JPS63198472A - Image forming method - Google Patents

Image forming method

Info

Publication number
JPS63198472A
JPS63198472A JP62029830A JP2983087A JPS63198472A JP S63198472 A JPS63198472 A JP S63198472A JP 62029830 A JP62029830 A JP 62029830A JP 2983087 A JP2983087 A JP 2983087A JP S63198472 A JPS63198472 A JP S63198472A
Authority
JP
Japan
Prior art keywords
nitride film
recording medium
image
semiconductor substrate
charges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62029830A
Other languages
Japanese (ja)
Inventor
Masatoshi Tabei
田部井 雅利
Yuzo Mizobuchi
裕三 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62029830A priority Critical patent/JPS63198472A/en
Priority to US07/155,172 priority patent/US4933926A/en
Publication of JPS63198472A publication Critical patent/JPS63198472A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a recording medium by charging with specific charges the nitride film of the recording medium formed by laminating an oxicide film and the nitride film on a semiconductor substrate on whose rear side is a conductive layer formed, and irradiating the semiconductor substrate with the optical image of an object. CONSTITUTION:An optical image incided through an optical system 9 is formed on a charge plate 8, and charges distributed in the form of thus formed pattern, and charging/discharging is generated between said patternized charges and those contained in the nitride film 6. Accordingly, a charge distribution 12 in the form of said formed pattern is formed in the nitride film 6. At the same time, a hollow layer 13 is caused by said charge distribution 12 to form in the semiconductor substrate 4. Therefore, the charge distribution 12 and the hollow layer 13 represent the formed pattern ; since the charges in the film 6 do not discharge even if the recording medium 1 is unloaded from a device after ending the picking up of an image, a long time storing is made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真技術を用いた画像形成方法に関し、
特に光学像を2次元空間的に撮影してこれにより得られ
る潜像を長期間保存する事が1きるようにした画像形成
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an image forming method using electrophotographic technology,
In particular, the present invention relates to an image forming method in which an optical image is photographed in two-dimensional space and a latent image obtained thereby can be stored for a long period of time.

〔従来技術〕[Prior art]

従来、銀塩フィルムを用いたカメラと同様に光学像を2
次元空間的に撮影する電子写真技術が各種開発されてい
る。その−例として、所謂電子スチル・カメラやビデオ
・カメラ等のように、撮影レンズ等を有する光学系の後
部にCCD等の固体撮像索子を配置し、該固体撮像索子
の光電変換作用により発生した信号を信号処理して磁気
記録媒体に記録する画像形成方法等が知られている。
Conventionally, the optical image is
Various electrophotographic techniques for taking images in dimensional space have been developed. For example, in so-called electronic still cameras and video cameras, a solid-state imaging device such as a CCD is placed at the rear of an optical system having a photographic lens, etc., and the photoelectric conversion action of the solid-state imaging device is used to 2. Description of the Related Art Image forming methods are known in which generated signals are processed and recorded on a magnetic recording medium.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この様な従来の画像形成方法にあっては
、光学像を2次元空間的に撮影する事がfきるけれども
、潜像を磁気的に記録する方法マあるため、固体撮像索
子よシ発生した信号を記録可能な信号に処理するための
複雑な信号処理回路を必要とし、このため、銀塩フィル
ムを用いて化学的に処理するカメラ等と比較して装置の
小形化は極めて困難である。
However, in such conventional image forming methods, although it is possible to capture optical images in two-dimensional space, there is a method to record latent images magnetically, so solid-state imaging probes and It requires a complex signal processing circuit to process the generated signal into a recordable signal, and for this reason, it is extremely difficult to miniaturize the device compared to cameras that process chemically using silver halide film. be.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、このような問題点に鑑みて成されたものフあ
り、銀塩フィルムを用いたカメラ同様の操作性および装
置の小形化を可能にする等の優れた効果を発揮する全く
新規な画像形成方法を提供することを目的とする。
The present invention has been made in view of these problems, and is a completely new product that exhibits excellent effects such as operability similar to that of a camera using silver halide film and miniaturization of the device. The purpose of the present invention is to provide an image forming method.

この目的を達成するため本発明は、半導体基板の表面に
少なくとも酸化膜、窒化膜及び裏面に所定電圧を印加す
る導電層を積層して成る記録媒体の表面に被写体よりの
光学像を結像させることにより、該光学像のjt、によ
り該半導体基板に励起された電荷が該窒化膜と酸化膜の
間に蓄積され、同時に該蓄積された電荷に対応する空乏
層が半導体基板内に形成される現象を利用して潜像を形
成し長期間保持させるようにしたことを特徴とする。
To achieve this object, the present invention forms an optical image from a subject on the surface of a recording medium, which is formed by laminating at least an oxide film and a nitride film on the front surface of a semiconductor substrate, and a conductive layer to which a predetermined voltage is applied to the back surface. As a result, charges excited in the semiconductor substrate by the optical image jt are accumulated between the nitride film and the oxide film, and at the same time a depletion layer corresponding to the accumulated charges is formed in the semiconductor substrate. It is characterized by making use of this phenomenon to form a latent image and retaining it for a long period of time.

即ち、本願発明者は鋭意研究の結果、上記の構造の記録
媒体の窒化膜を所定の電荷で帯電させた後、該窒化膜に
被写体よシの光学像を照射させることによりその照射さ
れた部分の半導体基板中に電荷を励起させ、この電荷が
放電されることなく窒化膜に保持されると同時に該半導
体基板中に形成される空乏層によって所謂潜像の形成を
行なう方法を開発した。
That is, as a result of intensive research, the inventors of the present application have found that after charging the nitride film of the recording medium with the above structure with a predetermined charge, the nitride film is irradiated with an optical image of the subject, thereby detecting the irradiated portion. We have developed a method in which a charge is excited in a semiconductor substrate, and the charge is held in a nitride film without being discharged, and at the same time, a so-called latent image is formed by a depletion layer formed in the semiconductor substrate.

これにより、従来の光学的撮影方法によって直接2次元
的にしρ・もアナログ的に潜像を記録することがfきる
の〒従来の銀塩フィルムのような取扱が可能となり、又
、極めてコンパクトな撮影装置を提供することがフきる
等その他極めて優れた効果が得られる。
This makes it possible to directly record latent images two-dimensionally and in an analog manner using conventional optical photographing methods.It also allows for handling like conventional silver halide film, and is extremely compact. Other extremely excellent effects such as the ability to provide a photographic device can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面と共に説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明において用いられる記録媒体の一例を示
す外観斜視図fあり、円盤状の記録媒体10表面には後
述する記録用材料が積層して成る記録領域2が形成され
、記録・再生時には中心部3を中心九回転させるように
なっている。
FIG. 1 is an external perspective view f showing an example of a recording medium used in the present invention. On the surface of a disc-shaped recording medium 10, a recording area 2 made of laminated recording materials to be described later is formed, and recording/reproduction is performed. Sometimes the center part 3 is rotated nine times around the center.

第2図は該記録領域2における要部断面構造(X−X線
断面)を示し、単結晶n型シリコンウェハから成る半導
体基板4上にシリコン酸化膜(SiO□)の層5、窒化
膜(Si3N4)の層6が積層され、裏面にはアルミニ
ウム蒸着等による導電層7が形成されている。
FIG. 2 shows a cross-sectional structure (X-X line cross-section) of the main part of the recording area 2, in which a layer 5 of silicon oxide film (SiO□) and a layer 5 of nitride film ( A layer 6 of Si3N4) is laminated, and a conductive layer 7 formed by aluminum vapor deposition or the like is formed on the back surface.

第3図はかかる記録媒体1を用いた記録装置の構成な示
す概略構成図であり、記録媒体1を支持機構(図示せず
)に装着すると窒化膜6のほぼ全表面に接する帯電板8
が設けられている。即ち、帯電板8には所定電圧VDD
が印加されており、記録媒体1を装着すると矢印Tの方
向へ帯電板8が移動して窒化膜6の全面に電圧VDDを
印加し、後述するように撮影時には記録媒体1と一体に
回転し、被写体よりの光学像を該帯電板8を透過して記
録領域2に照射する゛。尚、帯電板8はIn1−Xsn
)(酸化物などの透光性及び導電性を有する材料1形成
されている。
FIG. 3 is a schematic diagram showing the configuration of a recording apparatus using such a recording medium 1. When the recording medium 1 is mounted on a support mechanism (not shown), a charging plate 8 comes into contact with almost the entire surface of the nitride film 6.
is provided. That is, the predetermined voltage VDD is applied to the charging plate 8.
is applied, and when the recording medium 1 is mounted, the charged plate 8 moves in the direction of the arrow T to apply the voltage VDD to the entire surface of the nitride film 6, and as described later, rotates together with the recording medium 1 during photographing. , an optical image from the object is transmitted through the charging plate 8 and irradiated onto the recording area 2. In addition, the charging plate 8 is In1-Xsn
) (A material 1 having translucency and conductivity such as oxide is formed.

9は光学系!あり、被写体Aよりの光学像を記録媒体1
の記録領域2上に結像させる。10は装着された記録媒
体1を中心部3を中心に所定方向Yへ回転させる駆動装
置1あり、制御回路11の制御により記録媒体1を一定
回転角θ毎に回転させる。ここで、記録媒体1の回転軸
線と光学系の光学軸は相互に所定の距離りだけずれるよ
うに設計されており、記録媒体1が回転されると記録領
域2のうちの環状の部分(図中の点線で示した範囲内)
だけが記録可能な領域となるよう和なっている。そして
、撮像をおこなう毎に回転角θフ回転させることにより
相互に重なり合わない複数の画像を記録する記録部分2
a g 2 b y・・・・・・が確保されるようにな
っている。制御回路11は、例えばこの画像形成方法に
基づいて設計された電子スチル・カメラのレリーズ・ゼ
タン等をオン(撮映)にした時に発生する信号Lbなど
に同期して上記制御動作を行なう。
9 is the optical system! Yes, the optical image from subject A is recorded on recording medium 1.
An image is formed on the recording area 2 of. Reference numeral 10 denotes a drive device 1 that rotates the mounted recording medium 1 in a predetermined direction Y around the center portion 3, and rotates the recording medium 1 at constant rotation angles θ under the control of a control circuit 11. Here, the rotational axis of the recording medium 1 and the optical axis of the optical system are designed to be shifted from each other by a predetermined distance, and when the recording medium 1 is rotated, the annular portion of the recording area 2 ( (within the range indicated by the dotted line)
The area is summed so that only this area can be recorded. A recording section 2 records a plurality of images that do not overlap each other by rotating by a rotation angle θ every time an image is captured.
a g 2 b y... is ensured. The control circuit 11 performs the above-mentioned control operation in synchronization with a signal Lb generated when, for example, a release button or the like of an electronic still camera designed based on this image forming method is turned on (shooting).

又、記録媒体1を支持機構に装着すると、図示していな
い接触端子が導電層7に接触し、所定電圧VEEを印加
する。この実施例fは電圧VEEをアース電位(Ov)
とし、前記窒化膜6Vc帯電された電荷は負極性の電荷
にしである。尚、接触端子を直接に導電層7に接触させ
ると回転の際に相互に摩耗する場合があるの1.相互に
摺接する部分において導電層6の表面を高硬度の導電体
″I1%被覆し、該導電体と接触端子を摺接させるよう
にした夕、又は、記録媒体1を支持機構に装着すると同
時に導電体から成る回転プレートが接触して他の回転機
構を介して電圧VEEを印加することにより導電層7を
摩耗から防止するようにしても良い。このような摩耗防
止手段として従来の周知技術を適宜に利用することがで
きる。
Further, when the recording medium 1 is mounted on the support mechanism, a contact terminal (not shown) contacts the conductive layer 7 and applies a predetermined voltage VEE. In this embodiment f, voltage VEE is set to ground potential (Ov).
The charges charged to the nitride film 6Vc are of negative polarity. Note that if the contact terminals are brought into direct contact with the conductive layer 7, they may wear out against each other during rotation.1. The surface of the conductive layer 6 is coated with a high-hardness conductor "I1%" in the portions that come into sliding contact with each other, and the conductor and the contact terminal are brought into sliding contact, or at the same time as the recording medium 1 is mounted on the support mechanism. The conductive layer 7 may be prevented from wear by contacting a rotating plate made of a conductor and applying a voltage VEE via another rotating mechanism.As such a wear prevention means, conventional well-known techniques may be used. It can be used as appropriate.

次に、本発明による画像形成方法の原理を第4図と共に
説明する。同図は第2図に対応した断面構造を示し、光
学系9を介して入射された光学像を帯電板8を介して結
像させると、該結像ノにターンに相当てる電荷が発生し
、窒化膜6に蓄電されていた電荷との間で放電あるいは
充電が生じ、結局図示するような結像パターンに相当す
る電荷分布12が窒化膜6中に形成される。又、これと
同時に該電荷分布12に起因する空乏層13が半導体基
板4内に形成される。即ち、この電荷分布12及び空乏
層13の分布は結像のパターンに対応するアナログ的な
変化を示しいわゆる潜像に相当するもの1あり、撮映終
了後に記録媒体1を装置から取り外しても窒化膜6の電
荷蓄積作用により電荷は放電することがないので長期間
の保存が可能である。
Next, the principle of the image forming method according to the present invention will be explained with reference to FIG. This figure shows a cross-sectional structure corresponding to FIG. 2, and when an optical image incident through the optical system 9 is formed through the charged plate 8, an electric charge corresponding to a turn is generated in the image formed. Discharge or charging occurs between the nitride film 6 and the charges stored in the nitride film 6, and eventually a charge distribution 12 corresponding to the imaged pattern shown in the figure is formed in the nitride film 6. At the same time, a depletion layer 13 is formed in the semiconductor substrate 4 due to the charge distribution 12. That is, the charge distribution 12 and the distribution of the depletion layer 13 show analog changes corresponding to the imaging pattern and correspond to a so-called latent image, and even if the recording medium 1 is removed from the apparatus after imaging, the nitrification will not occur. Since the charges are not discharged due to the charge accumulation effect of the film 6, long-term storage is possible.

次に、記録された記録媒体1より画像を再生する方法を
説明する。第5図は再生装置の概略構成を示し、15は
光源装ff1″?あり、一定光量のレーザ光線を収束さ
せて記録媒体1の記録領域2を微細範囲で照射てると共
に、該照射部分を記録媒体1の半径方向z−Zに移動さ
せるようになっている。16は駆動装置であり、装置さ
れた記録媒体1を中心部3を中心に支持して所定方向り
へ定速回転させる。17は同期信号発生回路!あり、駆
動装に16Vc記録媒体1を定速回転させるための同期
制御信号S1及び、光源装置1L15による照射部分を
一定速度〒又は一定の周期毎にステップ状に半径方向Z
−2へ移動させる同期制御信号S2を発生する。したが
って、光源装置1lc15よりのレーザ光線は記録媒体
1が回転するのに伴って記録領域2を走査し、同期制御
信号82に基づいて潜像が形成されている領域をスパイ
ラル状あるいは同心円状に走査する。例えば走査するト
ラック数が標準テレビジョン方式に等しい525本にす
る。18は高硬度の導電体より成るスタイラスであり、
該走査によって発生する静電容量の変化を検出する。
Next, a method for reproducing images from the recorded recording medium 1 will be explained. FIG. 5 shows a schematic configuration of the reproducing apparatus, in which 15 is a light source device ff1'', which converges a laser beam of a certain amount of light to irradiate the recording area 2 of the recording medium 1 in a minute range, and records the irradiated area. The medium 1 is moved in the radial direction z-z. Reference numeral 16 denotes a drive device that supports the mounted recording medium 1 around the center portion 3 and rotates it at a constant speed in a predetermined direction. 17 There is a synchronization signal generation circuit!, which sends a synchronization control signal S1 to the drive unit to rotate the 16Vc recording medium 1 at a constant speed, and a synchronization control signal S1 for causing the drive unit to rotate the recording medium 1 at a constant speed.
-2 is generated. Therefore, the laser beam from the light source device 1lc15 scans the recording area 2 as the recording medium 1 rotates, and scans the area where the latent image is formed in a spiral or concentric pattern based on the synchronization control signal 82. do. For example, the number of tracks to be scanned is set to 525, which is equal to the standard television system. 18 is a stylus made of a highly hard conductive material;
A change in capacitance caused by the scanning is detected.

尚、この検出原理は後述する。19は同期再生回路fあ
り、スタイラス18よりの検出信号Svを入力して再生
可能な映像信号8VDを形成する。即ち、同期再生回路
19は同期制御信号s1.s2に同期したクロック信号
Scが同期信号発生回路17より供給されており、検出
信号Svが潜像のどの部分の走査によって発生している
のかを判別し再生しようとする画像の信号svDを選択
的に発生させるようになっている。更に詳述すれば、検
出信号SVはいわゆる線順次信号であり、例えば同図中
の斜線部分20に記録された映像を再生する場合には、
他の記録領域を走査して得られる信号を検出信号sVか
ら除去し、信号svDをモニタ・テレビジョンに印加す
ると周知の水平走査及び垂直走査による画像再生を行な
うことができるような処理を行なう。
The principle of this detection will be described later. Reference numeral 19 denotes a synchronous reproduction circuit f, which inputs the detection signal Sv from the stylus 18 and forms a reproducible video signal 8VD. That is, the synchronous reproducing circuit 19 receives the synchronous control signal s1. A clock signal Sc synchronized with s2 is supplied from the synchronization signal generation circuit 17, and it is determined which part of the latent image is generated by scanning the detection signal Sv, and selectively selects the signal svD of the image to be reproduced. It is designed to occur in To be more specific, the detection signal SV is a so-called line sequential signal, and for example, when reproducing the video recorded in the shaded area 20 in the figure,
When the signals obtained by scanning other recording areas are removed from the detection signal sV and the signal svD is applied to a monitor television, processing is performed such that image reproduction by well-known horizontal scanning and vertical scanning can be performed.

尚、上述のように再生時にはスタイラス18を導電層7
[fr接して静1を客量書fにを検出するが、記録媒体
1が回転するときに相互に接触して摩耗するの!、この
摩耗を防止するために導電層7の表面の耐摩耗性を向上
したり、所謂ロータリートランスを用いて、該ロータリ
ートランスの1次巻線側を導電層7に接続し2次巻線側
に磁気結合により発生する検出信号Svを同期再生回路
19に供給するようにして完全な無接触化を図ってもよ
−。
Note that, as mentioned above, during playback, the stylus 18 is connected to the conductive layer 7.
[Fr is detected when the static 1 is in contact with the customer quantity book f, but when the recording medium 1 rotates, they come into contact with each other and wear out! In order to prevent this wear, the wear resistance of the surface of the conductive layer 7 may be improved, or a so-called rotary transformer may be used, and the primary winding side of the rotary transformer may be connected to the conductive layer 7, and the secondary winding side may be connected to the conductive layer 7. It is also possible to supply the detection signal Sv generated by magnetic coupling to the synchronous reproducing circuit 19 to achieve complete contactlessness.

次に、上記走査により潜像に対応する静電容量の変化が
検出される原理を説明する。即ち、光源装置!115を
介して一定光量のレーザ光線を記録領域2に照射てると
、照射された微細部分ΔWの下に形成されている空乏層
16(第4図参照)による静電容量を電圧の変化として
検出することができ、この電圧変化が検出信号Svに相
当する。したがってレーザ光線が照射される部分が十分
に微細であることが再生解像度の向上にとって望ましい
。又、゛この再生を行なっても窒化膜6に蓄積された電
荷は放電することなく保持されるの!、伺回でも再生が
可能〒ある。
Next, the principle by which a change in capacitance corresponding to a latent image is detected by the above scanning will be explained. In other words, a light source device! When a constant amount of laser beam is irradiated onto the recording area 2 through the laser beam 115, the capacitance due to the depletion layer 16 (see Fig. 4) formed under the irradiated minute portion ΔW is detected as a change in voltage. This voltage change corresponds to the detection signal Sv. Therefore, it is desirable for the portion irradiated with the laser beam to be sufficiently fine in order to improve reproduction resolution. Also, even if this regeneration is performed, the charges accumulated in the nitride film 6 will be retained without being discharged! , it is possible to play it even when visiting.

次に消去方法について説明すると、上記第3図と共に説
明したように窒化膜6に所定の電圧VDDを印加するこ
とにより窒化膜6中に蓄積されている電荷を放電するこ
とにより行なう。これは、第3図に示した装&によれば
撮影前に帯電板8により自動的に行なわれるが、別個の
消去装置により消去を行なうこともfきる。又、コロナ
放電等による帯電を行なっても良い。
Next, the erasing method will be explained. As explained in conjunction with FIG. 3 above, a predetermined voltage VDD is applied to the nitride film 6 to discharge the charges accumulated in the nitride film 6. According to the arrangement shown in FIG. 3, this is automatically done by the charging plate 8 before photographing, but erasing can also be done by a separate erasing device. Further, charging may be performed by corona discharge or the like.

以上説明したよ5にこの実施例によれば窒化膜6、酸化
膜5及び半導体基板4による相互の記録・再生効果を利
用するので極めて簡素な構造の記録媒体を提供すること
ができ、又 記録領域に対し無接触で撮影を行なうこと
が!きるため記録媒体の損傷を太幅に低減することがマ
きる。
As explained above, according to this embodiment, since the mutual recording and reproducing effects of the nitride film 6, the oxide film 5, and the semiconductor substrate 4 are utilized, it is possible to provide a recording medium with an extremely simple structure. You can take pictures without touching the area! Therefore, damage to the recording medium can be greatly reduced.

次に、第6図ないし第7図に基づいて他の実施例を説明
する。第6図(a)は他の実施例に適用する記録媒体の
縦断面図、同図(b)は同図(a)のF−F線矢視断面
図である。即ち 第1図と同様に円盤状に形成された尚
該記録媒体の構造を前記第2図に対応して示すと第6図
(a)のように、窒化膜(S i 3N4 )の層20
の表面にシリコン酸化膜(Si02)の層21、単結晶
n型シリコン又はポリシリコンあるいはアモルファスシ
リコン等から成る半導体層22、GaAs系半導体、G
aAlAs、GaAsPのnr−v族化合物又はアモル
ファスシリコンのような■族半導体を主成分とする光電
導体層23が積層され、更に窒化膜20の裏面には場合
によりアルミ蒸着などにより形成される導電層24が積
層されている。
Next, another embodiment will be described based on FIGS. 6 and 7. FIG. 6(a) is a longitudinal sectional view of a recording medium applied to another embodiment, and FIG. 6(b) is a sectional view taken along the line FF in FIG. 6(a). That is, as shown in FIG. 6(a), the structure of the recording medium, which is formed in a disk shape in the same manner as in FIG. 1, is shown in FIG.
A layer 21 of silicon oxide film (Si02), a semiconductor layer 22 made of single crystal n-type silicon, polysilicon, amorphous silicon, etc., a GaAs-based semiconductor, a G
A photoconductor layer 23 mainly composed of an nr-v group compound such as aAlAs or GaAsP or a group II semiconductor such as amorphous silicon is laminated, and a conductive layer 23 is further formed on the back surface of the nitride film 20 by aluminum vapor deposition as the case requires. 24 are stacked.

更に、同図(b) K示すよ5K、半導体層22は上記
単結晶n型シリコン等から成る複数の部分22aと、夫
々の部分22aを相互に分離するアイソレーション22
b(斜線の部分)で形成されている。
Further, as shown in FIG. 5(b), the semiconductor layer 22 includes a plurality of portions 22a made of the above-mentioned single crystal n-type silicon, etc., and an isolation layer 22 for separating each portion 22a from each other.
b (shaded area).

このアイソレーション22bは高濃度の不純物をドーピ
ングしたり、ロコス酸化によるシリコン酸化I@f形成
されている。尚、上記部分22aの形状と配列は用途や
設計仕様等に応じて適宜に決められろう 第7図は、第6図1説明した記録装置に記録媒体1に代
えて第6図の尚該記録媒体を装着した場合の概略図であ
り、同図に基づいて画像形成方法の原理を説明すると、
装着により透明かつ導電性を有する帯電板8が光電導体
層26の表面に接触し、被写体Aよりの光学像が撮影レ
ンズ9を介して入射される。更に、帯電板8は電圧VD
D(アース電位)、導電層24は電圧V)J (25V
ないし40V間の所定電位)が印加されるの1、光電導
体層26及び窒化膜20間にほぼVDD −VIEの電
圧が掛けられる。この状態〒光学像が照射されると光学
像の各部分の照度に対応した抵抗値の変化分布が光電導
体層25に発生し、その抵抗分布に応じた電圧が半導体
層22の各部分22aに掛かる。こfiVcより、夫々
の部分22aには電圧分布(抵抗分布に相当する)に対
応した深さの空乏層が形成され、同時に夫々の空乏層に
対応して発生した電荷がトンネル効果により酸化膜21
を通過して窒化膜20中に移動して蓄積される。これら
の空乏層及び窒化膜20中の電荷分布は装置から外して
電圧vEE、 VDDを掛けるのを止めても保持される
ので、長時間の記録・保存が可能である。
This isolation 22b is formed by doping with impurities at a high concentration or by forming silicon oxide I@f by Locos oxidation. Note that the shape and arrangement of the portion 22a may be determined as appropriate depending on the application, design specifications, etc. FIG. 7 shows the recording device shown in FIG. This is a schematic diagram when a medium is installed, and the principle of the image forming method will be explained based on the diagram.
When mounted, the transparent and conductive charging plate 8 comes into contact with the surface of the photoconductive layer 26, and an optical image from the subject A is incident through the photographing lens 9. Furthermore, the charging plate 8 has a voltage VD
D (earth potential), the conductive layer 24 has a voltage V)J (25V
A voltage of approximately VDD - VIE is applied between the photoconductor layer 26 and the nitride film 20. In this state, when an optical image is irradiated, a resistance change distribution corresponding to the illuminance of each part of the optical image occurs in the photoconductor layer 25, and a voltage corresponding to the resistance distribution is applied to each part 22a of the semiconductor layer 22. It takes. Due to this fiVc, a depletion layer is formed in each portion 22a with a depth corresponding to the voltage distribution (corresponding to the resistance distribution), and at the same time, the charges generated corresponding to each depletion layer are transferred to the oxide film 21 due to the tunnel effect.
The particles pass through the nitride film 20 and are accumulated therein. These depletion layers and the charge distribution in the nitride film 20 are maintained even after the device is removed and the application of voltages vEE and VDD is stopped, so long-term recording and storage is possible.

尚、夫々の部分22aはアイソレーション22bにより
分離されているため電荷及び空乏層の分布は完全に連続
とはならないが、この構造によれば上記部分22aを高
密度、高集積化することは容易フあり、したがって極め
て高い解像度を得ることが可能である。
Note that since each portion 22a is separated by the isolation 22b, the distribution of charge and depletion layer is not completely continuous, but with this structure, it is easy to increase the density and integration of the portion 22a. Therefore, it is possible to obtain extremely high resolution.

次に、かかる記録媒体による信号の再生方法を第5図に
基づいて説明すると、第6図(a)に示す光電導体層2
3を第5図の再生装置の光源装置15に対向するよ5に
装着し、光源装置15より発生された点光源により線走
査する。そして、導電層24′に接触するスタイラス1
8により半導体#22中の空乏層容量を検出することに
よって、再生を行なうことがフきる。
Next, a method for reproducing signals using such a recording medium will be explained based on FIG. 5. The photoconductor layer 2 shown in FIG. 6(a)
3 is mounted on the reproducing apparatus shown in FIG. 5 so as to face the light source device 15, and a point light source generated by the light source device 15 performs line scanning. and the stylus 1 in contact with the conductive layer 24'.
By detecting the depletion layer capacitance in the semiconductor #22 using 8, regeneration can be performed.

以上説明したように、これらの実施例によれば、光学像
を直接に潜像として記録するの〒、従来の固体撮像索子
及び磁気記録手段を具備した電子式カメラ等に較べて信
号処理回路等を大幅に簡素化することができ、銀塩フィ
ルムによるカメラのような簡便な使用をすることが〒き
る。更に又、これらの実施例では円盤状の記録媒体につ
いて説明したが、カード状のものやその他の形状のもの
が考えら力、このような形状の違うものKついても本発
明に含まれる。尚、紙面の都合止金ての効果を説明する
ことができないが、本発明により発生する全ての効果は
本発明に含まれるものである。
As explained above, according to these embodiments, an optical image is directly recorded as a latent image, and a signal processing circuit is required compared to an electronic camera equipped with a conventional solid-state imaging probe and magnetic recording means. etc. can be greatly simplified, and it can be used simply like a camera using silver halide film. Furthermore, although disk-shaped recording media have been described in these embodiments, card-shaped recording media and other shaped recording media are also contemplated, and such media having different shapes are also included in the present invention. Although it is not possible to explain the effects of the stopper due to space limitations, all effects generated by the present invention are included in the present invention.

〔発明の効果〕〔Effect of the invention〕

以上訝、明したように本発明によれば、半導体基板の表
面に少なくとも酸化膜、窒化膜を積層し、裏面hst層
を形成して成る記録媒体の該窒化膜を所定電荷〒帯電し
該半導体基板に′@写体の光学像を照射することにより
、該光学像の映像に応じて半導体基板中に空乏層を形成
させると同時に該窒化膜中に電荷を蓄積させて潜像を記
録するようにしたの〒、極めて簡素な構造にして記録再
生を行なうことのできる記録媒体を提供することが〒き
、又、その取扱いも極めて容易1あり、更に電子式カメ
ラ等を構成する場合にその構成を極めて簡素にすること
ができるなどの優れた効果を得ることができる。
As explained above, according to the present invention, at least an oxide film and a nitride film are laminated on the front surface of a semiconductor substrate, and the nitride film of the recording medium is formed with a backside HST layer, and the semiconductor substrate is charged with a predetermined charge. By irradiating the substrate with an optical image of an object, a depletion layer is formed in the semiconductor substrate according to the image of the optical image, and at the same time, charges are accumulated in the nitride film to record a latent image. Now, it is possible to provide a recording medium that can perform recording and playback with an extremely simple structure, and it is also extremely easy to handle.1 Furthermore, when configuring an electronic camera, etc. It is possible to obtain excellent effects such as making it extremely simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いられる記録媒体の一例を示
す外観斜視図、第2図は第1図に示す記録媒体の要部断
面図、第3図は本発明に基づいて構成された記録装置の
一例の概略構成を示す構成図、第4図は本発明の画像形
成原理を説明するための断面図、第5図は本発明に基づ
いて構成された再生装置の一例を示す概略構成図、第6
図(a)は他の実施例に適用される記録媒体の構造を示
す要部縦断面図、第6図(b)は第6図(a)のF−F
fj!矢視断面図、第7図は他の実施例に適用される記
録媒体の記録方法の原理を示す説明図である。 図中符号: 1・・・記録媒体    2・・−記録領域6・・・中
心部     4・・・半導体基板5・・・酸化膜  
   6・・・窒化膜7・・・導電層      8・
・・帯電板9・・・光学系、10・・・駆動装置 11・・・制御回路    12・・・電荷分布13・
・−空乏層     15・・・光源装置16・・・駆
動装置    17・・・同期信号発生回路18・・・
スタイラス   19・・・同期再生回路20・・・窒
化膜     21・・・酸化膜22・・・半導体層 
   26・・・光電導体層24・・・導電層 第  1  図 第  5  図 μ 匡−」
FIG. 1 is an external perspective view showing an example of a recording medium used in the present invention, FIG. 2 is a cross-sectional view of a main part of the recording medium shown in FIG. 1, and FIG. 3 is a recording apparatus constructed based on the present invention. FIG. 4 is a cross-sectional view for explaining the image forming principle of the present invention; FIG. 5 is a schematic configuration diagram showing an example of a reproduction device constructed based on the present invention; 6th
FIG. 6(a) is a vertical sectional view of a main part showing the structure of a recording medium applied to another embodiment, and FIG. 6(b) is a line FF in FIG. 6(a).
fj! A sectional view taken in the direction of arrows, FIG. 7 is an explanatory diagram showing the principle of a recording method for a recording medium applied to another embodiment. Symbols in the figure: 1...Recording medium 2...-recording area 6...Center 4...Semiconductor substrate 5...Oxide film
6... Nitride film 7... Conductive layer 8.
...Charging plate 9...Optical system, 10...Drive device 11...Control circuit 12...Charge distribution 13.
- Depletion layer 15... Light source device 16... Drive device 17... Synchronization signal generation circuit 18...
Stylus 19... Synchronous playback circuit 20... Nitride film 21... Oxide film 22... Semiconductor layer
26...Photoconductor layer 24...Conductive layer Figure 1 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の表面に少なくとも酸化膜、窒化膜を
積層し、裏面に導電層を形成して成る記録媒体の該窒化
膜を所定電荷で帯電し該半導体基板に被写体の光学像を
照射することにより、該光学像の映像に応じて該窒化膜
中に電荷を蓄積させて潜像を記録することを特徴とする
画像形成方法。
(1) The nitride film of a recording medium comprising at least an oxide film and a nitride film laminated on the front surface of a semiconductor substrate and a conductive layer formed on the back surface is charged with a predetermined charge, and an optical image of a subject is irradiated onto the semiconductor substrate. An image forming method characterized in that a latent image is recorded by accumulating charges in the nitride film according to the image of the optical image.
(2)前記窒化膜に透光性及び導電性を有する所定電位
の帯電板を接触させ、該帯電板を介して前記被写体の光
学像を照射することを特徴とする特許請求の範囲第1項
記載の画像形成方法。
(2) A charged plate having a predetermined potential that is transparent and conductive is brought into contact with the nitride film, and an optical image of the subject is irradiated through the charged plate. The image forming method described.
JP62029830A 1987-02-13 1987-02-13 Image forming method Pending JPS63198472A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62029830A JPS63198472A (en) 1987-02-13 1987-02-13 Image forming method
US07/155,172 US4933926A (en) 1987-02-13 1988-02-11 Image forming medium, method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62029830A JPS63198472A (en) 1987-02-13 1987-02-13 Image forming method

Publications (1)

Publication Number Publication Date
JPS63198472A true JPS63198472A (en) 1988-08-17

Family

ID=12286946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62029830A Pending JPS63198472A (en) 1987-02-13 1987-02-13 Image forming method

Country Status (1)

Country Link
JP (1) JPS63198472A (en)

Similar Documents

Publication Publication Date Title
JP3046649B2 (en) Electrostatic information recording medium and electrostatic information recording / reproducing method
JPS5811792B2 (en) Electronic still image photography device
JPH09511616A (en) Imaging system with variable electrode arrangement and processing
US4415937A (en) Solid-state image storage device
EP1033706A1 (en) Electrostatic information recording medium and electrostatic information recording and reproducing method
JPS622512B2 (en)
US4933926A (en) Image forming medium, method and apparatus
JPS63198472A (en) Image forming method
US4675765A (en) Magnetic recording and/or reproducing element
US4450489A (en) Floating disc photoconductive film reader
JPH02143778A (en) Read system for electric charge latent image
JPS63198381A (en) Formation of image
JPS63279442A (en) Optical semiconductor recording medium and recording and reproducing method thereof
JPS63198488A (en) Electronic still camera system
JPS63201936A (en) Recording medium and recording and reproducing method thereof
JPS62227281A (en) Electronic still camera
JPH02178612A (en) Optical modulating method and device
JPH0727121B2 (en) Solid-state imaging device
JPH01169756A (en) Semiconductor recording medium and recording and reproducing method
JP2623894B2 (en) Recording method of electromagnetic radiation information
JPS5964975A (en) Electronic still camera
US4485410A (en) Graphic reading
JP2795851B2 (en) Electrostatic image recording medium and charge holding medium
JP2826119B2 (en) Photoreceptor having photoelectron doubling effect and electrostatic image recording method
JPS62291845A (en) Image recording system