JPS63200051A - Sensor for measuring carbonyl value - Google Patents

Sensor for measuring carbonyl value

Info

Publication number
JPS63200051A
JPS63200051A JP3186087A JP3186087A JPS63200051A JP S63200051 A JPS63200051 A JP S63200051A JP 3186087 A JP3186087 A JP 3186087A JP 3186087 A JP3186087 A JP 3186087A JP S63200051 A JPS63200051 A JP S63200051A
Authority
JP
Japan
Prior art keywords
measured
sample oil
permittivity
value
carbonyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3186087A
Other languages
Japanese (ja)
Other versions
JPH0814560B2 (en
Inventor
Haruo Kotani
小谷 晴夫
Katsuhiko Tomita
冨田 勝彦
Mutsuto Watanabe
渡辺 睦人
Masaya Murai
村井 真哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Showa Sangyo Co Ltd
Original Assignee
Horiba Ltd
Showa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Showa Sangyo Co Ltd filed Critical Horiba Ltd
Priority to JP62031860A priority Critical patent/JPH0814560B2/en
Publication of JPS63200051A publication Critical patent/JPS63200051A/en
Publication of JPH0814560B2 publication Critical patent/JPH0814560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simply measure a carbonyl value becoming the index of the freshness and deterioration of oils and fats with good accuracy, by forming a recessed part capable of receiving a dripping org. substance to be measured to the upper surface of a substrate and forming an opposed electrode for detecting permittivity to the bottom part of the recessed part. CONSTITUTION:A recessed part 10 capable of receiving a dripping sample oil O being an org. substance to be measured is formed to the upper surface of a relatively small plate-shaped insulating substrate 9 and an opposed comb- shaped electrode B(11a, 11b) for detecting permittivity is formed to the bottom part of the recessed part 10 by a screen printing method or a vapor deposition method. When the electrode B is connected to a permittivity measuring device and immersed in the sample oil O received in a container, the sample oil O becomes a dielectric to the opposed electrode B and a condenser is constituted of the opposed electrode B and the sample oil O and the permittivity of the sample oil O is measured by the permittivity measuring device. The carbonyl value of the sample oil is judged from the measured permittivity value by utilizing a calibration curve and the absolute freshness or deterioration degree of the sample oil is evaluated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機物に含有されているカルボニル基の量(
カルボニル価)を測定するための装置に関し、特に油脂
の鮮度あるいは劣化度の測定などを節便に且つ精度良く
行う上で非常に好適に利用できる、全く新規なカルボニ
ル価測定用センサーを堤供せんとしてなされたものであ
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a method for controlling the amount of carbonyl groups contained in organic substances (
Regarding devices for measuring carbonyl number (carbonyl number), we will provide a completely new sensor for measuring carbonyl number, which can be used very conveniently and precisely to measure the freshness or degree of deterioration of oils and fats. This was done as a.

〔従来の技術〕[Conventional technology]

有機物の一種である例えば油脂(動物油、植物油、鉱物
油)などは、放置による自然酸化や、加熱あるいは使用
時における他物との接触による強制酸化、加水分解9重
合等により、経時的に劣化するものであり、従って、特
に食用油などにおいては、その精製直後における鮮度あ
るいは使用に伴う劣化度を、随時評価することが非常に
重要である。
A type of organic substance, such as fats and oils (animal oil, vegetable oil, mineral oil), deteriorates over time due to natural oxidation when left unused, forced oxidation due to heating or contact with other substances during use, hydrolytic 9-polymerization, etc. Therefore, especially for edible oils, it is very important to constantly evaluate the freshness immediately after refining or the degree of deterioration due to use.

そこで、従来は、測定対象油およびそれと同一種の標準
油(劣化する前の新油)について、夫々、その物理的指
標(粘度、屈折率、密度など)、あるいは、化学的指標
(けん化価、よう素価、酸価。
Therefore, conventionally, for the oil to be measured and the same type of standard oil (new oil before deterioration), its physical index (viscosity, refractive index, density, etc.) or chemical index (saponification value, Iodine value, acid value.

過酸化物価、TrJA価、カルボニル価など)を測定し
て、両側定値を互いに比較することにより、測定対象油
の劣化度を相対的に判定する、という手段が採用されて
いた。
The degree of deterioration of the oil to be measured is relatively determined by measuring the peroxide value, TrJA value, carbonyl value, etc., and comparing the fixed values on both sides with each other.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記したような従来技術による場合には
、標準油(劣化する前の新油)を基準にして測定対象油
の劣化度を判定するようにしていたために、測定対象油
の劣化度を相対的にしか評価できないことは言うまでも
無く、新油(精製直、後の油脂)自体の鮮度は全く評価
することができないという致命的な欠点があり、更には
、前記各指標の測定は何れも非常に煩雑な手数を要し、
かつ、その精度良い測定が極めて困難である上に、何れ
の指標と劣化度との関係についても「概略的に相関があ
る」という程度のことしか判っていなかったために、前
記測定対象油の劣化度の相対評価さえも極めて大まかに
しか行えないという問題があった。
However, in the case of the conventional technology described above, the degree of deterioration of the oil to be measured is determined based on the standard oil (new oil before deterioration), so the degree of deterioration of the oil to be measured is determined relative to the standard oil (new oil before deterioration). Needless to say, it is impossible to evaluate the freshness of the new oil itself (immediately after refining, oil or fat after refining), which is a fatal drawback. It also requires a very complicated process,
Moreover, since it is extremely difficult to accurately measure the degree of deterioration, and the relationship between any index and the degree of deterioration is known only to the extent that there is a ``general correlation,'' There was a problem in that even the relative evaluation of degrees could only be done very roughly.

本発明は、かかる従来実情に鑑みて鋭意研究の結果なさ
れたものであって、その目的は、特に、油脂の鮮度およ
び劣化度を絶対的にかつ精度良く評価できる指標を見出
し、その指標を簡便に測定できるセンサーを開発せんと
することにある。
The present invention was made as a result of intensive research in view of the above-mentioned conventional situation, and the purpose is, in particular, to find an index that can absolutely and accurately evaluate the freshness and degree of deterioration of oils and fats, and to easily and easily develop the index. The goal is to develop a sensor that can measure

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明は、測定対象有機物
の誘電率を検出すべく、基板の上面側に測定対象有機物
を滴下収容可能な凹部を形成すると共に、その凹部の底
部に少なくとも一対の誘電率検出用対向電極を形成して
あることを特徴とする、全く新規なカルボニル価測定用
センサーを提供するものである。
To achieve the above object, the present invention forms a recess capable of dripping and accommodating the organic substance to be measured on the upper surface side of a substrate, and at least a pair of grooves at the bottom of the recess, in order to detect the dielectric constant of the organic substance to be measured. The present invention provides a completely new sensor for measuring a carbonyl number, which is characterized by forming a counter electrode for detecting a dielectric constant.

〔作用〕[Effect]

以下、上記本発明に係るカルボニル価測定用センサーが
完成されるに至った経緯を説明した上で、それにより発
揮される作用について説明する。
Hereinafter, the process by which the carbonyl value measurement sensor according to the present invention was completed will be explained, and then the effects exhibited by the sensor will be explained.

本発明者らは、化学的指標(けん化価、よう素価1M価
、過酸化物価、TBA価、カルボニル価など)が夫々既
知である多数の油脂サンプルについて、その誘電率(電
気客用)の測定を試み、そして、その誘電率測定値を各
指標毎に整理した結果、特にカルボニル価と誘電率測定
値との相関が、他の指標の場合に比べて非常に良好であ
ることを発見した。
The present inventors investigated the dielectric constant (for electric customers) of a large number of oil and fat samples whose chemical indexes (saponification value, iodine value, 1M value, peroxide value, TBA value, carbonyl value, etc.) are known. After trying to measure the dielectric constant and organizing the dielectric constant measurements for each index, we discovered that the correlation between the carbonyl number and the dielectric constant measurements was particularly good compared to other indexes. .

即ち、第1図は、大豆白絞油の新油、加熱処理油(15
0℃、180℃、210℃、240℃)。
That is, Figure 1 shows fresh soybean white squeezed oil and heat-treated oil (15
0°C, 180°C, 210°C, 240°C).

使用油(揚げ玉フライ処理油)などの各種サンプル油に
ついて、その既知のカルボニル価Xと誘電率測定値Yと
の関係を一括的に整理したグラフであり、また、第2図
は、同すンプル油について、その既知の酸価Xと誘電率
測定値Yとの関係を一括的に整理したグラフである。こ
の結果から明らかなように、種々の条件のサンプル油が
混在しているにも拘らず、カルボニル価Xと誘電率測定
値Yとの関係(検量線Z)は、第1図に示すように、非
常に高い相関係数R(この例では0.990)の下に、
直線回帰式(この例ではy−o、tox+0.73)で
表すことができる。一方、酸価Xと誘電率測定値Yとの
関係(検量線2)は、第2図に示すように、一応は直線
回帰式(この例ではY−4,04x+1.60)で表す
ことができるものの、その相関係数R(この例では0.
863)はかなり低いものとなる。
This is a graph that summarizes the relationship between the known carbonyl value This is a graph summarizing the relationship between the known acid value X and the measured dielectric constant value Y of oil. As is clear from this result, even though sample oils under various conditions are mixed, the relationship between carbonyl value X and dielectric constant measurement value Y (calibration curve Z) is as shown in Figure 1. , under a very high correlation coefficient R (0.990 in this example),
It can be expressed by a linear regression equation (in this example, y−o, tox+0.73). On the other hand, the relationship between the acid value However, the correlation coefficient R (in this example, 0.
863) is quite low.

このことは、カルボニル価Xを決定付けるサンプル中の
カルボニル基 −C−の含有量が、そのサンプルの誘電
率(電気容N)を支配する最もプリミティブな要素であ
ることを表しており、従って、酸価Xと誘電率測定・4
11Yとの間にある程度相関が認められるのも、その酸
価Xを決定付けるサンプル中のカルボキシル基 −C−
0−Hが、前記支配的要素であるカルボニル基 −C−
を含んでいるためであると考えられる。
This indicates that the content of the carbonyl group -C- in the sample, which determines the carbonyl value X, is the most primitive element that controls the dielectric constant (electric capacity N) of the sample, and therefore Acid value X and dielectric constant measurement・4
The reason why a certain degree of correlation with 11Y is observed is that the carboxyl group in the sample, which determines the acid value
0-H is the carbonyl group -C-
This is thought to be because it contains

以上の結果から、カルボニル価が油脂の鮮度あるいは劣
化度を評価するための絶対的な指標として非常に好適に
利用できることが明らかとなり、しかも、そのカルボニ
ル価を測定するに際しては、測定対象有機物の誘電率を
検出することにより、例えば従来の比色滴定法(測定対
象であるカルボニル化合物と塩酸ヒドロキシルアミンと
を反応させ、オキシムと同時に生成されるピリジン塩酸
塩を、本試験と並行して行う空試験の色と一致するまで
、ピリジン−ブロムフェノールブルーでアルカリ滴定す
る方法)とか、電位差滴定法(前記と同様にして生成さ
れるピリジン塩酸塩を、本試験と並行して行う空試験の
p Hと一致するまで、アルカリによる電位差滴定する
方法)とか、あるいは、スペクトル法(測定対象である
カルボニル化合物とヒドラジンとを反応させてヒドラゾ
ンとし、アルカリ溶液で発色させて、空試験を標準にし
てその吸光度を測定する)といった面倒な手段に比較し
て、格段に容易かつ簡便に、しかも、非常に精度良く行
うことができる。
From the above results, it is clear that the carbonyl value can be used very suitably as an absolute index for evaluating the freshness or degree of deterioration of fats and oils.Moreover, when measuring the carbonyl value, it is important to By detecting the oxime, for example, conventional colorimetric titration method (blank test conducted in parallel with the main test) Alkali titration method with pyridine-bromophenol blue until the color matches the color of pyridine) or potentiometric titration method (method in which pyridine hydrochloride produced in the same manner as above is compared with the pH of a blank test conducted in parallel with the main test). (potentiometric titration with alkali until a match is reached) or spectral method (react the carbonyl compound to be measured with hydrazine to form hydrazone, develop a color with an alkaline solution, and measure the absorbance using a blank test as the standard). This method is much easier and more convenient than other troublesome methods such as ``measuring'', and can be performed with very high accuracy.

このように、測定対象有機物の誘電率を検出することに
より、その測定対象有機物のカルボニル価を測定する場
合には、特に油脂の鮮度および劣化度を絶対的にかつ精
度良くしかも簡便に評価することに極めて好適に利用で
きることは勿論、油脂以外の有機物一般についても、そ
の含有カルボニル基の絶対的な量あるいは濃度を簡便に
かつ精度良く測定することができる。
In this way, when measuring the carbonyl value of an organic substance to be measured by detecting the dielectric constant of the organic substance to be measured, it is especially important to evaluate the freshness and degree of deterioration of fats and oils absolutely, precisely, and easily. Not only can it be used very suitably for general organic substances other than fats and oils, but the absolute amount or concentration of carbonyl groups contained therein can be easily and accurately measured.

更に、本発明に係るカルボニル価測定用センサーは、後
述する実施例の記載からもより一層明らかとなるように
、基板の上面側に測定対象有機物を滴下収容可能な凹部
を形成すると共に、その凹部の底部に少なくとも一対の
誘電率検出用対向電極を形成したチップ構成としである
から、非常にシンプルでコンパクトかつ安価に構成でき
ると共に、取り扱いも非常に容易であり、また、測定対
象有機物のサンプル量も極く少量で済む、という種々の
利点がある。
Furthermore, the sensor for carbonyl value measurement according to the present invention has a recess formed on the upper surface side of the substrate capable of dripping and accommodating the organic substance to be measured. The chip has a structure in which at least one pair of counter electrodes for permittivity detection is formed at the bottom of the chip, making it extremely simple, compact, and inexpensive, and also very easy to handle. It has various advantages such as requiring only a very small amount.

〔実施例〕〔Example〕

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

先ず、測定対象有機物のカルボニル価を測定するための
原理的な手段を、例えば大豆白絞油(以下、サンプル油
と称する)の鮮度あるいは劣化度を測定する場合につい
て説明する。
First, the principle means for measuring the carbonyl value of an organic substance to be measured will be described, for example, in the case of measuring the freshness or deterioration of soybean white squeezed oil (hereinafter referred to as sample oil).

第3図に示すように、F/Vコンバーター1゜発信回路
2.信号処理回路3.較正回路49表示器5および電源
回路6等から構成された公知の誘電率測定雅人に、一対
の平行板形誘電率検出用対向電極B (7a、7b)を
接続し、その対向電極Bを、容器8内に収容されたサン
プル油(測定対象有機物)0中に浸漬させると、サンプ
ル油0は対向電極Bに対する誘電体となって、これら対
向電極Bとサンプル油Oとでコンデンサーが構成され、
その誘電率が前記誘電率測定器Aにより計測される。そ
こで、その計測された誘電率の値から、前述した〔作用
〕の項で説明した第1図の検量線Zを利用して、サンプ
ル油0のカルボニル価を判定し、その絶対的な鮮度ある
いは劣化度の評価を行うのである。
As shown in FIG. 3, F/V converter 1° oscillation circuit 2. Signal processing circuit 3. A pair of parallel plate-shaped counter electrodes B (7a, 7b) for permittivity detection are connected to a known dielectric constant measurement device consisting of a calibration circuit 49, a display 5, a power supply circuit 6, etc., and the counter electrode B is When immersed in the sample oil (organic substance to be measured) 0 contained in the container 8, the sample oil 0 becomes a dielectric for the counter electrode B, and the counter electrode B and the sample oil O constitute a capacitor.
The dielectric constant is measured by the dielectric constant measuring device A. Therefore, from the measured dielectric constant value, the carbonyl number of the sample oil 0 is determined using the calibration curve Z shown in Figure 1 explained in the [Operation] section above, and its absolute freshness or The degree of deterioration is evaluated.

第4図(イ)の平面図および第4図(ロ)の縦断面図は
、上記した原理的手段を非常に好適に実施できるように
構成された、本発明に係るカルボニル価測定用センサー
の具体的な実施例を示し、図示しているように、比較的
小型の平板状の絶縁性基板9の上面側に測定対象有機物
Oを滴下収容可能な凹部10を形成すると共に、その凹
部10の底部に、対向櫛歯状の誘電率検出用対向電極B
(lla・・・、11b・・・)を、スクリーン印刷法
あるいは蒸着法等の任意手段により形成しである。
The plan view in FIG. 4(a) and the vertical cross-sectional view in FIG. 4(b) show the sensor for carbonyl number measurement according to the present invention, which is configured to carry out the above-mentioned principle means very suitably. As shown in the figure, a recess 10 capable of dripping and accommodating the organic substance O to be measured is formed on the upper surface side of a relatively small flat insulating substrate 9, and the recess 10 is Opposed comb-shaped counter electrode B for permittivity detection on the bottom.
(lla..., 11b...) are formed by any means such as screen printing or vapor deposition.

なお、図中11AおよびIIBは、前記各櫛歯収電11
1a・・・、llb・・・からの信号取り出し用端子で
ある。
In addition, 11A and IIB in the figure are the respective comb tooth current collectors 11.
These are terminals for taking out signals from 1a..., llb....

ところで、上記の実施例においては、誘電率検出用対向
電極Bを、−組の対向櫛歯状電極11a・・・、11b
・・・で構成したものを示したが、その形状は櫛歯状に
限らず、例えば対向渦巻状にするなど任意の形状を採用
し得るものであり、また、複数組の対向電極を電気的並
列関係に設けるようにしてもよい。
By the way, in the above embodiment, the dielectric constant detection counter electrode B is a negative set of counter comb-shaped electrodes 11a..., 11b.
Although the configuration is shown above, its shape is not limited to a comb-like shape, but any shape such as a counter-spiral shape can be adopted, and multiple sets of counter electrodes can be connected electrically. They may be provided in parallel.

なお、前記実施例で示したカルボニル価測定用センサー
は、多少の精度の悪さを容認するならば、カルボニル価
と相関のある指標、例えば、過酸化物価     の測
定にも応用し得るものであることを付記しておく。
It should be noted that the sensor for measuring the carbonyl number shown in the above example can also be applied to the measurement of an index correlated with the carbonyl number, such as a peroxide number, if some degree of inaccuracy is accepted. I would like to add this.

〔発明の効果〕〔Effect of the invention〕

以上詳述したところから明らかなように、本発明に係る
カルボニル価測定用センサーによれば、単に測定対象有
機物の誘電率を検出する、という極めて容易かつ簡便な
手段にて、測定対象有機物のカルボニル価を非常に精度
良く測定することができ、特に油脂の精製直後の鮮度お
よび使用時における劣化度を、共に絶対的にかつ精度良
くしかも簡便に判定することが可能となり、更に、非常
にシンプルかつコンパクトで安価なチップ状のものに構
成できるので、取り扱いも非常に容易であリ、測定対象
有機物のサンプル量も極く少量で済む、という優れた効
果が発揮されるに至った。
As is clear from the detailed description above, the carbonyl value measurement sensor according to the present invention can detect the carbonyl value of an organic substance to be measured by an extremely easy and simple means of simply detecting the dielectric constant of the organic substance to be measured. In particular, the freshness of oils and fats immediately after refining and the degree of deterioration during use can both be determined absolutely, precisely, and easily. Since it can be constructed in the form of a compact and inexpensive chip, it is extremely easy to handle, and the excellent effects of requiring only a very small amount of sample of the organic substance to be measured have been achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の作用ならびに効果を説明
するためのものであって、第1図は測定対象有機物のカ
ルボニル価と誘電率測定値との関係(検量線)を示すグ
ラフであり、第2図はそれに対する比較例としての酸価
と誘電率測定値との関係(検量線)を示すグラフである
。 また、第3図および第4図は本発明に係るカルボニル価
測定用センサーの実施例を説明するためのものであって
、第3図は原理的なカルボニル価測定システムを示すブ
ロック回路構成図であり、第4図は本発明に係るカルボ
ニル価測定用センサーの具体的構成を示すものであって
、第4図(イ)はその平面図であり、第4図(ロ)は第
4図(イ)のI−1線断面図である。 0・・・・・・・・・測定対象有機物、Y・・・・・・
・・・誘電率、 X・・・・・・・・・カルボニル価、 9・・・・・・・・・基板、 10・・・・・・凹部、 B・・・・・・・・・誘電率検出用対向電極。
Figures 1 and 2 are for explaining the functions and effects of the present invention, and Figure 1 is a graph showing the relationship (calibration curve) between the carbonyl value and dielectric constant measurement value of the organic substance to be measured. 2 is a graph showing the relationship (calibration curve) between the acid value and the dielectric constant measurement value as a comparative example. Further, FIGS. 3 and 4 are for explaining an embodiment of the carbonyl number measurement sensor according to the present invention, and FIG. 3 is a block circuit diagram showing the principle carbonyl number measurement system. 4 shows a specific configuration of the carbonyl value measuring sensor according to the present invention, FIG. 4(a) is a plan view thereof, and FIG. It is a sectional view taken along the line I-1 of (b). 0......Organic substance to be measured, Y...
...Dielectric constant, X...Carbonyl value, 9...Substrate, 10...Concavity, B... Counter electrode for permittivity detection.

Claims (1)

【特許請求の範囲】 〔1〕基板の上面側に測定対象有機物を滴下収容可能な
凹部を形成すると共に、その凹部の底部に少なくとも一
対の誘電率検出用対向電極を形成してあることを特徴と
するカルボニル価測定用センサー。
[Scope of Claims] [1] A recess capable of dripping and accommodating an organic substance to be measured is formed on the upper surface side of the substrate, and at least one pair of counter electrodes for dielectric constant detection is formed at the bottom of the recess. A sensor for measuring carbonyl number.
JP62031860A 1987-02-14 1987-02-14 Carbonyl number measuring sensor Expired - Lifetime JPH0814560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62031860A JPH0814560B2 (en) 1987-02-14 1987-02-14 Carbonyl number measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62031860A JPH0814560B2 (en) 1987-02-14 1987-02-14 Carbonyl number measuring sensor

Publications (2)

Publication Number Publication Date
JPS63200051A true JPS63200051A (en) 1988-08-18
JPH0814560B2 JPH0814560B2 (en) 1996-02-14

Family

ID=12342801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62031860A Expired - Lifetime JPH0814560B2 (en) 1987-02-14 1987-02-14 Carbonyl number measuring sensor

Country Status (1)

Country Link
JP (1) JPH0814560B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572161A (en) * 1991-03-01 1993-03-23 Archer Daniels Midland Co Stability measuring apparatus for autoxidation compound and fat and oil
EP0670998A1 (en) * 1992-09-15 1995-09-13 David E. Kranbuehl Dosimeter for monitoring the condition of polymeric materials and chemical fluids
WO2003060499A3 (en) * 2002-01-17 2004-01-15 Testo Gmbh & Co Measuring and sensor assembly for determining a characteristic of a fluid and method for operating the same
JP2013541710A (en) * 2010-09-14 2013-11-14 スリーエム イノベイティブ プロパティズ カンパニー Method and device for oil sample acquisition and quality monitoring
TWI574004B (en) * 2015-05-15 2017-03-11 愛宕股份有限公司 Oil deterioration meter and method for evaluating degree of oil deterioration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168351A (en) * 1983-03-14 1984-09-22 Toyota Central Res & Dev Lab Inc Performance measuring apparatus of lubricating oil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168351A (en) * 1983-03-14 1984-09-22 Toyota Central Res & Dev Lab Inc Performance measuring apparatus of lubricating oil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572161A (en) * 1991-03-01 1993-03-23 Archer Daniels Midland Co Stability measuring apparatus for autoxidation compound and fat and oil
EP0670998A1 (en) * 1992-09-15 1995-09-13 David E. Kranbuehl Dosimeter for monitoring the condition of polymeric materials and chemical fluids
EP0670998A4 (en) * 1992-09-15 1997-01-29 David E Kranbuehl Dosimeter for monitoring the condition of polymeric materials and chemical fluids.
WO2003060499A3 (en) * 2002-01-17 2004-01-15 Testo Gmbh & Co Measuring and sensor assembly for determining a characteristic of a fluid and method for operating the same
US7523006B2 (en) 2002-01-17 2009-04-21 Testo Gmbh & Co. Measurement sensor assembly and method for measuring the quality of a fluid
JP2013541710A (en) * 2010-09-14 2013-11-14 スリーエム イノベイティブ プロパティズ カンパニー Method and device for oil sample acquisition and quality monitoring
TWI574004B (en) * 2015-05-15 2017-03-11 愛宕股份有限公司 Oil deterioration meter and method for evaluating degree of oil deterioration
US10429332B2 (en) 2015-05-15 2019-10-01 Atago Co., Ltd Oil degradation meter and method for evaluating oil degradation

Also Published As

Publication number Publication date
JPH0814560B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
RU2491549C2 (en) Amperometry with strobing and fast reading
Janata Historical review. Twenty years of ion-selective field-effect transistors
CA2529300C (en) Devices and methods relating to electrochemical biosensors
KR100241928B1 (en) Determination device in which the electrode is integrally formed on the porous thin film and the quantification method using the same
US7378852B2 (en) Measuring device having a plurality of potentiometric electrode pairs situated on a substrate
RU2005126402A (en) DEVICE FOR MEASURING QUALITY AND / OR PERFORMANCE OF QUALITY OF LIQUID, IN PARTICULAR, FOOD OIL
TWI636252B (en) Normalized calibration of analyte concentration determinations
CN101294927A (en) Ion concentration measuring device and ion concentration measuring element
JPS63200051A (en) Sensor for measuring carbonyl value
FI110287B (en) Method and apparatus for measuring the water content of a liquid
KR102227076B1 (en) Analyte Detection Meter and Associated Method of Use
CN112229884A (en) Vitamin detection printed electrode based on carbon paste modification process and preparation process thereof
SU1333244A3 (en) Device for potentiometric determination of concentration of ions in solutions
CA2862183A1 (en) Low-conductivity contacting-type conductivity measurement
JP5728568B2 (en) Biological sample measuring device
KR102486571B1 (en) Bio measurement apparatus
SU1251903A1 (en) Method of determining electrodermal resistance
SU1408340A1 (en) Fluoride-selective electrode
US11340205B2 (en) Systems and methods for determining concentrations of materials in solutions
SU113400A1 (en) Sensor (element) for measuring the concentration of hydrogen ions (PH)
KR20030045367A (en) Determination of taste and aroma using multiple array sensors
RU2229706C2 (en) Process of fabrication of sensitive element of sensor analyzing gases containing sulfur
CN111189780A (en) Cuvette, preferably flow-through cuvette, for an optical measuring device and method for operating the same
SU1385090A1 (en) Capacitive pickup
SU1492261A1 (en) Device for measuring concentration of oxygen