JPS63198755A - Engine control method - Google Patents

Engine control method

Info

Publication number
JPS63198755A
JPS63198755A JP62032017A JP3201787A JPS63198755A JP S63198755 A JPS63198755 A JP S63198755A JP 62032017 A JP62032017 A JP 62032017A JP 3201787 A JP3201787 A JP 3201787A JP S63198755 A JPS63198755 A JP S63198755A
Authority
JP
Japan
Prior art keywords
engine
decision
air amount
crank angle
flag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62032017A
Other languages
Japanese (ja)
Inventor
Takanori Fujimoto
藤本 高徳
Toshiro Hara
原 敏郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62032017A priority Critical patent/JPS63198755A/en
Priority to US07/254,657 priority patent/US4945485A/en
Priority to DE19883890118 priority patent/DE3890118T/de
Priority to KR1019880701128A priority patent/KR930002081B1/en
Priority to AU12928/88A priority patent/AU602390B2/en
Priority to DE3890118A priority patent/DE3890118C2/de
Priority to PCT/JP1988/000144 priority patent/WO1988006236A1/en
Publication of JPS63198755A publication Critical patent/JPS63198755A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable execution of normally optimum control, by a method wherein, when a control signal by means of which running of an engine is computed in a plurality of steps, a part of a plurality of the steps are thinned out in a running region where a change in detection of a running state is slow. CONSTITUTION:During running of an engine, in a control unit 5, a thinning-out decision plug, adapted to decide thinning-out of measurement of an in-stroke suction air amount, is turned over at each crank angle interruption routine. The number of revolutions determined from an output from a crank angle sensor 3 is the decided. When the number of revolutions is below a decision value, a flag decision being thinning-out decision is passed, and in-stroke suction air amount measurement processing is executed. Meanwhile, when exceeding the given value, flag decision by a decision flag is effected, when a flag is 1, in-stroke suction air amount measurement is effected, and when it is 0, the periodic measurement is passed. Namely, when the number of revolutions exceeds a given value, in-stroke suction air amount measure is performed on time each time interruption routine is made two times.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はエンジンをマイクロコンピュータにより最適
に制御する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a method for optimally controlling an engine using a microcomputer.

〔従来の技術〕[Conventional technology]

第2図は従来におけるエンジンの燃剪噴射制御装置を示
し、1はエンジン2に供給される吸入空気量を検知する
エアフローセンサ、3はエンジン2の所定クランク角位
置に同期して検知18号を発生するクランク角センサ、
4はエンジン2の冷却水温を検知する水温センサ、5は
エアフローセンサ1、クランク角センサ3および水温セ
ンサ4の検知出力に応じて添材噴射パルス巾イ3号を演
算出力する制御ユニット、6は制御コーユット5がら出
力される燃料噴射パルス中信号に応じて燃料を噴射する
燃料噴射弁である。
Fig. 2 shows a conventional combustion injection control device for an engine, in which numeral 1 is an air flow sensor that detects the amount of intake air supplied to the engine 2, and numeral 3 is a sensor No. 18 that detects the air flow sensor in synchronization with a predetermined crank angle position of the engine 2. Crank angle sensor that occurs,
4 is a water temperature sensor that detects the cooling water temperature of the engine 2; 5 is a control unit that calculates and outputs the additive injection pulse width No. 3 according to the detection outputs of the air flow sensor 1, the crank angle sensor 3, and the water temperature sensor 4; 6 is a control unit that calculates and outputs the additive injection pulse width No. 3; This is a fuel injection valve that injects fuel in response to a fuel injection pulse signal output from the control unit 5.

次に、上記構成の動作を第3図および第4図を用いて説
明する。第3図はメインルーチン、第4図はエンジンの
所定クラレフ角位置に同期して発生するクランク角イを
号(クランク角センサ3の出力)によって割込処理され
ろクランク角h1j込ルーチンを示す。まず、第3図に
おいて、キーオン後S301で初期化が行われ、530
2でエンスト処I′l!!を行った後、3303でエン
スト判定が行われる。エンストの場合には5302へ戻
り、エンス)・でなければ3304で水温センサ4の検
知信号によるエンジンの暖機状態を補正する暖機補正係
数等の諸補正係数K。を演算し、5303に戻る。
Next, the operation of the above configuration will be explained using FIGS. 3 and 4. FIG. 3 shows the main routine, and FIG. 4 shows the crank angle h1j input routine, which is interrupted by a crank angle signal (output of the crank angle sensor 3) generated in synchronization with a predetermined angular position of the engine. First, in FIG. 3, initialization is performed in S301 after key-on, and 530
Engine stalled in 2! ! After performing this, in 3303, an engine stall determination is performed. If the engine stalls, the process returns to 5302, and if not, the process goes to 3304, where various correction coefficients K such as a warm-up correction coefficient correct the warm-up state of the engine based on the detection signal of the water temperature sensor 4. is calculated, and the process returns to 5303.

第4図のクランク角割込ルーチンでは、まず、5401
で工Yフローセンサ1の検知信号によりtj程間(クラ
ック角信丹間)にエンジン2に吸入される行程量吸入空
気量Q、、を演算し、5402で上記演算で求められた
行程量吸入空気iQ、、に応じた基本燃料噴射量を決定
する基本燃料噴射パルス[1]をrA算する。この基本
燃料噴射パルス巾では、τ=Q、、XK6で求められ、
K、はパルス巾−燃料吐出社特性により決まる定数であ
る。5403ではエンジンの過渡運転による燃料補正の
ための過渡補正像aKA、cを演算し、乙の係数KAc
0は行程間吸入空気社変化Q、−Q、、、によって決定
されろ。5404では5403で演算した過渡補正係数
KAcoJ&−8402で演算した基本パルス1〕τに
補正する過渡補正演算を行う。補正パルス1Jτはτ=
τ×KAccで求められる。5405ではその他の諸補
正演算を行い、メインルーチンで演算された諸補正係数
K。を上記演算で求めた補正パルス「11rに乗じて最
終的な燃料噴射パルス「1】τを求める。8406では
、上記のようにして求めた燃料噴射パルス巾τを燃料噴
射駆動信号として燃料噴射弁6に出力する。
In the crank angle interrupt routine shown in FIG.
In step 5402, the stroke amount intake air amount Q, which is taken into the engine 2 during the tj period (crack angle Shintan period) is calculated based on the detection signal of the machine Y flow sensor 1, and in step 5402, the stroke amount intake air amount Q, which is taken in by the above calculation is calculated. The basic fuel injection pulse [1] that determines the basic fuel injection amount according to the air iQ, , is calculated by rA. With this basic fuel injection pulse width, τ=Q,,XK6,
K is a constant determined by the pulse width-fuel discharge characteristics. 5403 calculates transient correction images aKA,c for fuel correction due to transient operation of the engine, and calculates the coefficient KAc of B.
0 is determined by the interstroke intake air change Q, -Q, . In 5404, a transient correction calculation is performed to correct the fundamental pulse 1]τ calculated using the transient correction coefficient KAcoJ calculated in 5403 & -8402. The correction pulse 1Jτ is τ=
It is determined by τ×KAcc. In 5405, other correction calculations are performed, and various correction coefficients K are calculated in the main routine. is multiplied by the correction pulse "11r" obtained by the above calculation to obtain the final fuel injection pulse "1" τ.In 8406, the fuel injection pulse width τ obtained as above is used as a fuel injection drive signal to control the fuel injection valve. Output to 6.

従来では上記のように、まず、メインルーチンで諸補正
係数ri!演算し、次にクランク角割込ルーチンで行程
量吸入空気量を演算し、次に行程量吸入空気量に応じた
基本燃料噴射パルスT13に過渡補正係数および諸補正
係数を乗じて求められる燃料噴射パルス1】信号をクラ
ンク角センサ3の43号に同期して燃料噴射弁6に出力
することにより、エンジンは所定の空燃比で運転される
ことになる。
Conventionally, as mentioned above, first, various correction coefficients ri! are calculated in the main routine. Next, the stroke amount intake air amount is calculated in the crank angle interrupt routine, and then the fuel injection pulse is obtained by multiplying the basic fuel injection pulse T13 corresponding to the stroke amount intake air amount by the transient correction coefficient and various correction coefficients. 1] By outputting a signal to the fuel injection valve 6 in synchronization with No. 43 of the crank angle sensor 3, the engine is operated at a predetermined air-fuel ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、近年、エンジンは最高出力アップ等のための
最高回転数の引き上げ、あるいは最適な制御による性能
面上等のため、例丸ば過渡特性向上のための種々な過渡
処理等が制御に要求され、制御は年々複雑化し、処理時
間も大巾に長くなる傾向にある。そのため、従来におい
ては、例えば高回転時にクランク角割込ルーチン処理を
クランク角信号毎に全てけうと、クランク角センサ3の
イコ号に同期して燃料噴射弁6を最適なタイミングで作
動させることができず、メインルーチンの処理時間も長
くなり、諸補正係数の反映がR適に行われなくなるとい
う問題点があった。
Incidentally, in recent years, engines have been required to perform various types of transient processing to improve transient characteristics, for example, in order to increase the maximum rotation speed to increase maximum output, or to improve performance through optimal control. , Control is becoming more complex year by year, and processing time is also becoming significantly longer. Therefore, in the past, for example, if the crank angle interrupt routine processing was performed for each crank angle signal at high engine speeds, the fuel injection valve 6 could not be activated at the optimal timing in synchronization with the equal signal of the crank angle sensor 3. However, the processing time of the main routine becomes long, and various correction coefficients are not properly reflected.

この発明は上記のような問題点を解決するために成され
たものであり、いかなる運転領域においても最適な制御
を行うことができるエンジン制御方法を得る乙とを目的
とする。
This invention was made to solve the above-mentioned problems, and an object of the present invention is to provide an engine control method that can perform optimal control in any driving range.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るエンジン制御方法は、運転状態の検知変
化が鈍な運転領域においては制御演算する複数ステップ
の一部1.間引いて演算するようにしtこものである。
The engine control method according to the present invention includes part 1 of a plurality of steps in which control calculations are performed in an operating region where detected changes in operating conditions are slow. The calculation is performed by thinning out the data.

〔作   用〕[For production]

この発明においては、検知変化が神な運転領域では複数
の演算ステップの一部を間引いて演算しており、処理タ
イミング毎に全てのステップが演算されることはなく、
処理時間が短縮され、しかも検知変化が鈍な領域である
から制押上不都合が生じない。
In this invention, in the driving region where the detected change is important, some of the multiple calculation steps are thinned out and calculations are performed, so that all the steps are not calculated at each processing timing.
The processing time is shortened, and since the detection change is in the region where the detection change is slow, no inconvenience occurs when pressing down.

〔実 施 例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。この
実施例では一例としてエンジンの燃料噴射制卸装置の制
一方法について説明する。その全体構成およびメインル
ーチンは第2図および第3図と同じである。第1図は乙
の実施例の主要割部方法を示すクランク角割込ルーチン
のフローチャートであり、エンジンの所定クランク角位
置に同期して発生するクランク角信号によって割込処理
される。まず、3101は行程量吸入空気量計測(54
02)の間引き判定するためのフラグ反転ステップで、
クランク角割込ルーチン毎に反転処理されろ。フラグが
反転されな後5102の回転数判定がなされ、所定回転
数以下なる行程量吸入空気量計測の間引き判定であるフ
ラグ判定(3103)をパスし、行程間吸入空気麗計測
(3401)へ飛ぶ。所定回転数以上なら次のステップ
である行程量吸入空気量計測の間引き判定であるフラグ
判定(S 103)が行われ、フラグが1なら次のステ
ップである行程間吸入空気量計@ (3401)を行い
、Oならば5401をパスする。即ち、行程量吸入空気
量計測(3401)は、所定回転数以下ではクランク角
割込ルーチン毎に行われるが、所定回転数以上ではクラ
ンク角割込ルーチン毎に行われず、2回の割込ルーチン
に1回の割で行われることになる。
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, a method for controlling a fuel injection control device for an engine will be explained as an example. Its overall configuration and main routine are the same as those in FIGS. 2 and 3. FIG. 1 is a flowchart of a crank angle interrupt routine showing the main dividing method of the embodiment B, in which interrupt processing is performed by a crank angle signal generated in synchronization with a predetermined crank angle position of the engine. First, 3101 is a stroke amount intake air amount measurement (54
02) In the flag reversal step for thinning judgment,
It should be reversed every crank angle interrupt routine. After the flag is not inverted, the rotation speed judgment in 5102 is made, and if the rotation speed is less than a predetermined rotation speed, the flag judgment (3103), which is a thinning judgment for measuring the intake air amount during the stroke, is passed, and the process jumps to the inter-stroke intake air efficiency measurement (3401). . If the rotation speed is above a predetermined number of revolutions, the next step is a flag determination (S103), which is a thinning determination of the stroke amount intake air amount measurement, and if the flag is 1, the next step is the stroke amount intake air amount meter @ (3401). and if O, pass 5401. That is, the stroke amount intake air amount measurement (3401) is performed every crank angle interrupt routine when the number of revolutions is below a predetermined number of revolutions, but is not performed every crank angle interrupt routine when the number of revolutions is above a predetermined number of revolutions. It will be held once in a while.

5401は行程間(クランク角信号間)にエンジンのシ
リンダに吸入される行程間吸入空気魚Q。
5401 is an interstroke intake air fish Q that is sucked into the engine cylinder between strokes (between crank angle signals).

を計測するステップであり、Q、、は例えばカルマン式
エアフローセンサ1の検出においては行程間のパルス数
で表わされる。尚、所定回転数以下では2回に1回計測
されるため、3401で計測された空気量の半分が行程
量吸入空気量Q、として扱われる。次に、3402では
上記計測で求められた行程量吸入空気量Qnに応じた基
本燃料噴射量を決定する基本燃料噴射パルス巾τが演算
される。パルス巾τはτ= Q、、X K、で求められ
、K6はパルス巾−燃料吐出量特性により決まる定数で
ある。尚、Q、、は所定回転数以上で行程量吸入空気量
計測が今回のクランク角割込ルーチンで行われなかった
場合には、前回に計測された行程量吸入空気量Q。を使
用する。次に、3104では5102と同様に回転数判
定が行われ、所定回転数以下なら過渡補正係数演算(3
403)および過渡補正演3g’(3404)が行われ
、所定回転数以上なら5403.5404をパスし、諸
補正演算ステップ5405へ飛ぶ。過渡補正はエンジン
の過渡運転による燃料不足を補うために行われ、540
3で演算された過渡補正係数KAccは行程量吸入空気
量の変化Q、−Q、、によって決定され、基本パルス巾
τにKAC8を乗することにより過渡補正が行われる。
This is a step of measuring Q, and, for example, in the detection of the Kalman air flow sensor 1, Q is expressed by the number of pulses between strokes. Note that since the measurement is performed once every two times below the predetermined rotation speed, half of the air amount measured in 3401 is treated as the stroke amount intake air amount Q. Next, in step 3402, a basic fuel injection pulse width τ is calculated which determines the basic fuel injection amount according to the stroke amount intake air amount Qn determined in the above measurement. The pulse width τ is determined by τ=Q,,XK, and K6 is a constant determined by the pulse width-fuel discharge amount characteristic. Note that Q is the previously measured stroke amount intake air amount Q when the stroke amount intake air amount measurement is not performed in the current crank angle interrupt routine at a predetermined rotation speed or higher. use. Next, in 3104, the rotation speed is determined in the same way as in 5102, and if the rotation speed is less than the predetermined rotation speed, the transient correction coefficient is calculated (3
403) and transient correction operation 3g' (3404) are performed, and if the number of revolutions is equal to or higher than a predetermined number of revolutions, 5403 and 5404 are passed and the process jumps to various correction calculation step 5405. Transient correction is performed to compensate for fuel shortage due to transient operation of the engine, and 540
The transient correction coefficient KAcc calculated in step 3 is determined by the changes Q, -Q, in the stroke amount and intake air amount, and the transient correction is performed by multiplying the basic pulse width τ by KAC8.

5405では、その他の諸補正の演算を行い、メインル
ーチンで演算された諸補正係数に0を補正パルス巾τに
乗じて最終的な燃料噴射パルス巾τを求める。5406
では、5405で求めた燃料噴射パルス巾τを燃料噴射
駆動信号として燃料噴射弁6に出力し、このタイミング
で燃料噴射が行われる。
In 5405, other corrections are calculated, and the correction pulse width τ is multiplied by 0 to the various correction coefficients calculated in the main routine to obtain the final fuel injection pulse width τ. 5406
Then, the fuel injection pulse width τ obtained in step 5405 is outputted to the fuel injection valve 6 as a fuel injection drive signal, and fuel injection is performed at this timing.

以上のように第1図のフローチャートでは、行程量吸入
空気量変化の大きい低回転領域において、クランク角割
込タイミング毎に行程量吸入空気量を計測し、その空気
量変化に応じた過渡補正を行うが、行程量吸入空気量変
化がほとんどない高回転領域では、行程量吸入空気量計
測をクランク角割込タイミング時に毎回行わず、2回に
1回の割合で間引き計測し、さらに空気量による過渡補
正は不必要であるので行わないようにしている。
As described above, in the flowchart of Fig. 1, in the low rotation range where the change in the stroke amount and intake air amount is large, the stroke amount and intake air amount is measured at each crank angle interrupt timing, and transient correction is performed according to the change in the air amount. However, in the high rotation range where there is almost no change in the stroke volume and intake air volume, the stroke volume and intake air volume measurement is not performed every time at the crank angle interrupt timing, but is thinned out once every two times, and further transient correction based on the air volume is performed. Since it is unnecessary, I try not to do it.

尚、上記実施例では割込ルーチン内の処理を間引いてい
るが、メインルーチン内の諸補正係数演算処理の一部を
間引いてもよく、さらには燃料噴射制御以外のエンジン
制御も同時に行うものについては実用上問題とならない
制御自体を間引いても良いことは勿論である。又、間引
きタイミングは、クランク角信号周期で2周期に1回に
限らず、複数周期間又は所定時間期間毎、さらにはメイ
ンルーチンの所定処理回数毎としても良い。又、所定回
転数以上で間引き処理を行っているが、処理内容によっ
ては所定エンジン負荷以上即ち行程間吸入空気景が所定
値以上で間引き処理を行うようにしても良い。
In the above embodiment, the processing in the interrupt routine is thinned out, but it is also possible to thin out some of the various correction coefficient calculation processes in the main routine, and furthermore, in cases where engine control other than fuel injection control is performed at the same time. Of course, it is also possible to omit controls that do not pose a practical problem. Furthermore, the thinning timing is not limited to once every two cycles of the crank angle signal, but may be every multiple cycles or a predetermined time period, or even every predetermined number of times the main routine is processed. Further, although the thinning process is performed at a predetermined rotation speed or higher, depending on the processing content, the thinning process may be performed when the engine load is higher than a predetermined engine load, that is, when the intake airscape during a stroke is higher than a predetermined value.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、運転状態の検知変化が
鈍な運転領域では、検知出力の処理を処理タイミング毎
に毎回行わず、不必要な計測又は補正を間引いており、
高回転時の処理時間が延びることによる噴射タイミング
の不安定、あるいは諸補正係数の反映遅れなどが解消さ
れ、いかなる運転領域でも最適なエンジン制御を実現す
ることができる。
As described above, according to the present invention, in the driving region where the detected change in the driving state is slow, the processing of the detection output is not performed every time at each processing timing, and unnecessary measurements or corrections are omitted.
This eliminates instability in injection timing due to extended processing time at high engine speeds and delays in reflecting various correction coefficients, making it possible to achieve optimal engine control in any operating range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る燃料噴射制御におけるクランク
角割込ルーチンのフローチャート、第2図は従来および
この発明による燃料噴射制御装置の構成図、第3図は従
来およびこの発明による燃U 噴射量mのメインルーチ
ンのフローチャート、第4図は従来の燃料噴射制御のク
ランク角割込ル−チンのフローチャートである0 1°°°エアフローセンサ、2・・・エンジン、3・・
・クランク角センサ、4・・・水温センサ、5・・・制
御ユニット、6・・・燃料噴射弁。
FIG. 1 is a flowchart of a crank angle interrupt routine in fuel injection control according to the present invention, FIG. 2 is a configuration diagram of a fuel injection control device according to the conventional method and the present invention, and FIG. 3 is a flowchart of the fuel injection control device according to the conventional method and the present invention. FIG. 4 is a flowchart of the crank angle interrupt routine of conventional fuel injection control.
- Crank angle sensor, 4... Water temperature sensor, 5... Control unit, 6... Fuel injection valve.

Claims (4)

【特許請求の範囲】[Claims] (1)エンジンの運転状態を検知し、該検知出力に応じ
てエンジンの運転を制御する制御信号を複数ステップで
演算するマイクロコンピュータ制御において、運転状態
の検知変化が鈍な運転領域で上記複数ステップの一部を
間引くことを特徴とするエンジン制御方法。
(1) In microcomputer control that detects the operating state of the engine and calculates a control signal for controlling the engine operation in multiple steps according to the detected output, the multiple steps are performed in an operating region where the detected change in the operating state is slow. An engine control method characterized by thinning out a part of.
(2)運転領域が所定エンジン回転数以上であることを
特徴とする特許請求の範囲第1項記載のエンジン制御方
法。
(2) The engine control method according to claim 1, wherein the operating range is equal to or higher than a predetermined engine speed.
(3)運転領域が所定エンジン負荷以上であることを特
徴とする特許請求の範囲第1項記載のエンジン制御方法
(3) The engine control method according to claim 1, wherein the operating range is equal to or higher than a predetermined engine load.
(4)複数ステップは割込処理であることを特徴とする
特許請求の範囲第1項〜第3項のいずれかに記載のエン
ジン制御方法。
(4) The engine control method according to any one of claims 1 to 3, wherein the plurality of steps are interrupt processing.
JP62032017A 1987-02-13 1987-02-13 Engine control method Pending JPS63198755A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62032017A JPS63198755A (en) 1987-02-13 1987-02-13 Engine control method
US07/254,657 US4945485A (en) 1987-02-13 1988-02-13 Method for controlling the operation of an engine for a vehicle
DE19883890118 DE3890118T (en) 1987-02-13 1988-02-13
KR1019880701128A KR930002081B1 (en) 1987-02-13 1988-02-13 Engine control method for internal combustion engine
AU12928/88A AU602390B2 (en) 1987-02-13 1988-02-13 Method for controlling the operation of an engine for a vehicle
DE3890118A DE3890118C2 (en) 1987-02-13 1988-02-13
PCT/JP1988/000144 WO1988006236A1 (en) 1987-02-13 1988-02-13 Method for controlling the operation of an engine for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032017A JPS63198755A (en) 1987-02-13 1987-02-13 Engine control method

Publications (1)

Publication Number Publication Date
JPS63198755A true JPS63198755A (en) 1988-08-17

Family

ID=12347089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032017A Pending JPS63198755A (en) 1987-02-13 1987-02-13 Engine control method

Country Status (1)

Country Link
JP (1) JPS63198755A (en)

Similar Documents

Publication Publication Date Title
JP2000352347A (en) Engine controller
US4508085A (en) Fuel injection control method for multi cylinder internal combustion engines of sequential injection type at acceleration
JPH06100155B2 (en) Calculation processing method of engine control device
EP0152287A2 (en) Fuel supply control method for multicylinder internal combustion engines
JPH0575902B2 (en)
US20010010212A1 (en) Fuel supply control system for internal combustion engine
JPS63198755A (en) Engine control method
KR930002081B1 (en) Engine control method for internal combustion engine
JPH0217704B2 (en)
US4552110A (en) Electronic ignition control system
JP2001059441A (en) Electronically controlled fuel injection device for engine
JPH029173B2 (en)
JPH0536613B2 (en)
JPS63131840A (en) Control method for fuel injection amount of internal combustion engine
JPH0742892B2 (en) Intake air amount detector
JPH03185247A (en) Fuel control device for engine
JP2605038B2 (en) Method for controlling an electric device of an internal combustion engine
JPS6336038A (en) Fuel feeding quantity control device for internal combustion engine
JPS63198754A (en) Engine control method
JP2586565B2 (en) Output fluctuation detecting device for internal combustion engine
JP2586628B2 (en) Output fluctuation detecting device for internal combustion engine
JPH0531249Y2 (en)
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPS6170145A (en) Air-fuel ratio controller of internal-combustion engine
JPH0784860B2 (en) Knotting control device for internal combustion engine