used.

また実効屈折率nを変えるには、回折格子lおよび光導
波路コを半導体あるいは電気光学材料で形成するととも
に回折格子に電圧を印加するための電極を設け、印加電
圧を変えればよい。
Further, in order to change the effective refractive index n, it is sufficient to form the diffraction grating l and the optical waveguide l from a semiconductor or an electro-optic material, provide an electrode for applying a voltage to the diffraction grating, and change the applied voltage.

〔作 用〕[For production]

本発明によれば、送信側基板上の光偏向器で偏向された
平行光は、光学系の焦点面に置かれた受信側基板上で充
分収束される。このため、受信側基板上の受光素子は小
型化が可能で充分高い消光比で多点間の切り換えを行な
うことができる。
According to the present invention, the parallel light deflected by the optical deflector on the transmitting side substrate is sufficiently focused on the receiving side substrate placed on the focal plane of the optical system. Therefore, the light receiving element on the receiving side substrate can be miniaturized and can perform switching between multiple points with a sufficiently high extinction ratio.

また発光素子からの光を電気信号で偏向させて接続受光
素子の切り換えを行なうため、極めて高速度で接続点の
変更を行なうことができる。
Furthermore, since the connected light receiving elements are switched by deflecting the light from the light emitting elements using electrical signals, the connection points can be changed at extremely high speed.

〔実 施 例〕〔Example〕

本発明の一実施例を第1図に示す。 An embodiment of the present invention is shown in FIG.

第1図において10は送信側基板であり、この送信側基
板10上に光偏向器//が設けである。
In FIG. 1, reference numeral 10 denotes a transmitting side substrate, and an optical deflector // is provided on this transmitting side substrate 10.

光偏向器1/は、基板IO上に設けた光導波路層−と、
この光導波路層λ上の一端側に積層形成した半導体レー
ザから成る発光素子3と、光導波路F!I2の他端側に
形成した導波光出射用の回折格子/とで構成されている
The optical deflector 1/ includes an optical waveguide layer provided on the substrate IO,
A light emitting element 3 made of a semiconductor laser is laminated on one end side of the optical waveguide layer λ, and an optical waveguide F! It is composed of a diffraction grating for outputting guided light formed on the other end side of I2.

半導体レーザ3は、例えばGaAS活性層とAIo、3
 Gap、 7 As  のクラッド層から成り、この
活性層と下側クラッド層との間にGa0.85 Asか
ら成る光導波路層2を設は石。
The semiconductor laser 3 includes, for example, a GaAS active layer and an AIo, 3
The optical waveguide layer 2 is made of Ga0.85 As between this active layer and the lower cladding layer.

上記の光偏向器/lで、半導体レーザ3から出た光は光
導波路N2内を伝搬した後、回折格子lを通して外部に
出射する。
In the optical deflector /l described above, the light emitted from the semiconductor laser 3 propagates within the optical waveguide N2, and then is emitted to the outside through the diffraction grating l.

回折格子lの周期は、出射中心角を設定することにより
前述(1)式から算出できる。また回折格子lの長さは
3008mとすると入射する光の約IIO%が出射され
る。
The period of the diffraction grating l can be calculated from the above-mentioned equation (1) by setting the emission center angle. Further, if the length of the diffraction grating l is 3008 m, approximately IIO% of the incident light is emitted.

そして上記の光偏向器/7の回折格子lの上方に収束用
レンズ12を配置するとともに、このレンズ12の伸点
面上に受信側基板13を対向配置する。
A converging lens 12 is disposed above the diffraction grating l of the optical deflector/7, and a receiving substrate 13 is disposed facing the elongated point surface of this lens 12.

また第2図に平面図に示すように回折格子lを挾んで一
対の電極ψA、4Elが設けてあり、これら電極ダA、
ダBは導線!を介して電圧制御器乙に接続されている。
Further, as shown in the plan view in FIG. 2, a pair of electrodes ψA, 4El are provided with the diffraction grating l in between, and these electrodes A, 4El are provided.
DaB is a conductor! is connected to the voltage controller O through.

上記の装置で電4IiダA、lIBに印加する電圧を変
化させると光導波路層2中を伝搬する光と回折格子lと
の干渉関係に変化を生じ、出射光70基板面法線に対す
る角度が変化し、これKより出射光7が収束入射する受
信基板13上の受光素子tが他の位置の受光素子tへ切
り換えられる。
In the above device, when the voltages applied to the electrodes A and IIB are changed, the interference relationship between the light propagating in the optical waveguide layer 2 and the diffraction grating l changes, and the angle of the emitted light 70 with respect to the normal to the substrate surface changes. As a result, the light receiving element t on the receiving board 13 on which the emitted light 7 is convergently incident is switched to a light receiving element t at another position.

上記装置によれば、回折格子へからの出射光の平行度が
高いため、レンズ/Jに入射した光は出射角によらず焦
点面にある受信側基板13上に収束され、また回折格子
lとレンズ12との距離も任意に選ぶことができる。
According to the above device, since the parallelism of the light emitted from the diffraction grating is high, the light incident on the lens /J is converged on the receiving side substrate 13 in the focal plane regardless of the emitted angle, and the diffraction grating l The distance between the lens 12 and the lens 12 can also be arbitrarily selected.

したがって、レンズ12の焦点距離fを必要な基板間距
離に対応して決定すると、数μm径の光点をL−Jft
anθmだけ移動できる。
Therefore, if the focal length f of the lens 12 is determined in accordance with the required distance between the substrates, a light spot with a diameter of several μm can be
It can move by anθm.

ここで±θmは最大偏向角である。θm−±3度、f−
7MとするとLは約100μmとなる。
Here, ±θm is the maximum deflection angle. θm-±3 degrees, f-
If it is 7M, L will be approximately 100 μm.

したがって10μm径の受光素子1rik10個、受信
側基板/3上に配列しておけば10点の切り換えが可能
な基板間光接続が可能となる。
Therefore, by arranging 10 light receiving elements each having a diameter of 10 μm on the receiving side board/3, an inter-board optical connection capable of switching 10 points is made possible.

本発明ではレンズ/2と回折格子/との距離は極めて小
さくてもさしつかえないから、第3図に示すように半導
体基板/4j上に、発光素子3、先導波路2、回折格子
lを集積した光偏向器//を設けるとともに、例えば回
折格子lの出射面最上層に出射光に対して透明な物質を
堆積させてこれをドーム状に加工する等の方法でレンズ
/2を密着一体形成し、光学系を含めた全体を集積化す
ることもできる。
In the present invention, the distance between the lens /2 and the diffraction grating / may be extremely small, so the light emitting element 3, the guiding waveguide 2, and the diffraction grating l are integrated on the semiconductor substrate /4j as shown in FIG. In addition to providing the optical deflector //, the lens 2 is closely and integrally formed by, for example, depositing a substance transparent to the output light on the top layer of the output surface of the diffraction grating l and processing it into a dome shape. , the entire structure including the optical system can be integrated.

なお第3図の例は光偏向方法として、導波路屈折率がキ
ャリア濃度に依存することを利用し、回折格子l上に透
明IE&を積層してこの電極に注入する電流量を変化さ
せるようにし、上記の電極層上にレンズ12を積層形成
した構造を示している。
The example in Fig. 3 uses the fact that the waveguide refractive index depends on the carrier concentration as an optical deflection method, and a transparent IE& is laminated on the diffraction grating l to change the amount of current injected into this electrode. , shows a structure in which a lens 12 is laminated on the above electrode layer.

このような集積化により、装置を小型化し且つアライメ
ントを容易にすることができる。
Such integration allows for miniaturization of the device and ease of alignment.

以上に説明した実施例では、送信側基板ioに対して受
信側基板13を対向配置したが、側基板10 、 /3
を同一平面上に配置するとともに、側基板に対向させて
反射鏡を設置し、本接続装置からの出射光を上記反射鏡
で反射させて受信側基板上の受光素子に入光させるよう
にすることもできる。
In the embodiment described above, the receiving side board 13 is arranged opposite to the sending side board io, but the side board 10, /3
are placed on the same plane, and a reflecting mirror is installed facing the side board, so that the light emitted from this connection device is reflected by the reflecting mirror and enters the light receiving element on the receiving board. You can also do that.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来不可能であった接続点可変の基板
間光接続が実現できる。
According to the present invention, it is possible to realize an optical connection between boards with variable connection points, which was previously impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

#/図は本発明の一実施例を示す側面図、第2図は本発
明で使用する光偏向器の一例を示す平面図、第3図は本
発明の他の実施例を示す斜視図、第4図は回折格子によ
る導波路出射光の偏向を説明する要部側断面図、第5図
は従来の基板間光接続装置を示す斜視図である。 l・・・・・・回折格子 2・・・・・・光導波路3・
・・・・・発光素子 lA、ダB・・・・・・電 極6
・・・・・・電圧制御器 7・・・・・・出射光!・・
・・・・受光素子 10・・・・・・送信側基板//・
・・・・・光偏向器 /J・・・・・・レンズ13・・
・・・・受信側基板 第1図 第2図 第3図 第4図 第5図 手  続  補  正  書 昭和62年3月170
#/The figure is a side view showing one embodiment of the present invention, Fig. 2 is a plan view showing an example of the optical deflector used in the present invention, and Fig. 3 is a perspective view showing another embodiment of the present invention. FIG. 4 is a side sectional view of a main part explaining the deflection of light emitted from a waveguide by a diffraction grating, and FIG. 5 is a perspective view showing a conventional optical connection device between substrates. l... Diffraction grating 2... Optical waveguide 3.
...Light emitting element lA, daB ... Electrode 6
...Voltage controller 7...Emitted light!・・・
・・・・Photo-receiving element 10・・・・Transmission-side board//・
...Light deflector /J...Lens 13...
・・・Receiving side board Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Procedures Correction Book March 1988 170

Claims (2)

【特許請求の範囲】[Claims] (1)発光素子と、該素子の発光を導く光導波路と、該
光導波路に付設され伝搬光を導波路外に出射させる回折
格子とを有し電気信号を与えることにより出射光角度が
偏向する光偏向器と、前記出射光を受信側基板上の受光
素子に収束入射させるための光収束用光学系とからなる
基板間光接続装置。
(1) It has a light emitting element, an optical waveguide that guides the light emission of the element, and a diffraction grating that is attached to the optical waveguide and emits the propagating light to the outside of the waveguide, and the angle of the emitted light is deflected by applying an electric signal. An inter-board optical connection device comprising an optical deflector and a light converging optical system for converging the emitted light into a light receiving element on a receiving side board.
(2)前記発光素子、光導波路、及び光収束用光学系を
単一の半導体基板上に集積化した特許請求の範囲第1項
記載の基板間光接続装置。
(2) The inter-substrate optical connection device according to claim 1, wherein the light emitting element, the optical waveguide, and the light focusing optical system are integrated on a single semiconductor substrate.
JP3666387A 1987-02-19 1987-02-19 Optical connecting device for connection between substrates Pending JPS63202723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3666387A JPS63202723A (en) 1987-02-19 1987-02-19 Optical connecting device for connection between substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3666387A JPS63202723A (en) 1987-02-19 1987-02-19 Optical connecting device for connection between substrates

Publications (1)

Publication Number Publication Date
JPS63202723A true JPS63202723A (en) 1988-08-22

Family

ID=12476097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3666387A Pending JPS63202723A (en) 1987-02-19 1987-02-19 Optical connecting device for connection between substrates

Country Status (1)

Country Link
JP (1) JPS63202723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431974A2 (en) * 1989-12-08 1991-06-12 International Business Machines Corporation Light beam deflector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162024A (en) * 1984-09-03 1986-03-29 Omron Tateisi Electronics Co Optical information processor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162024A (en) * 1984-09-03 1986-03-29 Omron Tateisi Electronics Co Optical information processor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431974A2 (en) * 1989-12-08 1991-06-12 International Business Machines Corporation Light beam deflector
JPH03182724A (en) * 1989-12-08 1991-08-08 Internatl Business Mach Corp <Ibm> Light deflection element
US5157543A (en) * 1989-12-08 1992-10-20 International Business Machines Corporation Optical beam deflector

Similar Documents

Publication Publication Date Title
US6421476B1 (en) Integrated optic beam deflectors and systems
US5255332A (en) NxN Optical crossbar switch matrix
US6457875B1 (en) Electro-optical arrangement
US5133027A (en) Optical waveguide apparatus for controlling a signal light traveling through an optical waveguide by means of other light
JPS62187825A (en) Multi-terminal optical switch
JPS63202723A (en) Optical connecting device for connection between substrates
JPH04213896A (en) Optical signal connection device for device insertable in rack
US20100054655A1 (en) Dynamic Reconfigurable Optical Interconnect System
US6370284B1 (en) Integrated optics beam deflectors and systems
JPH0389327A (en) Optical connecting device
JPS6353531B2 (en)
JPS61217024A (en) Optical coupler between plural substrates
JPH06118454A (en) Optical switch
JPS6319847B2 (en)
AU771363B2 (en) Integrated optics beam deflectors and systems
JPH08129195A (en) Optical switch module
JPH0389326A (en) Optical crossbar
AU2932002A (en) Integrated optics beam deflectors and systems
JPH03196024A (en) Waveguide type optical switch