JPS63201543A - Strain gauge type scale - Google Patents

Strain gauge type scale

Info

Publication number
JPS63201543A
JPS63201543A JP3492087A JP3492087A JPS63201543A JP S63201543 A JPS63201543 A JP S63201543A JP 3492087 A JP3492087 A JP 3492087A JP 3492087 A JP3492087 A JP 3492087A JP S63201543 A JPS63201543 A JP S63201543A
Authority
JP
Japan
Prior art keywords
strain
load
strain gauge
gauge type
type scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3492087A
Other languages
Japanese (ja)
Inventor
Hiroyuki Iida
弘之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3492087A priority Critical patent/JPS63201543A/en
Publication of JPS63201543A publication Critical patent/JPS63201543A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a load with high resolution and high accuracy without using any high-accuracy circuit components by selecting and using one of plural stain inducing parts which differ in strain quantity to the same load according to a measured load. CONSTITUTION:A load cell 11 consists of a restriction part 12, a weighing part 13, and plural strain inducing parts 14a-14d, and 15a-15d which differ in strain quantity to the same load. When a load is placed, the strain inducing parts 14a-14d, and 15a-15d generate strains proportional to the magnitude of the load and the strains are converted by strain gauges 16a-16d, and 17a-17d into electric outputs. One of the strain inducing parts 14a-14d, and 15a-15d is selected and used according to the measured load by switching scaled quantities by a scaled quantity switching means.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は体重計等に使用する歪ゲージ式秤に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a strain gauge scale used in weight scales and the like.

従来の技術 従来の歪ゲージ式秤は第10図乃至第12図に示すよう
に構成するものであυ、第10図乃び第11図は従来の
歪ゲージ式秤のロードセルであり、第10図及び第11
図において、1はロードセルで拘束部2、加重部3.起
歪部4a乃至4dで基本構成され、荷重が加えられると
その大きさに比例した歪が起歪部4a乃至4dに発生し
その歪を歪ゲージ5a乃至5dで電気的出力に変換する
ものである。
2. Description of the Related Art A conventional strain gauge type scale is constructed as shown in Figs. 10 to 12. Figure and 11th
In the figure, reference numeral 1 denotes a load cell, including a restraint section 2, a weight section 3, and a load cell. It basically consists of strain generating parts 4a to 4d, and when a load is applied, a strain proportional to the magnitude of the load is generated in the strain generating parts 4a to 4d, and the strain is converted into an electrical output by strain gauges 5a to 5d. be.

第12図は歪ゲージ式秤の電気回路構成を示すブロック
図であり、第12図において、5a乃至5dはフルブリ
ッジとした歪ゲージ、6は該フルブリッジとした歪ゲー
ジ5a乃至5dの電気的出力を電圧増幅する増幅器、7
は該増幅器6にて増幅された電圧である処のアナログ信
号をデジタル信号に変換するA/D変換器、8は該A/
D変換器7よりのデジタル信号を演算処理するマイコン
、9は該マイコン8にて駆動され重量の単位として例え
ば2像と表示する表示部である。
FIG. 12 is a block diagram showing the electric circuit configuration of the strain gauge type scale. In FIG. 12, 5a to 5d are full-bridge strain gauges, and 6 is the electrical circuit of the full-bridge strain gauges 5a to 5d. An amplifier for voltage amplifying the output, 7
8 is an A/D converter that converts the analog signal, which is the voltage amplified by the amplifier 6, into a digital signal; 8 is the A/D converter;
A microcomputer 9 that processes the digital signal from the D converter 7 is a display section that is driven by the microcomputer 8 and displays, for example, two images as a unit of weight.

上記のように構成してなる歪ゲージ式秤はフルブリッジ
とした歪ゲージ5a乃至5dの電気的出力を増幅器6で
電圧増幅し、該増幅器6にて増幅された電圧である処の
アナログ信号をA/D変換器7でデジタル信号に変換し
、該A/D変換器7よりデジタル信号をマイコン8にて
演算処理して表示部9に重量の単位として例えば2に9
と表示するものである。
The strain gauge type scale constructed as described above amplifies the electrical output of the full bridge strain gauges 5a to 5d by the amplifier 6, and outputs the analog signal which is the voltage amplified by the amplifier 6. The A/D converter 7 converts the digital signal into a digital signal, and the microcomputer 8 processes the digital signal and displays it on the display 9 as a unit of weight, for example, 2 to 9.
It is displayed as follows.

発明が解決しようとする問題点 上記のように構成してなる歪ゲージ式秤であれば、秤量
が19までは10a単位表示とじ1即から2即までは2
01単位表示とする際が多くある様に軽い物は細かい単
位で表示し測定精度を上げる必要がある場合、又は大人
用体重計の単位が500f単位でベビー用体重計が50
f単位となっている様に秤量に合った表示単位が必要で
ある場合に、秤量150に9で表示単位500F(大人
用)と秤量15即で表示単位50g(ベビー用)の体重
計全一台で構成するには増幅器6の増幅率を10倍アッ
プすることが安易な解決策であるが、この場合に歪ゲー
ジ5a乃至5dの電気出力は同じで増幅率’tlO倍に
するのであるから、ノイズ。
Problems to be Solved by the Invention With the strain gauge type scale configured as described above, weighing weights up to 19 are displayed in 10a units, and 1 to 2 are displayed in units of 2.
When it is necessary to increase measurement accuracy by displaying light items in small units, as is often the case with 01 units, or when the unit for adult scales is 500f and the unit for baby scales is 50f.
If you need a display unit that matches the weight, such as f units, we have a complete set of scales with a scale of 150 and 9 and a display unit of 500F (for adults) and a scale of 15 and a display unit of 50g (for babies). An easy solution for constructing a stand-alone configuration is to increase the amplification factor of the amplifier 6 by 10 times, but in this case, the electrical output of the strain gauges 5a to 5d is the same, but the amplification factor is increased by a factor of 'tlO. ,noise.

温度変化によるドリフト等もすべて10倍となり、従っ
て増幅器6の回路部品(オペアンプ、抵抗等)も超低ド
リフトのものを必要とし極めて回路部品代が高価となシ
、又増幅率をあげるためにノイズフィルタを使用すると
該ノイズフィルタも高級品を必要としこの点においても
原めて回路部品代が高価となる欠点があった。
Drifts due to temperature changes are all 10 times larger, so the circuit components of the amplifier 6 (op-amp, resistor, etc.) need to have ultra-low drift, making the circuit components extremely expensive, and increasing the amplification factor by reducing noise. When a filter is used, the noise filter also needs to be a high-quality product, which also has the drawback of increasing the cost of circuit components.

本発明は上記のような欠点を除去したもので、その目的
とする処は、超高精度の回路部品を用いることなく高分
解能、高精度の荷重測定を行なうことができ、回路部品
代も安価にすることができる歪ゲージ式秤を提供するこ
とにある。
The present invention eliminates the above-mentioned drawbacks, and its purpose is to be able to perform high-resolution and high-precision load measurements without using ultra-high precision circuit components, and to reduce the cost of circuit components. The purpose of the present invention is to provide a strain gauge type scale that can be used as a strain gauge.

問題点を解決するための手段 本発明は同一荷重で歪量の異なる複数の起歪部14a乃
至14d、15a乃至15dt−有するロードセル11
と、該ロードセ/L/11の複数の起歪部14a乃至1
4d、15a乃至15dの一つを測定荷重に応じて選択
使用し秤量切換を行なう秤量切換手段とを備えた構成に
したものである。
Means for Solving the Problems The present invention provides a load cell 11 having a plurality of strain-generating portions 14a to 14d, 15a to 15dt with the same load and different amounts of strain.
and a plurality of strain generating parts 14a to 1 of the load cell/L/11.
4d, 15a to 15d is selectively used according to the measured load, and weighing switching means is provided for switching the weighing amount.

作用 ロードセIv11の複数の起歪部14a乃至14d。action A plurality of strain generating parts 14a to 14d of the load cell Iv11.

15a乃至15dに同一荷重で異なる歪量を発生させ、
該ロードセル11の複数の起歪部14a乃至14d、1
5a乃至15dの一つを秤量切換手段にて秤量切換を行
なって測定荷重に応じて選択使用し、超高精度の回路部
品を用いることなく高分解能、高精度の荷重測定を行な
うものである。
Generating different amounts of strain with the same load on 15a to 15d,
A plurality of strain generating parts 14a to 14d, 1 of the load cell 11
One of 5a to 15d is selected and used according to the measured load by switching the weighing amount with a weighing switching means, and high-resolution and high-precision load measurement is performed without using ultra-high precision circuit parts.

実施例 以下本発明の歪ゲージ式秤の一実施例を第1図乃至第9
図とともに説明する。
Embodiment An embodiment of the strain gauge type scale of the present invention is shown in Figs. 1 to 9 below.
This will be explained with figures.

本発明の歪ゲージ式秤のロードセルは第1図乃至第3図
に示すように構成するものであり、嘉1図乃至嘉3図に
おいて11はロードセルで拘束部12、加重部13.同
−荷重で歪量の異なる複数の起歪部14a・14b・1
4c・14d、15a・15b・15cm15dで構成
したものであり、荷重が加えられるとその大きさに比例
した歪が起歪部14a乃至14b及び15a乃至15d
に発生しその歪を歪ゲージ16a乃至16d乃び17a
乃至17dで電気的出力に変換するものである。
The load cell of the strain gauge type balance of the present invention is constructed as shown in FIGS. 1 to 3, and in FIGS. Plural strain-generating parts 14a, 14b, 1 with different amounts of strain under the same load
4c, 14d, 15a, 15b, 15cm 15d, and when a load is applied, strain proportional to the magnitude of the strain occurs in the strain-generating parts 14a to 14b and 15a to 15d.
The strain generated in the strain gauges 16a to 16d and 17a
17d to convert into electrical output.

上記の場合、例えば体重計であれば起歪部14a乃至1
4dが大人用秤量の起歪部で150KIi+であり、起
歪部15a乃至15dがベビー用起歪部で15今であり
、夫々歪ゲージ16a乃至16d及び17a乃至17d
にて電気的出力に変換される。
In the above case, for example, in the case of a weight scale, the strain-generating parts 14a to 1
4d is the strain generating part of the weighing scale for adults and is 150KIi+, strain generating parts 15a to 15d are strain generating parts for babies and is 15mm, and strain gauges 16a to 16d and 17a to 17d are respectively
is converted into electrical output at

また、起歪部14a乃至14d、15a乃至15dは歪
量は第3図のAで示すロードセル11の肉厚で略決定さ
れ、逆に言えば丸穴19の大きさで歪量が決する。
Further, the amount of strain in the strain generating parts 14a to 14d and 15a to 15d is approximately determined by the thickness of the load cell 11 shown by A in FIG. 3, and conversely, the amount of strain is determined by the size of the round hole 19.

第4図は本発明の歪ゲージ式秤の一実施例の電気回路構
成を示すブロック図であり、酊4図において、16a乃
至16dHフルブリツジとした歪ゲージ、17a乃至1
7dはフルブリッジとした歪ゲージ、20は該フルブリ
ッジとした歪ゲージ16a乃至16dの電気的出力を電
圧増幅する増幅器、21は上記フルブリッジとした歪ゲ
ージ 。
FIG. 4 is a block diagram showing the electric circuit configuration of one embodiment of the strain gauge type scale of the present invention.
7d is a full-bridge strain gauge; 20 is an amplifier for voltage amplifying the electrical output of the full-bridge strain gauges 16a to 16d; and 21 is a full-bridge strain gauge.

17a乃至17dの電気的出力を電圧増幅する増幅器、
22は切換接点22a、22bをマイコン23にて交互
に切り換えるアナログスイッチ、24は該アナログスイ
ッチ22よりのアナログ信号全デジタル信号に変換する
A/D変換器、23は該A/D変換器24よりのデジタ
ル信号を演算処理するとともにアナログスイッチ22の
切換接点22a、22bを交互に切り換えるマイコン、
25け該マイコン23にて駆動され重量の単位として例
え2〜と表示する表示部である。
an amplifier for voltage amplifying the electrical outputs of 17a to 17d;
22 is an analog switch that alternately switches the switching contacts 22a and 22b by a microcomputer 23; 24 is an A/D converter that converts the analog signal from the analog switch 22 into a fully digital signal; 23 is the analog switch from the A/D converter 24; a microcomputer that processes the digital signals and alternately switches the switching contacts 22a and 22b of the analog switch 22;
The display section is driven by the 25 microcomputer 23 and displays, for example, 2 to 2 as the unit of weight.

次に上記のように構成してなる歪ゲージ式秤の動作状態
を説明する。
Next, the operating state of the strain gauge type scale configured as described above will be explained.

まず、ロードセルの起歪部の動作は例えばロードセル1
1に荷重を0即〜15Kg以上までをかけた場合につい
て第5図乃至第8図とともに説明すると、荷重oKPの
場合ri石5図に示すように起歪部14a乃至14d、
15a乃至15dに歪が発生せず、荷重15Kgまでの
場合は第6図に示すようになり、荷重15KIF乃至1
50Kgまでの場合は第7図に示すようになり、荷重1
50脅以上の場合は第8図に示すようになる。
First, the operation of the strain-generating portion of the load cell is, for example, load cell 1.
The case where a load of 0 to 15 kg or more is applied to 1 is explained with reference to FIGS. 5 to 8. When the load is oKP, as shown in FIG.
If no strain occurs in 15a to 15d and the load is up to 15Kg, the situation will be as shown in Figure 6, and if the load is 15KIF to 1
If the load is up to 50Kg, it will be as shown in Figure 7, and the load 1
In the case of 50 threats or more, the situation is as shown in FIG.

尚、起歪部14a乃至14d、15a乃至15dの下部
には夫々過荷重保護用としてストッパー(例えば大人用
ストッパ−27aとベビー用ストッパー27b)27a
、27bが設置されている。
In addition, stoppers (for example, stopper 27a for adults and stopper 27b for babies) 27a are provided at the lower portions of the strain-generating parts 14a to 14d and 15a to 15d, respectively, for overload protection.
, 27b are installed.

今、例えば第5図に示す状態で5KFの荷重とすると、
第4図で示す歪ゲージ16a乃至16dの出力は50μ
v1歪ゲージ17a乃至17bの出力は500μV発生
している。
For example, if we assume a load of 5KF in the state shown in Figure 5,
The output of the strain gauges 16a to 16d shown in Fig. 4 is 50μ.
The v1 strain gauges 17a and 17b generate an output of 500 μV.

次に第7図で示す動作状態で50Kpの荷重とすると、
第4図の回路構成の動作は歪ゲージ17a乃至17dの
出力はストッパー27bで保護されて1500#V、歪
ゲージ16a乃至16b17)出力は500μV発生し
、夫々の増幅器20.21で同一増幅率で電圧増幅させ
、該夫々の増幅器20.21で電圧増幅させた夫々のア
ナログ信号ノドちらか一方をマイコン23によりアナロ
グスイッチ22の切換接点22a、22bt切フ換えて
A/D変換器24に印加し、該A/D変換器24にてア
ナログ信号をデジタル信号に変換し、該A/D変換器2
4よりデジタル信号をマイコン23にて演算処理して表
示部25にsoKgの表示が行なわれる。
Next, assuming a load of 50Kp in the operating state shown in Fig. 7,
The operation of the circuit configuration shown in FIG. 4 is such that the outputs of the strain gauges 17a to 17d are protected by the stopper 27b and are 1500 #V, and the outputs of the strain gauges 16a to 16b (17) are 500 μV, and each amplifier 20.21 has the same amplification factor. The microcomputer 23 switches the switching contacts 22a and 22b of the analog switch 22 to apply the voltage amplified voltage to the A/D converter 24. , the A/D converter 24 converts the analog signal into a digital signal, and the A/D converter 2
4, the digital signal is processed by the microcomputer 23 and soKg is displayed on the display section 25.

上記の場合、マイコン23によりアナログスイッチ22
の切換接点22a、22btON10FFして夫々の切
換(例えば体重計であれば大人用/ベビー用の切換)f
:行なう。
In the above case, the analog switch 22 is
Switching contacts 22a, 22btON10FF to switch each (for example, if it is a weight scale, switch between adult/baby) f
: Do it.

尚、上記の場合実際には起歪部14a乃至14d。In the above case, the strain-generating parts 14a to 14d are actually strain-generating parts.

15a乃至15dの肉厚のバラツキ、歪ゲージ16a乃
至16d、17a乃至17dのバラツキ等で増幅率は微
調整が必要であるが、増幅率は各々同程度で艮く、使用
するオペアンプ、抵抗等は同等の特性部品で良い。
Fine adjustment of the amplification factor is required due to variations in the wall thickness of 15a to 15d, variations in strain gauges 16a to 16d, 17a to 17d, etc., but the amplification factors are about the same for each, and the operational amplifiers, resistors, etc. used are Parts with similar characteristics are fine.

以上の動作は第9図のグラフに示すようになる。The above operation is shown in the graph of FIG.

発明の効果。Effect of the invention.

本発明の歪ゲージ式秤は上記のような構成であるから、
超高精度の回路部品を用いることなく高分解能、高精度
の荷重測定を行なうことができ、回路部品代も安価にす
ることができる。
Since the strain gauge type scale of the present invention has the above configuration,
High-resolution, high-precision load measurement can be performed without using ultra-high precision circuit components, and the cost of circuit components can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の歪ゲージ式秤の一実施例を示すロード
セルの斜視図、第2図は第1図の正面図、第3図は第1
図の要部拡大正面図、第4図は本発明の歪ゲージ式秤の
一実施例の電気回路構成を示すブロック図、第5図乃至
第8図は本発明の歪ゲージ式秤のロードセルの起歪部の
動作状態の説明図、第9図は本発明の歪ゲージ式秤の動
作を示す出力−荷重のグラフ、第10図は従来の歪ゲー
ジ式秤のロードセルの斜視図、第11図は従来の歪ゲー
ジ式秤の概略構成図、第12図は従来の歪ゲージ式秤の
一実施例の電気回路構成を示すブロック図である。 図面中、11はロードセル、14a乃至14d。 15a乃至15dは起歪部、22はアナログスイッチを
示す。 代理人 弁理士  杉 山 毅 至(他1名)IJ 第1図 第2図 第3図 第1O図 第1I図 第12図
FIG. 1 is a perspective view of a load cell showing one embodiment of the strain gauge type scale of the present invention, FIG. 2 is a front view of FIG. 1, and FIG.
FIG. 4 is a block diagram showing the electrical circuit configuration of an embodiment of the strain gauge type scale of the present invention, and Figures 5 to 8 are the load cells of the strain gauge type scale of the present invention. FIG. 9 is an output-load graph showing the operation of the strain gauge scale of the present invention; FIG. 10 is a perspective view of the load cell of the conventional strain gauge scale; FIG. 11 1 is a schematic configuration diagram of a conventional strain gauge type scale, and FIG. 12 is a block diagram showing an electric circuit configuration of one embodiment of the conventional strain gauge type scale. In the drawing, 11 is a load cell, and 14a to 14d. 15a to 15d are strain generating parts, and 22 is an analog switch. Agent Patent Attorney Takeshi Sugiyama (1 other person) IJ Figure 1 Figure 2 Figure 3 Figure 1O Figure 1I Figure 12

Claims (1)

【特許請求の範囲】[Claims] 1、同一荷重で歪量の異なる複数の起歪部を有するロー
ドセルと、該ロードセルの複数の起歪部の一つを測定荷
重に応じて選択使用し秤量切換を行なう秤量切換手段と
を備えたことを特徴とする歪ゲージ式秤。
1. Equipped with a load cell having a plurality of strain generating parts with the same load and different amounts of strain, and a weighing switching means for selectively using one of the plurality of strain generating parts of the load cell according to the measured load and switching the weighing amount. A strain gauge type scale characterized by:
JP3492087A 1987-02-17 1987-02-17 Strain gauge type scale Pending JPS63201543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3492087A JPS63201543A (en) 1987-02-17 1987-02-17 Strain gauge type scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3492087A JPS63201543A (en) 1987-02-17 1987-02-17 Strain gauge type scale

Publications (1)

Publication Number Publication Date
JPS63201543A true JPS63201543A (en) 1988-08-19

Family

ID=12427649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3492087A Pending JPS63201543A (en) 1987-02-17 1987-02-17 Strain gauge type scale

Country Status (1)

Country Link
JP (1) JPS63201543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168505A (en) * 2008-01-11 2009-07-30 A & D Co Ltd Load cell
JP2019066478A (en) * 2017-09-29 2019-04-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Curvature measurement apparatus
JPWO2020039624A1 (en) * 2018-08-21 2021-09-02 上海寺岡電子有限公司 Load cell and load cell scale

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232323A (en) * 1985-08-05 1987-02-12 Tokyo Electric Co Ltd Multi-range load cell scale

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232323A (en) * 1985-08-05 1987-02-12 Tokyo Electric Co Ltd Multi-range load cell scale

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168505A (en) * 2008-01-11 2009-07-30 A & D Co Ltd Load cell
JP2019066478A (en) * 2017-09-29 2019-04-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Curvature measurement apparatus
US10704886B2 (en) 2017-09-29 2020-07-07 Siemens Aktiengesellschaft Curvature measurement apparatus
JPWO2020039624A1 (en) * 2018-08-21 2021-09-02 上海寺岡電子有限公司 Load cell and load cell scale
US11933662B2 (en) 2018-08-21 2024-03-19 Shanghai Teroako Electronic Co., Ltd. Load cell scale for weighing with overload protection

Similar Documents

Publication Publication Date Title
KR900008601B1 (en) Multireinge loadcell valance
JPS61129532A (en) Load cell scale
US4951765A (en) Load detector circuit
US5610343A (en) Balance with one or several wire strain gauge weighing cells
US3667041A (en) Automatic zero circuitry for indicating devices
EP0144834A2 (en) Load cell type weight-measuring device
US4258811A (en) Electric mass and force measuring apparatus
JPH0656315B2 (en) Weight measuring device
JPS63201543A (en) Strain gauge type scale
US5717166A (en) Method for combining transducer outputs
JPH0690067B2 (en) Strain gauge type scale
US3693083A (en) Manual digital scale
JPH0690068B2 (en) Strain gauge type scale
US3477532A (en) Cantilever beam scale with reduced cross sections for strain gauge attachment
JP3621188B2 (en) Mass measuring device
JPS6144327A (en) Load detector circuit of load cell type electronic scale
JPS6217694Y2 (en)
JP2683633B2 (en) Load detection circuit for load cell type electronic balance
KR200177655Y1 (en) A dual electronic scale
SU838391A1 (en) Crane balance
JP2006313096A (en) Digital gravimeter
SU1675695A1 (en) Force cell
SU1481600A1 (en) Secondary transducer for strain-gauge weighing machines
SU549695A1 (en) Load device
SU1566235A1 (en) Dynamometer