JPS63200406A - Conductor for information apparatus - Google Patents

Conductor for information apparatus

Info

Publication number
JPS63200406A
JPS63200406A JP3194987A JP3194987A JPS63200406A JP S63200406 A JPS63200406 A JP S63200406A JP 3194987 A JP3194987 A JP 3194987A JP 3194987 A JP3194987 A JP 3194987A JP S63200406 A JPS63200406 A JP S63200406A
Authority
JP
Japan
Prior art keywords
purity
copper
conductor
present
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3194987A
Other languages
Japanese (ja)
Inventor
康史 田中
哲夫 川村
勝弘 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP3194987A priority Critical patent/JPS63200406A/en
Publication of JPS63200406A publication Critical patent/JPS63200406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、音響機器、放送機器等の情報機器に用いられ
る、例えば機器間を接続する接続コード。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a connection cord used for information equipment such as audio equipment and broadcasting equipment, for example, for connecting equipment.

コネクタ端子、磁気ヘッド、チョークコイル、機器内部
の配線コード、電源コード等の導電体に間する。
Connect it to conductive objects such as connector terminals, magnetic heads, choke coils, wiring cords inside equipment, and power cords.

[従来技術及び本発明が解決しようとする問題点]従来
、高純度無酸素銅(OFC,0xyqenFree  
Cot)I)eiと呼ばれる純度99゜99%、il!
素含有13〜5ppM平均結晶粒径0゜02m14,1
TrLあたり結晶配列数5万個のものを利用した情報機
器用導電体が知られている。
[Prior art and problems to be solved by the present invention] Conventionally, high purity oxygen-free copper (OFC, OxyqenFree)
Purity 99°99%, called Cot)I)ei, il!
Element content 13-5ppM Average grain size 0゜02m14,1
A conductor for information equipment using a crystal array of 50,000 per TrL is known.

この高純度無酸素銅は結晶粒間に存在する亜酸化銅(C
up O)の含有量が普通鋼<TPO>と比較して少な
いものである。亜酸化銅は半導体的性質を有するため、
情報信号に対して容量性リアクタンスとして機能し、音
質を劣化せしめるものと考えられている。
This high-purity oxygen-free copper contains cuprous oxide (C) present between crystal grains.
The content of up O) is lower than that of ordinary steel <TPO>. Cuprous oxide has semiconducting properties, so
It is thought that it functions as a capacitive reactance to information signals and degrades sound quality.

従って、亜酸化銅の含有量が少ない高純度無酸素銅を導
電体に用いることによって、普通鋼を用いた場合に比較
して音質を向上させることができる。
Therefore, by using high-purity oxygen-free copper with a low content of cuprous oxide as a conductor, the sound quality can be improved compared to the case where ordinary steel is used.

しかしながら、この亜酸化銅をほとんど除去した高純度
無酸素鋼を用いた情報機器の導電体であっても、いまだ
どこか濁った臨場感に乏しい音になってしまうという欠
点があり、しかも材質が硬く、クリープ限度が低く、機
械的特性が悪いと言う欠点があり、より優れた電気的特
性、機械的特性を有する導電体が望まれていた。
However, even if the conductor of information equipment is made of high-purity oxygen-free steel that has almost all cuprous oxide removed, it still has the disadvantage that the sound is somewhat muddy and lacks a sense of realism. It has the drawbacks of being hard, having a low creep limit, and poor mechanical properties, and there has been a desire for a conductor with better electrical and mechanical properties.

高純度無酸素銅が上述のような欠点を有するのは、高純
度無酸素銅の純度は99.99%であり、依然として不
純物が存在し、この不純物が結晶中の銅原子と置き換わ
り、置き換わった不純物が電気的に一種の抵抗物として
働くためと考えられる。
The reason why high-purity oxygen-free copper has the above-mentioned drawback is that although the purity of high-purity oxygen-free copper is 99.99%, there are still impurities, and this impurity replaces and replaces the copper atoms in the crystal. This is thought to be because impurities act as a type of electrical resistor.

即ち、銅の結晶構造は面心立方格子なので角の1個の原
子が不純物と置き換わると、それにつながる18個の銅
原子との電気的つながりが悪くなり、不純物の影響は1
8倍になって抵抗値に表われる。このため抵抗値が高く
なり、音質を劣化させる原因になっている事がわかった
In other words, since the crystal structure of copper is a face-centered cubic lattice, when one atom at a corner is replaced with an impurity, the electrical connection with the 18 copper atoms connected to it deteriorates, and the effect of the impurity is 1.
The resistance value increases by 8 times and appears in the resistance value. This resulted in a high resistance value, which was found to be the cause of deteriorating sound quality.

[本発明の目的] 本発明は上記欠点を改良するために成されたものであり
、不純物を極力少なくし、不純物が結晶粒間間隙に集中
するのを防止するとともに、結晶粒を巨大化し容量成分
の低減を図った高純度銅を用いることにより、電気的1
機械的特性の優れた情報機器用導電体を提供することを
目的とする。
[Object of the present invention] The present invention has been made in order to improve the above-mentioned drawbacks, and aims to reduce impurities as much as possible, prevent impurities from concentrating in the gaps between crystal grains, and increase the capacity by enlarging crystal grains. By using high-purity copper with reduced components, electrical
The purpose of the present invention is to provide a conductor for information equipment with excellent mechanical properties.

E本発明の実施例] 一般に銅の純度を高めると、素材は軟らかくなること(
ビッカース硬度が低下する)が知られている。そこで純
度99.9999%の高純度銅に看目し、1TrL当た
りの結晶配列数(個)、平均結晶粒径(關)、ビッカー
ス硬度の興なるサンプル1〜5を用意し、それぞれのサ
ンプル1〜5の測定値を次表に示す。
E Examples of the present invention] In general, when the purity of copper is increased, the material becomes softer (
It is known that the Vickers hardness decreases. Therefore, we focused on high-purity copper with a purity of 99.9999%, and prepared samples 1 to 5 with the highest number of crystal arrays per TrL, average crystal grain size, and Vickers hardness. The measured values of ~5 are shown in the following table.

また各サンプルの結晶粒径を大きくする方法は、純度を
高める際に同時に行うゾーンメルティング法(Zone
  Meltinq法)や、高純度銅を得てから熱処理
により行う方法が取られる。
In addition, the method of increasing the crystal grain size of each sample is the zone melting method (Zone melting method), which is carried out simultaneously when increasing the purity.
Meltinq method) or a method in which high-purity copper is obtained and then subjected to heat treatment.

上記サンプル1〜5の断面組織の顕微鏡写真を第1A図
〜第1E図に示す。この顕微鏡写真は、0.6u+の線
径を有する導電体の断面拡大図を示したものである。
Microscopic photographs of the cross-sectional structures of Samples 1 to 5 are shown in FIGS. 1A to 1E. This micrograph shows an enlarged cross-sectional view of a conductor having a wire diameter of 0.6u+.

ここで音質の劣化をもたらす要因は、導電体内に発生す
る。および外部より入射されるノイズ成分、導電体内に
流れる信号に対する歪などに起因するが、これら緒特性
値を測定することは、測定器の測定限界値以下であるか
ら、測定不可能である。
The factors that cause the deterioration of sound quality occur within the conductor. This is caused by noise components incident from the outside, distortion of signals flowing inside the conductor, etc., but it is impossible to measure these characteristic values because they are below the measurement limit of the measuring instrument.

したがって、以上のサンプル1〜5に対する評価は、音
に対して熟達した50人の被験者による音質評価試験で
行うことにした。
Therefore, it was decided that the above samples 1 to 5 would be evaluated through a sound quality evaluation test conducted by 50 test subjects who were experts in sound.

この音質評価試験は、供試導電体をオーディオ装置のス
ピーカと増幅器との間に接続されるオーディオケーブル
とし、このオーディオケーブルは、0.18m5の素線
を50本集合した導体を平行コードの構成とし、長さ5
mにしたものである。即ち、被供試オーディオケーブル
はサンプル1〜5毎に用意される。また比較される基準
オーディオケーブルを、純度99.99%の高純度無酸
素銅からなる導体とし、上記サンプル1〜5に示すオー
ディオケーブルと同一構成になっている。
In this sound quality evaluation test, the conductor under test was an audio cable connected between the speaker and amplifier of an audio device. and length 5
It is set to m. That is, audio cables under test are prepared for each of samples 1 to 5. The standard audio cable to be compared is a conductor made of high-purity oxygen-free copper with a purity of 99.99%, and has the same configuration as the audio cables shown in Samples 1 to 5 above.

尚、比較試験装ばにおいて・は、被供試オーディオケー
ブルおよび基準オーディオケーブル(OFC)の切換え
は、接点による悪影響を排除するため、切換えスイッチ
を用いず、ケーブルの取替えにより行われた。
In the comparison test equipment, switching between the audio cable under test and the reference audio cable (OFC) was performed by replacing the cable without using a changeover switch in order to eliminate the adverse effects of contacts.

以上による比較試験の結果を次表に示す。The results of the above comparative tests are shown in the table below.

上記した表から理解されるように、サンプル3゜4.5
を用いたオーディオケーブルについて極めて良好な結果
が得られ、純度99.9999%。
As understood from the table above, sample 3゜4.5
Very good results were obtained for audio cables using 99.9999% purity.

1TrL当たりの結晶配列数50000個以下、平均結
晶粒径0.02M以上、ビッカース硬度40程度の導電
体からなるオーディオケーブルが有効と認められた。
An audio cable made of a conductor with a number of crystal arrays of 50,000 or less per TrL, an average crystal grain size of 0.02M or more, and a Vickers hardness of about 40 was recognized as effective.

ところで、導電体の純度については、高純度になればな
る程、抵抗値が低くなるので、上記測定結果から銅の純
度は99.9999%以上のものに適用できることが理
解される。
By the way, as for the purity of the conductor, the higher the purity, the lower the resistance value, so it is understood from the above measurement results that it can be applied to copper with a purity of 99.9999% or higher.

したがって、本発明に用いられる高純度な銅は、銀とガ
ス成分を除いた純度が99.9999%以上、1m当た
りの結晶配列数50000個以下、平均結晶粒径040
2αm以上、ビッカース硬度40程度とすることができ
る。更に、この種の情報機器用導電体に用いられる線径
は数十ミクロンと考えられるので、平均結晶粒径0.5
闇以上の結晶性を有しなくてもよいことになり(結晶を
巨大化するにはコストが高い)、この結果、導電体の結
晶化については、1′rIL当たりの結晶配列数200
0〜50000個、平均結晶粒径0.5〜0゜02aの
範囲が好ましい。
Therefore, the high-purity copper used in the present invention has a purity of 99.9999% or more excluding silver and gas components, a crystal arrangement number of 50,000 or less per 1 m, and an average crystal grain size of 0.40%.
It can have a hardness of 2αm or more and a Vickers hardness of about 40. Furthermore, since the wire diameter used for this type of conductor for information equipment is considered to be several tens of microns, the average crystal grain size is 0.5
It is no longer necessary to have crystallinity higher than that of darkness (it is expensive to make a crystal large), and as a result, for the crystallization of a conductor, the number of crystal arrays per 1'rIL is 200.
Preferably, the number of crystal grains is 0 to 50,000, and the average crystal grain size is in the range of 0.5 to 0.02a.

本発明に用いられる高純度銅は銀とガス成分を除いた@
度が99.9999%以上、1m当たりの結晶配列数5
0000個以下、平均結晶粒径0゜02闇以上、ビッカ
ース硬度40程度の性質を有するものである。
The high-purity copper used in the present invention is free from silver and gas components.
The degree is 99.9999% or more, the number of crystal arrays per 1 m is 5
0,000 or less, an average crystal grain size of 0.02 mm or more, and a Vickers hardness of about 40.

かかる高純度銅は不純物が高純度無酸素銅に比べて少な
いため、比較的容易に結晶粒を巨大化できると共に、そ
の結晶構造に入り込む不純物も少ないため、高純度無酸
素銅に比べて、情報機器用導電体としての電気的特性、
機械的特性に優れている。
Since such high-purity copper has fewer impurities than high-purity oxygen-free copper, it is relatively easy to make large crystal grains, and there are also fewer impurities that enter the crystal structure, so compared to high-purity oxygen-free copper, information Electrical properties as a conductor for equipment,
Excellent mechanical properties.

次に、本発明に用いる高純度銅の電気的、Il械的特性
を示す。
Next, the electrical and mechanical properties of high-purity copper used in the present invention will be shown.

(1)残留抵抗比が高純度無酸素鋼に比べて高い。(1) The residual resistance ratio is higher than that of high-purity oxygen-free steel.

温度298°k(25℃)での抵抗値/4.2” k 
(−268,8℃)での抵抗値を示すと、高純度無酸素
銅シ200であるのに対し、本発明で用いる高純度銅>
4000である。
Resistance value at temperature 298°k (25°C)/4.2”k
The resistance value at (-268,8°C) is 200 for high-purity oxygen-free copper, whereas the high-purity copper used in the present invention>
It is 4000.

したがって、常温での抵抗値は両者はとんど変わらない
が、低温では、本発明で用いる高1f@度銅の抵抗値は
小さくなることを意味している。即ち、高純度銅は低温
での電気的特性に優れている。
This means that although the resistance value at room temperature is almost the same between the two, at low temperature the resistance value of the high 1f@degree copper used in the present invention becomes smaller. That is, high-purity copper has excellent electrical properties at low temperatures.

(2)高純度無酸素銅に比べて硬度が低い。(2) Hardness is lower than that of high-purity oxygen-free copper.

高純度無酸素銅のビッカース硬度は50であるのに対し
、本発明で用いる高純度銅のビッカース硬度は40であ
る。
High-purity oxygen-free copper has a Vickers hardness of 50, while high-purity copper used in the present invention has a Vickers hardness of 40.

即ち本発明で用いる高純度銅は高純度無酸素銅に比べて
やわらかいものである。
That is, the high-purity copper used in the present invention is softer than high-purity oxygen-free copper.

(3)抵抗値が低い。(3) Low resistance value.

電気用軟銅(99,9%)の抵抗値は17.195Ωl
b / tart ”であるのに対し、本発明で用いる
高純度銅の抵抗値は17.012Ω/m / m#I”
と低い。
The resistance value of electrical annealed copper (99.9%) is 17.195Ωl
b/tart", whereas the resistance value of high-purity copper used in the present invention is 17.012Ω/m/m#I"
and low.

(4)外部雑音をひろいにくい。(4) It is difficult to detect external noise.

本発明に用いられる高純度銅と高純度無酸素銅に比べて
巨大結晶化され、しかも不純物が少ないため、インピー
ダンス成分が少なく、外部雑音をひろい難くなっている
Compared to the high-purity copper and high-purity oxygen-free copper used in the present invention, it is crystallized to a large extent and contains fewer impurities, so it has fewer impedance components and is difficult to pick up external noise.

(5)屈曲値が高い。(5) High bending value.

本発明に用いられる高純度銅と高純度無酸素銅を同一条
件下で比べると、本発明に用いる高純度銅の方が、切断
に至るまでの回数が多い。
Comparing the high purity copper used in the present invention and the high purity oxygen-free copper under the same conditions, the high purity copper used in the present invention undergoes more cutting than the high purity copper used in the present invention.

(6)ガス放出量が低い。(6) Low amount of gas released.

高純度無M素鋼のガス放出量は2.4X10−”(To
rr−文−5eG−’ −Cm″2)であるのに対し、
本発明で用いる高純度銅のガス放出量は1゜8×10°
”(TOrr−又−8eG−’ −cm4 )と低い。
The gas release amount of high-purity M-free steel is 2.4X10-” (To
rr-sentence-5eG-'-Cm″2), whereas
The amount of gas released from the high-purity copper used in the present invention is 1°8×10°
”(TOrr-8eG-'-cm4).

これは酸素を含むガスの含有量が低い事を意味する。This means that the content of oxygen-containing gases is low.

上述のように本発明に用いる高純度銅は特性を有してい
るために、諸種の導電体に適している。
As described above, the high-purity copper used in the present invention has characteristics and is therefore suitable for various types of conductors.

すなわち、抵抗値が低いため、あらゆる導電体に適し、
特に電源コード、機器内部の配線コード等の接続コード
に適している。
In other words, it has a low resistance value, making it suitable for all types of conductors.
It is particularly suitable for connection cords such as power cords and wiring cords inside equipment.

特に接続コードについては、オーディオ装置。Audio equipment, especially regarding connection cords.

ビデオ機器のみならず、コンピュータに用いられるデジ
タル信号に対する配線、接続コードにも利用することが
できる。また、硬度が低いため、スピーカコイル、チョ
ークコイル、トランス等の巻線等の巻回される導電体に
適している。
It can be used not only for video equipment but also for wiring and connection cords for digital signals used in computers. In addition, because of its low hardness, it is suitable for conductors wound around speaker coils, choke coils, transformers, and the like.

また、コネクタ一端子等の接続端子部に用いると、接続
部を圧着させることができ、良好な電気的接続を行うこ
とができる。
Furthermore, when used in a connecting terminal portion such as a connector terminal, the connecting portion can be crimped and a good electrical connection can be made.

更に外部雑音をひろいにくいため、微弱電流が流れる磁
気ヘッド、光ヘッド、カートリッジ、マイク等のリード
線あるいは回路基板の回路パターンの銅箔等に適してい
る。
Furthermore, since it is difficult to pick up external noise, it is suitable for lead wires of magnetic heads, optical heads, cartridges, microphones, etc. through which weak currents flow, or copper foil for circuit patterns on circuit boards.

加えて、屈曲値が高いため、使用状態においても何度も
屈曲する光ヘッドのリード線2回転ヘッドのリード線、
ヘッドホン、マイクのコード、フレキシブル基板の回路
パターンの#4v1に適している。
In addition, the optical head lead wire, which has a high bending value and bends many times during use, and the lead wire of the two-turn head.
Suitable for headphones, microphone cords, and flexible board circuit patterns #4v1.

[本発明の効果] 本発明は上述したような高純度銅を用いて、情報機器用
導電体を用いたため、導電体として電気的9機械的特性
の優れたものを得ることができる。
[Effects of the Invention] Since the present invention uses the above-mentioned high-purity copper as a conductor for information equipment, it is possible to obtain a conductor with excellent electrical and mechanical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図乃至第1E図は、純度99.9999%の銅か
らなる線径0.6題の断面を顕微鏡で拡大した断面組織
図である。 闇1△圓 (Vン7ぐtV/ ) 愉1し田 (プ/7/メレンシジ 育IO1記 穿 I DI犯 手 続 ネ甫 正 書(方式) 1.事件の表示 昭和62年特許願第31949号 2、発明の名称 同報機器用導電体 3、補正をする者 事件との関係  特許出願人 (昭和62年 4月28日 発送) 6、補正の内容 (2)図面の全図(第1A図〜第1E図)を別紙のとお
り訂正する。 以上
FIGS. 1A to 1E are microscopically enlarged cross-sectional structure diagrams of a 0.6-diameter wire made of copper with a purity of 99.9999%. Darkness 1△en (Vn7gutV/) Yu1shita (P/7/Merenshiji Iku IO1 Recording I DI Criminal Procedure Nefu Official Book (Method) 1. Display of the Case 1985 Patent Application No. 31949 No. 2, Name of the invention Conductor for broadcast equipment 3, Relationship with the case of the person making the amendment Patent applicant (shipped on April 28, 1986) 6. Contents of the amendment (2) All drawings (No. 1A) Figures to Figure 1E) are corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims]  銀とガス成分を除き純度が99.9999%以上、1
mあたりの結晶配列数50000個以下、平均結晶粒径
0.02mm以上、ビッカース硬度40程度の高純度銅
により形成されることを特徴とする情報機器用導電体。
Purity is 99.9999% or more, excluding silver and gas components, 1
A conductor for information equipment, characterized in that it is formed of high-purity copper with a number of crystal arrays of 50,000 or less per m, an average crystal grain size of 0.02 mm or more, and a Vickers hardness of about 40.
JP3194987A 1987-02-14 1987-02-14 Conductor for information apparatus Pending JPS63200406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3194987A JPS63200406A (en) 1987-02-14 1987-02-14 Conductor for information apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3194987A JPS63200406A (en) 1987-02-14 1987-02-14 Conductor for information apparatus

Publications (1)

Publication Number Publication Date
JPS63200406A true JPS63200406A (en) 1988-08-18

Family

ID=12345209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3194987A Pending JPS63200406A (en) 1987-02-14 1987-02-14 Conductor for information apparatus

Country Status (1)

Country Link
JP (1) JPS63200406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197134B1 (en) 1997-01-08 2001-03-06 Dowa Mining Co., Ltd. Processes for producing fcc metals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167904A (en) * 1983-03-11 1984-09-21 日立電線株式会社 Wire for audio device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167904A (en) * 1983-03-11 1984-09-21 日立電線株式会社 Wire for audio device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197134B1 (en) 1997-01-08 2001-03-06 Dowa Mining Co., Ltd. Processes for producing fcc metals

Similar Documents

Publication Publication Date Title
CA2158250C (en) Characteristic impedance corrected audio signal cable
US4754102A (en) Directional interconnection cable for high fidelity signal transmission
KR20090101833A (en) Plated flat conductor and flexible flat cable therewith
JPS60121610A (en) Composite conductive material
JPS59167904A (en) Wire for audio device
JPS63200406A (en) Conductor for information apparatus
KR900005751B1 (en) Method of producing electrical conductor
US4741041A (en) Apparatus for shielding audio signal circuit
USRE34641E (en) Method of producing electrical conductor
JPS5838883B2 (en) conductive wire
US4964738A (en) Electrical conductor of high magnetic permeability material for audio circuits
JPH11111070A (en) Highly bendable flat cable
JPS603808A (en) Wiring material
JPS62290008A (en) Conductor for audio and video equipment
KR20230161870A (en) Terminal for av device harness, and method for manufacturing thereof
JPS63211507A (en) Conductor for audio/image equipment
JP3686897B2 (en) Aluminum cable for audio
WO2001031074A1 (en) A metal alloy for electrical connections with nul contact tension
JPH0630204B2 (en) Method for manufacturing wire rod for audio equipment wiring
JP4914009B2 (en) Electrical conductor
CN117062925A (en) Copper-silver-gold alloy
JPS6348702A (en) Electric conductor for audio equipment
JPS6142845B2 (en)
KR20230140848A (en) Conductor for acoustic cable and acoustic cable including thereof
JPH0367412A (en) Signal transmission method