JPS6319846B2 - - Google Patents

Info

Publication number
JPS6319846B2
JPS6319846B2 JP11053183A JP11053183A JPS6319846B2 JP S6319846 B2 JPS6319846 B2 JP S6319846B2 JP 11053183 A JP11053183 A JP 11053183A JP 11053183 A JP11053183 A JP 11053183A JP S6319846 B2 JPS6319846 B2 JP S6319846B2
Authority
JP
Japan
Prior art keywords
beam splitter
optical path
electro
optic crystal
polarized beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11053183A
Other languages
Japanese (ja)
Other versions
JPS602920A (en
Inventor
Ushio Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaichi Electronics Co Ltd
Original Assignee
Yamaichi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaichi Electronics Co Ltd filed Critical Yamaichi Electronics Co Ltd
Priority to JP11053183A priority Critical patent/JPS602920A/en
Publication of JPS602920A publication Critical patent/JPS602920A/en
Publication of JPS6319846B2 publication Critical patent/JPS6319846B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching

Description

【発明の詳細な説明】 本発明は一対の偏光分離用のビームスプリツタ
ーと電気光学効果を有する結晶素子、例えば二次
電気光学効果を有する結晶素子とを光路切換素子
として採用して入射全光量の100%(直線偏光ビ
ーム1a及び1bの双方)を第1切換光路上と第
2切換光路上へ出射し得るようにした光路切換ス
イツチに関する。
Detailed Description of the Invention The present invention employs a pair of beam splitters for polarization separation and a crystal element having an electro-optic effect, for example, a crystal element having a secondary electro-optic effect, as an optical path switching element to reduce the total amount of incident light. The present invention relates to an optical path switching switch capable of emitting 100% of the linearly polarized beams 1a and 1b (both linearly polarized beams 1a and 1b) onto a first switching optical path and a second switching optical path.

第1図は本発明と対比させるべく示した光路切
換スイツチ用素子として偏光分離用のビームスプ
リツター5′及び電気光学効果を有する結晶素子
3′を用いた光路切換スイツチの原理を示してい
る。
FIG. 1 shows the principle of an optical path switching switch using a beam splitter 5' for polarization separation and a crystal element 3' having an electro-optic effect as optical path switching elements for comparison with the present invention.

既知のように光ビーム1は偏光方向が互いに直
交する二つの直線偏光ビーム1a,1bを成分と
している。上記偏光ビームスプリツター5′は入
射光ビームをその偏光方向に応じ互いに異なる二
方向へ分離し出射する機能を有する。例えば入射
光ビーム1の成分たる上記一方の直線偏光ビーム
1aを入射方向に対し直角方向へ出射し、他方の
直線偏光ビーム1bを同直進方向へ出射する。
As is known, the light beam 1 consists of two linearly polarized beams 1a and 1b whose polarization directions are orthogonal to each other. The polarizing beam splitter 5' has a function of separating the incident light beam into two different directions according to the polarization direction thereof and outputting the separated light beams. For example, one of the linearly polarized beams 1a, which is a component of the incident light beam 1, is emitted in a direction perpendicular to the direction of incidence, and the other linearly polarized beam 1b is emitted in the same direction.

従つてこの偏光ビームスプリツター5′へ入射
される光ビームを直線偏光ビーム1a又は1bの
何れかに設定すれば出射方向の切換、即ちスイツ
チ作動を得ることができる。
Therefore, by setting the light beam incident on the polarized beam splitter 5' to either the linearly polarized beam 1a or 1b, the output direction can be changed, that is, a switch operation can be obtained.

上記偏光ビームスプリツター5′に入射される
光ビームの偏光方向を直線偏光ビーム1a又は1
bに選択的に変換するために既述の電気光学効果
を有する結晶素子3′が用いられる。電気光学効
果とは結晶体に電圧を印加した時に、その結晶体
の屈折率が変化する現象をいう。この様な性質を
持つた結晶体としては単結晶のLiNbO3及び透明
セラミツクPLZT等がある。殊に二次電気光学効
果を有する結晶体たる透明セラミツクは電気光学
効果が大きく低電圧駆動できる点で、光路切換ス
イツチ用素子として有望とされている。
The polarization direction of the light beam incident on the polarized beam splitter 5' is set to the linearly polarized beam 1a or 1.
A crystal element 3' having an electro-optic effect as described above is used for selective conversion to b. The electro-optic effect is a phenomenon in which the refractive index of a crystal changes when a voltage is applied to the crystal. Crystal bodies with such properties include single crystal LiNbO 3 and transparent ceramic PLZT. In particular, transparent ceramic, which is a crystalline material having a secondary electro-optic effect, is considered to be promising as an element for optical path switching because it has a large electro-optic effect and can be driven at a low voltage.

上記の如き電気光学効果を有する結晶素子は電
圧印加(ON)によつて通過する光ビームを異な
る偏光方向に変換する機能を有し電圧印加の解除
(OFF)の場合には偏光方向を変換せずに通過を
許容する。
A crystal element having an electro-optic effect as described above has the function of converting a passing light beam into a different polarization direction when a voltage is applied (ON), and the polarization direction cannot be changed when the voltage application is removed (OFF). Allow passage without.

上記作用を有する偏光ビームスプリツター5′
と電気光学結晶素子3′とを用いた光路切換スイ
ツチを第1図a,b図に基づいて詳述する。
Polarizing beam splitter 5' having the above action
The optical path switching switch using the electro-optic crystal element 3' will be described in detail with reference to FIGS. 1a and 1b.

既述のように入射光ビーム1は円偏光ビームで
あり偏光方向が直交する二つの直線偏光ビーム1
a,1bを成分としている。この入射光ビーム1
の光路上に一方の偏光方向の直線偏光ビーム1a
のみの通過を許容する光選択用の偏光素子2′が
配置され、該偏光素子2′を通過した直線偏光ビ
ーム1aの光路上に前述したON又はOFFにて偏
光方向を変換する偏光方向変換用二次電気光学結
晶素子3′を配し、該素子3′を通過した偏光ビー
ムの光路上に前述した光ビームの偏光方向に応じ
これを直角方向又は直進方向に出射する偏光分離
用のビームスプリツター5′が配置されている。
As mentioned above, the incident light beam 1 is a circularly polarized beam, and two linearly polarized beams 1 whose polarization directions are orthogonal are formed.
The components are a and 1b. This incident light beam 1
A linearly polarized beam 1a with one polarization direction is placed on the optical path of
A polarizing element 2' for light selection, which allows only the light to pass through, is disposed on the optical path of the linearly polarized beam 1a that has passed through the polarizing element 2'. A beam splitter for polarization separation that includes a secondary electro-optic crystal element 3', and emits the polarized beam that has passed through the element 3' on the optical path in a perpendicular direction or a rectilinear direction depending on the polarization direction of the light beam. Tsuta 5' is arranged.

上記によつて入射光ビーム1は偏光素子2′に
入射され、一方の偏光方向の直線偏光ビーム1a
のみが通過を許容されて電気光学結晶素子3′に
入射する。
According to the above, the incident light beam 1 is incident on the polarizing element 2', and the linearly polarized light beam 1a in one polarization direction is
Only the light is allowed to pass and enters the electro-optic crystal element 3'.

電気光学結晶素子3′には光路に平行で相対す
る二つの面に電極が設けてあり、電源4′に接続
されている。電極面は通過する光ビームの偏光方
向に対して45゜傾斜している。
The electro-optic crystal element 3' is provided with electrodes on two opposing surfaces parallel to the optical path, and is connected to a power source 4'. The electrode plane is inclined at 45° to the polarization direction of the light beam passing through it.

第1図a図に示すように上記電気光学結晶素子
3′に電圧が印加されていない場合には上記光ビ
ーム1aはその偏光方向が変換されることなくこ
れを通過し、偏光ビームスプリツター5′に入射
する。偏光ビームスプリツター5′は既述の如く
光ビームをその偏光方向に応じこれを直進方向又
は直角方向に出射する作用を有し、よつて同A図
に示す如く偏光素子2′に選択され、電気光学結
晶素子3′を通過した直線偏光ビーム1aはその
偏光方向によつて偏光ビームスプリツター5′か
ら直角方向へ反射し出射する。
As shown in FIG. 1a, when no voltage is applied to the electro-optic crystal element 3', the light beam 1a passes through the electro-optic crystal element 3' without having its polarization direction changed, and the polarizing beam splitter 5 ′. As described above, the polarizing beam splitter 5' has the function of emitting a light beam in a straight direction or a perpendicular direction depending on its polarization direction, and is therefore selected as a polarizing element 2' as shown in FIG. The linearly polarized beam 1a that has passed through the electro-optic crystal element 3' is reflected from the polarizing beam splitter 5' in a perpendicular direction depending on its polarization direction and exits.

他方、第1図b図に示すように電気光学結晶素
子3′に所定の半波長電圧を印加した場合はこれ
に入射する直線偏光ビーム1aはその通過の際、
偏光方向が90゜回転されて直線偏光ビーム1bに
変換され、偏光ビームスプリツター5′に入射す
る。従つてこの直線偏光ビーム1bは同ビームス
プリツター5′で反射されることなく直進方向に
出射されることとなる。図中1a′は電気光学結晶
素子3′のONによつて直角方向に出射される散
乱光を示す。
On the other hand, when a predetermined half-wave voltage is applied to the electro-optic crystal element 3' as shown in FIG.
The polarization direction is rotated by 90 degrees and converted into a linearly polarized beam 1b, which enters a polarizing beam splitter 5'. Therefore, this linearly polarized beam 1b is emitted in a straight direction without being reflected by the beam splitter 5'. In the figure, 1a' indicates scattered light emitted in the right angle direction when the electro-optic crystal element 3' is turned on.

以上説明したように、上記対比例によれば偏光
ビームスプリツター5′と電気光学結晶素子3′の
組合せにて入射光ビームの光路を二方向に的確に
切換えることができる光路切換スイツチを提供で
きるが、反面上記光路切換スイツチ方式において
は利用される光ビーム成分が必ず縦方向又は横方
向の偏光方向を有する直線偏光ビーム1a又は1
bの何れか一方でなければ所期の光路切換えを得
ることができず、従つて他方の直線偏光ビームを
入射光からカツトし用いねばならない(上記対比
例では直線偏光ビーム1bをカツトし、直線偏光
ビーム1aを用いている)。
As explained above, according to the above comparison example, it is possible to provide an optical path switching switch that can accurately switch the optical path of an incident light beam in two directions by combining the polarizing beam splitter 5' and the electro-optic crystal element 3'. However, in the optical path switching method described above, the light beam component used is always a linearly polarized beam 1a or 1 having a vertical or horizontal polarization direction.
If either one of the linearly polarized beams b is not present, the desired optical path switching cannot be achieved, and therefore the other linearly polarized beam must be cut from the incident light and used (in the above comparative example, the linearly polarized beam 1b is cut and the linearly polarized beam 1b is (using polarized beam 1a).

このように上記光路切換スイツチにおいては各
切換光路上へ出射される光ビームとしては常に入
射全光量の二分の一の光量しか活用できず、50%
の光損失を余義無くされるという最大の課題を有
している。
In this way, in the above-mentioned optical path switching switch, the light beam emitted onto each switching optical path can always utilize only one half of the total amount of incident light, and only 50%
The biggest problem is that the optical loss is unavoidable.

而して、本発明は上記対比例と同様、光路切換
素子として偏光分離用のビームスプリツターと、
電気光学効果を有する結晶素子とを採用しつつ、
上記対比例の課題である光損失の問題を抜本的に
解決すべく開発されたものである。即ち、本発明
は入射光素子と第1切換光路用の光出射素子とに
共用する第1偏光ビームスプリツターと、第2切
換光路用の光出射素子に適用する第2偏光ビーム
スプリツターとから成る光路切換スイツチに係
り、電気光学効果を有する結晶素子との協働にて
上記第1偏光ビームスプリツターへ入射し分離さ
れた二つの直線偏光ビームを上記第1偏光ビーム
スプリツターの第1切換光路上又は第2偏光ビー
ムスプリツターの第2切換光路上へ重畳して出射
するようにして入射光の光量の略全量を上記第1
又は第2の各切換光路上へ導いて光切換動作を得
るようにした高信頼、高感度、高精度の光路切換
スイツチを提供せんとするものである。
Therefore, as in the comparative example above, the present invention includes a beam splitter for polarization separation as an optical path switching element,
While adopting a crystal element with electro-optic effect,
This was developed to fundamentally solve the problem of optical loss, which is the problem in the above comparison example. That is, the present invention includes a first polarizing beam splitter that is shared by the incident light element and the light output element for the first switching optical path, and a second polarizing beam splitter that is applied to the light output element for the second switching optical path. The optical path switching switch comprises a first switch of the first polarizing beam splitter to convert two linearly polarized beams incident on the first polarizing beam splitter and separated by cooperation with a crystal element having an electro-optic effect. Substantially the entire amount of the incident light is emitted from the first polarizing beam by superimposing it onto the optical path or the second switching optical path of the second polarizing beam splitter.
Alternatively, it is an object of the present invention to provide a highly reliable, highly sensitive, and highly accurate optical path switching switch which guides the light onto each of the second switching optical paths to obtain an optical switching operation.

以下、本発明を第2図a,b図に基づいて詳述
する。
Hereinafter, the present invention will be explained in detail based on FIGS. 2a and 2b.

図において、Aは光路切換スイツチにおける入
射光路を示し、A1は第1切換光路、A2は第2切
換光路を夫々示す。4及び5は既述したように入
射光ビームを偏光方向が紙面に対し垂直方向の直
線偏光ビームと紙面に対し平行方向の直線偏光ビ
ームとに分離する偏光ビームスプリツターであ
り、4を第1偏光ビームスプリツター、5を第2
偏光ビームスプリツターと称する。
In the figure, A indicates the incident optical path in the optical path switching switch, A 1 indicates the first switching optical path, and A 2 indicates the second switching optical path. 4 and 5 are polarizing beam splitters that separate the incident light beam into a linearly polarized beam whose polarization direction is perpendicular to the plane of the paper and a linearly polarized beam whose polarization direction is parallel to the plane of the paper, as described above; Polarizing beam splitter, 5 to 2nd
It is called a polarizing beam splitter.

第1、第2偏光ビームスプリツター4,5はそ
の45゜傾いた偏光分離面を互いに平行にし且つ入
射光ビーム1の光軸の延長上に同一向きとなるよ
うに並置され、第1偏光ビームスプリツター4を
上記入射光路Aに対し直角方向となる上記第1切
換光路A1上へ出射光ビーム2を導く光出射素子
とすると共に、第2偏光ビームスプリツター5を
上記入射光路Aに対し直角方向で且つ第1切換光
路A1に対し平行となる上記第2切換光路A2上へ
出射光ビーム3を導く光出射素子とし、同時に上
記第1偏光ビームスプリツター4を入射光ビーム
1を偏光分離する光入射素子として共用する。
The first and second polarized beam splitters 4 and 5 are arranged side by side so that their polarized beam splitting surfaces inclined at 45 degrees are parallel to each other and are oriented in the same direction on the extension of the optical axis of the incident light beam 1, and the first polarized beam splitter The splitter 4 is used as a light emitting element that guides the output light beam 2 onto the first switching optical path A1 that is perpendicular to the input optical path A , and the second polarizing beam splitter 5 is used as a light output element that guides the output light beam 2 onto the first switching optical path A1 that is perpendicular to the input optical path A. The light output element is used as a light emitting element that guides the output light beam 3 onto the second switching optical path A2 that is perpendicular to the first switching optical path A1 , and at the same time, the first polarizing beam splitter 4 is used to direct the input light beam 1 into the second switching optical path A2. It is also used as a light input element to separate polarized light.

6は上記第1偏光ビームスプリツター4で偏光
分離され直角方向へ出射された直線偏光ビーム1
aを更に直角方向に反射する第1反射ミラー、7
は該第1反射ミラー6で反射された光ビームを更
に直角方向に反射し第2偏光ビームスプリツター
5に入射する第2反射ミラーである。
6 is a linearly polarized beam 1 which is polarized by the first polarized beam splitter 4 and emitted in a perpendicular direction.
a first reflecting mirror that further reflects a in the right angle direction;
is a second reflecting mirror that further reflects the light beam reflected by the first reflecting mirror 6 in the right angle direction and makes it incident on the second polarizing beam splitter 5.

9乃至12は偏光面の90゜回転素子である第1
乃至第4の電気光学結晶素子、例えば二次電気光
学結晶素子PLZTであり、各結晶素子9乃至12
には光路に平行で相対する二つの面に電極を設け
(電極面は通過する光ビームの偏光方向に対し45゜
傾斜している)結晶素子9,12の組と同10,
11の組が切換端子S1,S2で交互に切換できるよ
う電源18に接続されており、前述の通り同結晶
素子に電圧が印加されていない場合(OFF)に
は光ビームは偏光方向が変換されることなくこれ
を通過し、同結晶素子に電圧が印加されている場
合(ON)には光ビームはこれを通過時偏光方向
が変換されて出射する。同結晶素子9のON、
OFF状態を図面上区別するため、ONの同結晶素
子は斜線入りで、OFFの同結晶素子は白抜きで
示した。
9 to 12 are the first elements that rotate the plane of polarization by 90°;
to a fourth electro-optic crystal element, for example, a secondary electro-optic crystal element PLZT, each crystal element 9 to 12
is provided with electrodes on two opposing surfaces parallel to the optical path (the electrode surfaces are inclined at 45 degrees with respect to the polarization direction of the light beam passing through) and a pair of crystal elements 9 and 12, and the same 10,
The 11 sets are connected to the power supply 18 so that they can be switched alternately by the switching terminals S 1 and S 2.As mentioned above, when no voltage is applied to the crystal element (OFF), the light beam has a polarization direction. The light beam passes through this without being converted, and when a voltage is applied to the crystal element (ON), the polarization direction of the light beam is changed when passing through this and is emitted. Turn on the same crystal element 9,
In order to distinguish the OFF state in the drawing, the same crystal element in the ON state is shown with diagonal lines, and the same crystal element in the OFF state is shown in white.

第2図a図に示すように第1と第4の二次電気
光学結晶素子9,12は第1偏光ビームスプリツ
ター4へ直線偏光ビーム1a,1bを集光し第1
切換光路A1上へ重畳し出射する場合にONとなる
同結晶素子であり、同b図に示すように第2と第
3の二次電気光学結晶素子10,11は第2偏光
ビームスプリツター5へ直線偏光ビーム1a,1
bを集光し第2切換光路A2上へ重畳し出射する
場合にONとなる同結晶素子である。
As shown in FIG. 2a, the first and fourth secondary electro-optic crystal elements 9, 12 converge the linearly polarized beams 1a, 1b onto the first polarized beam splitter 4.
These are the same crystal elements that are turned on when superimposed on the switching optical path A1 and emitted, and as shown in Figure b, the second and third secondary electro-optic crystal elements 10 and 11 are the second polarizing beam splitter. Linearly polarized beam 1a, 1 to 5
This crystal element turns on when condensing the light beam b and superimposing it onto the second switching optical path A2 and emitting it.

第1二次電気光学結晶素子9は第1と第2偏光
ビームスプリツター4,5間、即ち第1偏光ビー
ムスプリツター4で偏光分離され直進して第2偏
光ビームスプリツター5へ向かう直線偏光ビーム
1bの光路上に配され、又第2二次電気光学結晶
素子10は上記第1二次電気光学結晶素子9で偏
光方向が変換されることなく第2偏光ビームスプ
リツター5へ入射され直進する直線偏光ビーム1
aの光路上に配され、又第3二次電気光学結晶素
子11は上記第1偏光ビームスプリツター4で偏
光分離されて直角方向へ出射され、ミラー6,7
を経て第2偏光ビームスプリツター5へ向かう直
線偏光ビーム1aの光路上に配され、又第4二次
電気光学結晶素子12は第2と第1の偏光ビーム
スプリツター5,4間即ち上記第3二次電気光学
結晶素子11で偏光方向が変換されることなく第
2偏光ビームスプリツター5に入射され直角方向
に反射されて第1偏光ビームスプリツター4に向
かう直線偏光ビーム1aの光路上に配される。
The first secondary electro-optic crystal element 9 is provided between the first and second polarizing beam splitters 4 and 5, that is, the linearly polarized light is polarized by the first polarizing beam splitter 4 and travels straight to the second polarizing beam splitter 5. The second secondary electro-optic crystal element 10 is arranged on the optical path of the beam 1b, and the polarization direction of the second electro-optic crystal element 10 is not changed by the first secondary electro-optic crystal element 9 and is incident on the second polarizing beam splitter 5 and goes straight. linearly polarized beam 1
The third secondary electro-optic crystal element 11 is polarized by the first polarizing beam splitter 4 and emitted in a perpendicular direction, and is emitted from the mirrors 6 and 7.
The fourth secondary electro-optic crystal element 12 is disposed on the optical path of the linearly polarized beam 1a heading towards the second polarized beam splitter 5 through the 3. On the optical path of the linearly polarized beam 1a, which is incident on the second polarized beam splitter 5 without having its polarization direction converted by the secondary electro-optic crystal element 11, is reflected in the right angle direction, and heads toward the first polarized beam splitter 4. Allotted.

8は上記第2二次電気光学結晶素子10で偏光
方向が変換されて出射する直線偏光ビーム1aを
Uターンさせて同第2偏光ビームスプリツター5
に再入射させる直角プリズム、13は第4二次電
気光学結晶素子12で偏光方向が変換されて第1
偏光ビームスプリツター4へ向かう直線偏光ビー
ム1bの光路上に設けられた半波長板、14は第
1二次電気光学結晶素子9で偏光方向が変換され
第2偏光ビームスプリツター5で直角方向へ反射
されて出射されミラー7,6を経て第1偏光ビー
ムスプリツター4に向かう直線偏光ビーム1aの
光路上に配された半波長板であり、両半波長板1
3,14はこれを通過する光ビームの偏光方向を
変換(通過する直線偏光ビームが1aである時は
1bに、同1bである時は1aに変換)する作用
を有する。
Reference numeral 8 denotes a second polarized beam splitter 5 which converts the polarization direction in the second secondary electro-optic crystal element 10 and makes a U-turn on the emitted linearly polarized beam 1a.
A rectangular prism 13 is used to convert the polarization direction of the light into the fourth secondary electro-optic crystal element 12.
A half-wave plate 14 is provided on the optical path of the linearly polarized beam 1b heading toward the polarizing beam splitter 4, and the polarization direction is converted by the first secondary electro-optic crystal element 9, and then directed to the right angle direction by the second polarizing beam splitter 5. It is a half-wave plate disposed on the optical path of the linearly polarized beam 1a that is reflected and emitted and goes to the first polarized beam splitter 4 via mirrors 7 and 6, and both half-wave plates 1
3 and 14 have the function of converting the polarization direction of the light beam passing through them (when the linearly polarized beam passing therethrough is 1a, it is converted to 1b, and when it is 1b, it is converted to 1a).

更に上記第2電気光学結晶素子10の出射光路
上に第1電気光学結晶素子9のONによつて出射
される散乱光を阻止する偏光素子15を配すると
共に、上記第4電気光学素子12の出射光側に配
した上記半波長板13の出射光路上に上記第4電
気光学結晶素子12のONによつて出射される散
乱光を阻止する別の偏光素子16を配する。作用
を有する偏光素子である。即ち、この偏光素子1
5,16は紙面に対し垂直方向又は水平方向の直
線偏光ビーム1a又は1bの何れか一方のみの通
過を許容する。換言すれば何れか一方の偏光方向
の光ビーム以外の光ビームの通過を阻止する。
Further, a polarizing element 15 is disposed on the output optical path of the second electro-optic crystal element 10 to block scattered light emitted when the first electro-optic crystal element 9 is turned on, and a polarizing element 15 is arranged on the output optical path of the second electro-optic crystal element 10. Another polarizing element 16 is arranged on the output optical path of the half-wave plate 13 disposed on the output light side to block the scattered light emitted when the fourth electro-optic crystal element 12 is turned on. It is a polarizing element that has a function. That is, this polarizing element 1
5 and 16 allow passage of only either the linearly polarized beam 1a or 1b in the direction perpendicular or horizontal to the plane of the paper. In other words, the passage of light beams other than the light beams in one of the polarization directions is blocked.

本発明を更に動作の説明と共に詳述すれば次の
通りである。
The present invention will be further described in detail along with an explanation of its operation as follows.

既述のように、第2図a図は第1、第4二次電
気光学結晶素子9,12にスイツチ駆動用電源1
8より所定の電圧を印加して第1偏光ビームスプ
リツター4を光出射素子として第1切換光路A1
へ直線偏光ビーム1aと1bを重畳し出射光ビー
ム2として出力する動作状態を示している。
As already mentioned, FIG.
8, a predetermined voltage is applied to the first polarizing beam splitter 4 as a light emitting element, and the first switching optical path A 1 is set.
This shows an operating state in which linearly polarized beams 1a and 1b are superimposed and output as an output light beam 2.

同図において、先ず入射光路Aから入射光ビー
ム1が第1偏光ビームスプリツター4へ入射さ
れ、該ビームスプリツター4により直進方向と直
角方向の二つの直線偏光ビーム1a,1bに分れ
る。
In the figure, an incident light beam 1 first enters a first polarized beam splitter 4 from an incident optical path A, and is split by the beam splitter 4 into two linearly polarized beams 1a and 1b, one in a straight direction and one in a perpendicular direction.

直角方向に出射された直線偏光ビーム1aはミ
ラー6及び7を経て、電圧を印加されていない第
3二次電気光学結晶素子11により偏光方向の変
換を受けることなく通過し、第2偏光ビームスプ
リツター5へ入射し、その偏光方向によつて直角
方向へ出射し第4二次電気光学結晶素子12へ入
射する。この結晶素子12には電圧が印加されて
ON状態となつているため、直線偏光ビーム1a
は偏光方向が変換されて直線偏光ビーム1bとな
つて出射する。この偏光ビーム1bは更に半波長
板13を通過する際、偏光方向が再変換されて元
の直線偏光ビーム1aに戻され、偏光素子16を
経て第1偏光ビームスプリツター4へ入射する。
The linearly polarized beam 1a emitted in the orthogonal direction passes through the mirrors 6 and 7 without being changed in polarization direction by the third secondary electro-optic crystal element 11 to which no voltage is applied, and is sent to the second polarized beam splitter. The light is incident on the twine 5, is emitted in a perpendicular direction depending on its polarization direction, and is incident on the fourth secondary electro-optic crystal element 12. A voltage is applied to this crystal element 12.
Since it is in the ON state, the linearly polarized beam 1a
The polarization direction of the beam is changed and the beam is emitted as a linearly polarized beam 1b. When this polarized beam 1b further passes through the half-wave plate 13, its polarization direction is converted again to the original linearly polarized beam 1a, which passes through the polarizing element 16 and enters the first polarized beam splitter 4.

この直線偏光ビーム1aはその偏光方向によつ
て該ビームスプリツター4から直角方向へ反射さ
れ、第1切換光路A1上へ出射されるに至る。
Depending on its polarization direction, this linearly polarized beam 1a is reflected from the beam splitter 4 in a perpendicular direction and is emitted onto the first switching optical path A1 .

第4二次電気光学結晶素子12のONによつて
発生した散乱光1b′は偏光素子16により完全に
遮断される。
Scattered light 1b' generated by turning on the fourth secondary electro-optic crystal element 12 is completely blocked by the polarizing element 16.

尚第2図a図において光ビームを第1切換光路
A1上へ出力することだけを意図し、後述する第
2図b図における散乱光の同光路A1上への出射
を無視した場合には、図中二次電気光学結晶素子
12及び半波長板13並びに偏光素子16を用い
ずに、第2ビームスプリツター5で反射して直角
方向へ出射する直線偏光ビーム1aを上記偏光方
向の再変換を行うことなく第1偏光ビームスプリ
ツター4へ入射しても光路A1上へ出射させるこ
とができる。
In addition, in Figure 2a, the light beam is switched to the first switching optical path.
If you only intend to output the light onto the optical path A 1 and ignore the emission of the scattered light onto the same optical path A 1 in FIG. Without using the plate 13 or the polarizing element 16, the linearly polarized beam 1a reflected by the second beam splitter 5 and emitted in the perpendicular direction is incident on the first polarized beam splitter 4 without reconverting the polarization direction. Even if the light beam is used, it can be emitted onto the optical path A1 .

他方、同a図において、第1偏光ビームスプリ
ツター4によつて直進方向に分岐された直線偏光
ビーム1bはON状態にある第1二次電気光学結
晶素子9を通過することによつて偏光方向が変換
され、直線偏光ビーム1aとなつて第2偏光ビー
ムスプリツター5へ入射され、その偏光方向によ
り該ビームスプリツター5から直角方向へ出射さ
れ、ミラー7及び6を経て半波長板14に入射
し、該半波長板14の通過によつてその偏光方向
が変換され、直線偏光ビーム1bとなつて第1偏
光ビームスプリツター4へ入射する。従つてこの
偏光ビーム1bはその偏光方向によつて該第1偏
光ビームスプリツター4を直進し先の直線偏光ビ
ーム1aに重畳され、出射光ビーム2として第1
切換光路A1へ出射されるに至る。
On the other hand, in Figure a, the linearly polarized beam 1b split in the straight direction by the first polarized beam splitter 4 changes its polarization direction by passing through the first secondary electro-optic crystal element 9 which is in the ON state. is converted into a linearly polarized beam 1a, which is incident on the second polarizing beam splitter 5. Depending on the polarization direction, it is emitted from the beam splitter 5 in a perpendicular direction, passes through mirrors 7 and 6, and enters the half-wave plate 14. The polarization direction of the light is changed by passing through the half-wave plate 14, and the light beam becomes a linearly polarized beam 1b and enters the first polarized beam splitter 4. Therefore, depending on its polarization direction, this polarized beam 1b travels straight through the first polarized beam splitter 4 and is superimposed on the linearly polarized beam 1a, and becomes the first output beam 2.
The light is emitted to the switching optical path A1 .

この時、ON状態にある第1二次電気光学結晶
素子9を通過の際、生じた散乱光1b′は第2偏光
ビームスプリツター5を直進し、OFF状態にあ
る第2二次電気光学結晶素子10及び直角プリズ
ム8を経て偏光素子15に至るも、これにより完
全阻止され、この散乱光が第2偏光ビームスプリ
ツター5へ入つて後述する第2切換光路A2上へ
の出力する事態は回避できる。
At this time, when passing through the first secondary electro-optic crystal element 9 which is in the ON state, the generated scattered light 1b' passes straight through the second polarizing beam splitter 5, and passes through the second secondary electro-optic crystal element 9 which is in the OFF state. Although it reaches the polarizing element 15 through the element 10 and the right-angle prism 8, this completely blocks the scattered light from entering the second polarizing beam splitter 5 and outputting it onto the second switching optical path A2 , which will be described later. It can be avoided.

上述のように、入射光路Aから第1偏光ビーム
スプリツター4へ入射し、分離された二つの直線
偏光ビーム1a,1bは二次電気光学結晶素子
9,12との協働にて第2偏光ビームスプリツタ
ー5を経由し、第1偏光ビームスプリツター4へ
再集光され上記第1切換光路A1上へ重畳し出射
させることができ、光路Aから入射された光ビー
ムの略100%(散乱光による光損失分がある)を
光路切換に用いることができる。
As described above, the two linearly polarized beams 1a and 1b which enter the first polarized beam splitter 4 from the incident optical path A and are separated become second polarized beams in cooperation with the secondary electro-optic crystal elements 9 and 12. Via the beam splitter 5, it is refocused on the first polarizing beam splitter 4, and can be superimposed and emitted onto the first switching optical path A1 , so that approximately 100% ( (there is an optical loss due to scattered light) can be used for optical path switching.

更に、第2図b図は第1図a図の場合とは逆
に、第1、第4二次電気光学結晶素子9,12を
OFFにし、第2、第3二次電気光学結晶素子1
0,11をONにし、第2偏光ビームスプリツタ
ー5を光出射素子として第2切換光路A2へ両直
線偏光ビーム1aと1bを重畳し出射光ビーム3
として出力する切換動作状態を示している。
Furthermore, in FIG. 2b, the first and fourth secondary electro-optic crystal elements 9 and 12 are used, contrary to the case in FIG. 1a.
Turn off the second and third secondary electro-optic crystal elements 1
0 and 11 are turned on, and the second polarized beam splitter 5 is used as a light emitting element to superimpose both linearly polarized beams 1a and 1b onto the second switching optical path A2 to output an output light beam 3.
This shows the switching operation status output as .

前記と同様、入射光路Aから入射された入射光
ビーム1は第1偏光ビームスプリツター4により
直進方向と直角方向の直線偏光ビーム1a,1b
に分離し出射される。
Similarly to the above, the incident light beam 1 from the incident optical path A is converted into linearly polarized beams 1a and 1b in the direction perpendicular to the straight direction by the first polarized beam splitter 4.
It is separated and emitted.

先ず第1偏光ビームスプリツター4から直角方
向に出射された直線偏光ビーム1aはミラー6,
7を経てON状態にある二次電気光学結晶素子1
1に入射され、通過の際その偏光方向が変換さ
れ、直線偏光ビーム1bとなつて第2偏光ビーム
スプリツター5へ入射する。
First, the linearly polarized beam 1a emitted from the first polarized beam splitter 4 in the perpendicular direction is sent to the mirror 6,
Secondary electro-optic crystal element 1 in ON state after 7
1, its polarization direction is changed as it passes through, and it becomes a linearly polarized beam 1b and enters the second polarized beam splitter 5.

而してこの光ビーム1bはその偏光方向により
該第2偏光ビームスプリツター5を直進し、第2
切換光路A2へ出射光ビーム3の二分の一のビー
ムとして出射されるに至る。この時ON状態にあ
る第3二次電気光学結晶素子11で生じた散乱光
1a′は第2偏光ビームスプリツター5で反射され
OFF状態にある第4二次電気光学結晶素子12
及び半波長板13を通過し(散乱光1b′となり)
偏光素子16に至り、これにより完全に遮断され
る。
According to its polarization direction, this light beam 1b travels straight through the second polarized beam splitter 5, and
The light beam is emitted to the switching optical path A2 as a half beam of the emitted light beam 3. At this time, the scattered light 1a' generated by the third secondary electro-optic crystal element 11 which is in the ON state is reflected by the second polarizing beam splitter 5.
Fourth secondary electro-optic crystal element 12 in OFF state
and passes through the half-wave plate 13 (becomes scattered light 1b')
The light reaches the polarizing element 16, where it is completely blocked.

他方同b図において、第1偏光ビームスプリツ
ター4から直進方向へ出射された直線偏光ビーム
1bはOFF状態にある第1偏光ビームスプリツ
ター9を偏光方向の変換を受けぬまま通過して第
2偏光ビームスプリツター5へ入射し、その偏光
方向により直進方向へ出射されてON状態にある
第2二次電気光学結晶素子10に入り、該素子1
0にて直線偏光ビーム1aに変換され、直角プリ
ズム8でUターンされて偏光素子15を通過し第
2偏光ビームスプリツター5へ入射する。
On the other hand, in Figure b, the linearly polarized beam 1b emitted from the first polarized beam splitter 4 in the straight direction passes through the first polarized beam splitter 9, which is in the OFF state, without undergoing any change in polarization direction, and passes through the second polarized beam splitter 9 without undergoing any change in polarization direction. The light enters the polarization beam splitter 5, and is emitted in a straight direction depending on the polarization direction, and enters the second secondary electro-optic crystal element 10 which is in the ON state.
0, it is converted into a linearly polarized beam 1a, is U-turned by a right angle prism 8, passes through a polarizing element 15, and enters a second polarized beam splitter 5.

而してこの光ビーム1aはその偏光方向によつ
て第2偏光ビームスプリツター5にて反射し先の
直線偏光ビーム1bに重畳され、出射光ビーム2
として第2切換光路A2へ出射されるに至る。
According to its polarization direction, this light beam 1a is reflected by the second polarization beam splitter 5 and is superimposed on the linearly polarized light beam 1b, resulting in an output light beam 2.
As a result, the light is emitted to the second switching optical path A2 .

この時ON状態にある第2二次電気光学結晶素
子10で生じた散乱光15′は第2偏光ビームス
プリツター5の手前で偏光素子15により完全に
遮断される。
At this time, the scattered light 15' generated by the second secondary electro-optic crystal element 10 which is in the ON state is completely blocked by the polarizing element 15 before the second polarizing beam splitter 5.

上述のように、入射光路Aから第1偏光ビーム
スプリツター4へ入射し、二方向に分離された二
つの直線偏光ビーム1a,1bは二次電気光学結
晶素子10,11との協働にて第2偏光ビームス
プリツター5へ再集光してこれを第2切換光路
A2上へ重畳し出射させることができ、光路Aか
ら入射された光ビーム1の略100%を光路切換用
として供することができる。
As described above, the two linearly polarized beams 1a and 1b that enter the first polarized beam splitter 4 from the incident optical path A and are separated into two directions are split in cooperation with the secondary electro-optic crystal elements 10 and 11. The light is refocused onto the second polarized beam splitter 5 and sent to the second switching optical path.
It can be superimposed onto A 2 and emitted, and approximately 100% of the light beam 1 incident from the optical path A can be used for optical path switching.

本発明は光路切換素子として適性を有する二次
電気光学結晶素子の二次電気光学効果及び偏光ビ
ームスプリツターの偏光分離作用を巧みに採用
し、第1偏光ビームスプリツターを第1切換光路
用の光出射素子、第2偏光ビームスプリツターを
第2切換光路用の光出射素子としつつ、第1偏光
ビームスプリツターを入射光素子として共用させ
るようにして、二組の電気光学結晶素子を交互に
ON、OFFさせることより上記第1と第2の各切
換光路上へ入射光ビームの全量を出射するように
した光路切換スイツチをはじめて提供するもので
ある。
The present invention cleverly employs the secondary electro-optic effect of a secondary electro-optic crystal element that is suitable as an optical path switching element and the polarization separation effect of a polarizing beam splitter, and uses the first polarizing beam splitter as a first switching optical path. The two sets of electro-optic crystal elements are alternately used so that the light output element and the second polarized beam splitter are used as the light output element for the second switching optical path, and the first polarized beam splitter is also used as the input optical element.
The present invention provides for the first time an optical path switching switch which outputs the entire amount of the incident light beam onto each of the first and second switching optical paths by turning it on and off.

対比例に示すように、電気光学結晶素子と偏光
ビームスプリツターとを利用する光路切換スイツ
チでは一方向の偏光方向を有する直線偏光ビーム
を偏光方向を交互に変換して光路切換用として供
することを基本思想とするもので、電気光学結晶
素子がONのときの光散乱によるクロストークの
増大と入射光量の50%の光損失は回避できないと
されていたが、本発明は第1、第2の二個の偏光
ビームスプリツターの夫々を二つの切換光路の出
射窓口とし、一方を入射光路の窓口として利用
し、これと電気光学結晶素子との組合せにて上記
対比例の課題を解決するものであつて、前記のよ
うに入射光ビームの略全量を第1又は第2の各切
換光路上へ導いて光切換動作を得るようにした高
感度、高信頼の光路切換スイツチを提供するもの
である。
As shown in the comparison, an optical path switching switch that uses an electro-optic crystal element and a polarizing beam splitter alternately converts the polarization direction of a linearly polarized beam having one polarization direction and uses it for optical path switching. The basic idea is that it is impossible to avoid an increase in crosstalk due to light scattering and a light loss of 50% of the amount of incident light when the electro-optic crystal element is ON. Each of the two polarizing beam splitters is used as an exit window for the two switching optical paths, and one is used as a window for the input optical path, and by combining this with an electro-optic crystal element, the problem of the above comparison example is solved. Another object of the present invention is to provide a highly sensitive and highly reliable optical path switching switch which, as described above, guides substantially the entire amount of the incident light beam onto each of the first or second switching optical paths to obtain optical switching operation. .

従来の如く単一の偏光ビームスプリツターから
第1切換光路と第2切換光路上へ光ビームを出力
する方式では構造上散乱光を除去せんとしてこれ
を防止するための素子を配置(当然正常な光ビー
ムの光路上に配置される)すると一方の光路切換
えの場合は良いが他方の光路切換えの場合は本来
必要とする正常な光ビームまで遮断し光路切換目
的を遂行できなくなるため、結果として散乱光を
除去できず、これによるクロストークを防止する
ことは殆んど不可能とされていた。
In the conventional method of outputting a light beam from a single polarizing beam splitter to the first switching optical path and the second switching optical path, an element is installed to prevent the scattered light from being removed due to its structure (of course, it is not possible to remove the scattered light). If the light path is placed on the optical path of the light beam), it may be possible to switch one optical path, but if the other optical path is switched, the normal light beam that is originally required will be blocked, making it impossible to accomplish the purpose of switching the optical path, resulting in scattering. Since light cannot be removed, it has been considered almost impossible to prevent crosstalk caused by this.

而して本発明は第1切換光路A1上へ直線偏光
ビーム1a,1bを合成し出力するための素子と
して専用の第1偏光ビームスプリツター4を備え
させると共に、第2切換光路A2上へ直線偏光ビ
ーム1a,1bを合成し出力するための素子とし
て専用の第2偏光ビームスプリツター5を備えさ
せる光切換方式とし、別々の素子から光路切換え
に供する光ビーム2,3を出射する方式を基本構
成とし採用したので、第1切換光路A1へ光ビー
ム1a,1bを導く通路と、第2切換光路A2
光ビーム1a,1bを導く通路とを、夫々別々の
通路にする方式を採ることが可能となり、それ故
に第1偏光ビームスプリツター4から第1切換光
路A1上へ光ビーム2を出射している時には散乱
光を第2偏光ビームスプリツター5に至る手前の
通路で遮断することができ、同様に第2偏光ビー
ムスプリツター5から第2切換光路A2上へ光ビ
ーム3を出射している時には散乱光を第1偏光ビ
ームスプリツター4に至る手前の通路で遮断する
ことができ、例えば、第2図で例示される如き、
光路切換スイツチにおける致命的な欠点とされて
いた光散乱によるクロストーク防止に有効に対処
し得る光路切換スイツチの実現が可能となつた。
Therefore, the present invention includes a dedicated first polarized beam splitter 4 as an element for combining and outputting the linearly polarized beams 1a and 1b onto the first switching optical path A1 , and also provides a first polarizing beam splitter 4 on the second switching optical path A2 . An optical switching method is adopted in which a dedicated second polarized beam splitter 5 is provided as an element for combining and outputting the linearly polarized beams 1a and 1b, and the optical beams 2 and 3 used for optical path switching are emitted from separate elements. Since the basic configuration is adopted, the path for guiding the light beams 1a and 1b to the first switching optical path A1 and the path for guiding the light beams 1a and 1b to the second switching optical path A2 are separate paths. Therefore, when the light beam 2 is emitted from the first polarizing beam splitter 4 onto the first switching optical path A1 , the scattered light is transmitted in the path before reaching the second polarizing beam splitter 5. Similarly, when the light beam 3 is emitted from the second polarizing beam splitter 5 onto the second switching optical path A2 , the scattered light is blocked by the path before reaching the first polarizing beam splitter 4. For example, as illustrated in FIG.
It has now become possible to realize an optical path switching switch that can effectively prevent crosstalk caused by light scattering, which has been considered a fatal drawback in optical path switching switches.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b図は本発明と対比される光路切換
スイツチの原理を素子配列を以つて示す斜視図で
あり、同a図は電気光学結晶素子に電圧を印加し
ていない場合の光路切換状態、同b図は同電圧を
印加した場合の光路切換状態を示す。第2図a,
b図は本発明の実施例を示す光路切換スイツチの
原理を素子配列を以つて示す斜視図であり、同a
図は二組の二次電気光学結晶素子の一方の組の同
結晶素子への電圧印加にて第1偏光ビームスプリ
ツターから第1切換光路上へ光ビームを出射する
場合の光路切換状態を示し、同b図は他方の組の
同結晶素子への電圧印加にて第2偏光ビームスプ
リツターから第2切換光路上へ光ビームを出射す
る光路切換状態を示す。 A……入射光路、A1……第1出射光路、A2
…第2出射光路、1……入射光ビーム(入力)、
1a,1b……直線偏光ビーム、2……第1出射
光路への出射光ビーム(出力)、3……第2出射
光路への出射光ビーム、4……入射光路の光入射
素子及び第1出射光路への光出射素子を共用する
第1偏光ビームスプリツター、5……第2出射光
路への光出射素子たる第2偏光ビームスプリツタ
ー、6,7……反射ミラー、8……直角プリズ
ム、9,14……第1切換光路への光路切換を行
う場合にON状態となる第1、第4二次電気光学
結晶素子、11,12……第2切換光路への光路
切換を行う場合にON状態となる第2、第3二次
電気光学結晶素子、13,14……半波長板、1
5,16……偏光素子、18……電源。
Figures 1a and 1b are perspective views showing the principle of an optical path switching switch in comparison with the present invention using element arrangement, and Figure 1a shows optical path switching when no voltage is applied to the electro-optic crystal element. Figure b shows the optical path switching state when the same voltage is applied. Figure 2a,
Figure b is a perspective view showing the principle of an optical path switching switch according to an embodiment of the present invention using an element arrangement;
The figure shows an optical path switching state when a light beam is emitted from the first polarizing beam splitter onto the first switching optical path by applying a voltage to one of two sets of secondary electro-optic crystal elements. , and Figure b shows an optical path switching state in which the light beam is emitted from the second polarizing beam splitter onto the second switching optical path by applying a voltage to the same crystal element of the other set. A...Incoming optical path, A1 ...First output optical path, A2 ...
...Second output optical path, 1...Incoming light beam (input),
1a, 1b...Linearly polarized beam, 2... Outgoing light beam (output) to the first outgoing optical path, 3... Outgoing light beam to the second outgoing optical path, 4... Light input element of the incoming optical path, and A first polarizing beam splitter that shares a light emitting element to the first emitting optical path, 5... A second polarizing beam splitter that serves as a light emitting element to the second emitting optical path, 6, 7... Reflecting mirror, 8 ...Right angle prism, 9, 14...First and fourth secondary electro-optic crystal elements that are turned on when switching the optical path to the first switching optical path, 11, 12... Optical path to the second switching optical path Second and third secondary electro-optic crystal elements, 13, 14, which are in the ON state when switching is performed, half-wave plate, 1
5, 16...Polarizing element, 18...Power source.

Claims (1)

【特許請求の範囲】[Claims] 1 同一光軸上に各々の偏光分離面が互いに平行
となるように並置した第1偏光ビームスプリツタ
ーと、第2偏光ビームスプリツターとを備え、該
第1偏光ビームスプリツターを第1切換光路用の
光出射素子とし、上記第2偏光ビームスプリツタ
ーを第2切換光路用の光出射素子とすると共に上
記第1偏光ビームスプリツターを光入射素子とし
て共用し、上記第1、第2切換光路と入射光路間
に該第1偏光ビームスプリツターへ入射し分離さ
れた二つの直線偏光ビームを「第2偏光ビームス
プリツターを経由させて第1編光ビームスプリツ
ターへ再集光し上記第1切換光路上へ重畳し出射
する第1経路」と、「第2偏光ビームスプリツタ
ーへ集光し上記第2切換光路上へ重畳し出射する
第2経路」とを構成し、上記第1経路上に偏光面
の90゜回転素子である第1、第4電気光学結晶素
子を備え、上記第2経路上に偏光面の90゜回転素
子である第2、第3電気光学結晶素子を備え、第
1電気光学結晶素子は第1と第2偏光ビームスプ
リツター間であつて第1偏光ビームスプリツター
で偏光分離され直進して第2偏光ビームスプリツ
ターへ向かう上記第1経路の直線偏光ビームの光
路上に配し、又第2電気光学結晶素子は上記第1
電気光学結晶素子で偏光方向が変換されることな
く第2偏光ビームスプリツターへ入射され直進す
る上記第2経路の直線偏光ビームの光路上に配さ
れ、又第3電気光学結晶素子は上記第1偏光ビー
ムスプリツターで偏光分離されて直角方向へ出射
されて第2偏光ビームスプリツターへ向かう上記
第2経路の直線偏光ビームの光路上に配され、又
第4電気光学結晶素子は第2と第1の偏光ビーム
スプリツター間であつて上記第3電気光学結晶素
子で偏光方向が変換されることなく第2偏光ビー
ムスプリツターに入射され直角方向に反射されて
第1偏光ビームスプリツターへ向かう上記第1経
路の直線偏光ビームの光路上に配し、更に上記第
4電気光学結晶素子で偏光方向が変換されて第1
偏光ビームスプリツターへ向かう上記第1経路の
直線偏光ビームの光路上に半波長板を配すると共
に、上記第1電気光学結晶素子で偏光方向が変換
され第2偏光ビームスプリツターで直角方向へ反
射されて出射され上記第1偏光ビームスプリツタ
ーに向かう上記第1経路の直線偏光ビームの光路
上に半波長板を配し、更に上記第2電気光学結晶
素子の出射光路上に第1電気光学結晶素子のON
によつて出射される散乱光を阻止する偏光素子を
配すると共に、上記第4電気光学結晶素子の出射
光側に配した上記半波長板の出射光路上に上記第
4電気光学結晶素子のONによつて出射される散
乱光を阻止する偏光素子を配し、上記第1、第4
電気光学結晶素子の組と上記第2、第3電気光学
結晶素子の組とを交互にON、OFFにすることに
より上記両経路の切換えを行う構成としたことを
特徴とする光路切換スイツチ。
1 A first polarizing beam splitter and a second polarizing beam splitter are arranged side by side on the same optical axis so that their respective polarization separation planes are parallel to each other, and the first polarizing beam splitter is connected to a first switching optical path. The second polarized beam splitter is used as a light output element for the second switching optical path, and the first polarized beam splitter is also used as a light input element, and the first polarized beam splitter is used as a light input element for the second switching optical path. The two linearly polarized beams incident on the first polarized beam splitter and separated between the incident optical paths are refocused on the first polarized beam splitter via the second polarized beam splitter. A first path that superimposes light onto the switching optical path and emits the light, and a second path that focuses the light onto a second polarizing beam splitter, superimposes it onto the second switching optical path, and emits the light, and a first and a fourth electro-optic crystal element which is an element for rotating the plane of polarization by 90 degrees on the second path; second and third electro-optic crystal elements which are elements for rotating the plane of polarization by 90 degrees on the second path; 1. An electro-optic crystal element is provided between the first and second polarizing beam splitters, and the light of the linearly polarized beam on the first path is separated by the first polarizing beam splitter and goes straight to the second polarizing beam splitter. The second electro-optic crystal element is placed on the road, and the second electro-optic crystal element is placed on the road.
The electro-optic crystal element is disposed on the optical path of the linearly polarized beam of the second path which enters the second polarizing beam splitter and travels straight without its polarization direction being changed, and the third electro-optic crystal element The fourth electro-optic crystal element is disposed on the optical path of the linearly polarized beam of the second path, which is polarized by the polarizing beam splitter and emitted in the right angle direction and heads toward the second polarized beam splitter. The above polarized beam splitter between the first polarized beam splitters is incident on the second polarized beam splitter without having its polarization direction converted by the third electro-optic crystal element, is reflected in a perpendicular direction, and is directed toward the first polarized beam splitter. It is placed on the optical path of the linearly polarized beam of the first path, and the polarization direction is further converted by the fourth electro-optic crystal element.
A half-wave plate is disposed on the optical path of the linearly polarized beam on the first path toward the polarizing beam splitter, and the polarization direction is converted by the first electro-optic crystal element and reflected in a perpendicular direction by the second polarizing beam splitter. A half-wave plate is disposed on the optical path of the linearly polarized beam of the first path which is emitted from the polarized beam and heads toward the first polarized beam splitter, and a first electro-optic crystal is further disposed on the optical path of the linearly polarized beam of the second electro-optic crystal element. Element ON
A polarizing element for blocking scattered light emitted by the fourth electro-optic crystal element is disposed on the output optical path of the half-wave plate disposed on the output light side of the fourth electro-optic crystal element. A polarizing element is arranged to block the scattered light emitted by the first and fourth
An optical path switching switch characterized in that the two paths are switched by alternately turning on and off a set of electro-optic crystal elements and a set of second and third electro-optic crystal elements.
JP11053183A 1983-06-20 1983-06-20 Optical path changeover switch Granted JPS602920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11053183A JPS602920A (en) 1983-06-20 1983-06-20 Optical path changeover switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11053183A JPS602920A (en) 1983-06-20 1983-06-20 Optical path changeover switch

Publications (2)

Publication Number Publication Date
JPS602920A JPS602920A (en) 1985-01-09
JPS6319846B2 true JPS6319846B2 (en) 1988-04-25

Family

ID=14538164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11053183A Granted JPS602920A (en) 1983-06-20 1983-06-20 Optical path changeover switch

Country Status (1)

Country Link
JP (1) JPS602920A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072290Y2 (en) * 1987-09-15 1995-01-25 アイシン精機株式会社 Power seat equipment
US4917456A (en) * 1988-07-15 1990-04-17 At&T Bell Laboratories Optical crossover network
JPH0636947U (en) * 1992-10-23 1994-05-17 池田物産株式会社 Vehicle seat slide device

Also Published As

Publication number Publication date
JPS602920A (en) 1985-01-09

Similar Documents

Publication Publication Date Title
JP4365680B2 (en) Wavelength selective optical switch
US4516837A (en) Electro-optical switch for unpolarized optical signals
US5319477A (en) Compact polarization independent optical switching units
US8203691B2 (en) High extinction ratio liquid crystal optical switch
JPS5854322A (en) Light switch
JPS6197629A (en) Optical switch
US20050174639A1 (en) Fast all-optical switches and attenuators
WO1984000856A1 (en) Laser amplifier buffer
US6525848B2 (en) Switchable interleaved optical channel separator and isolator device and optical systems utilizing same
US6920258B2 (en) Optical switch
JPS6319846B2 (en)
US20020109918A1 (en) Polarization beam splitter/combiner
JPH027026A (en) Optical changeover switch
JPH085976A (en) Variable wavelength optical filter
EP1096277A2 (en) Improved optical polarisation converter
JPH01140134A (en) Optical switch
JPS61282824A (en) Optical switch
JPS6318171B2 (en)
JPS6190127A (en) Line light valve
JPS6138934A (en) Switch of optical path
JP3378629B2 (en) Optical switch for parallel transmission
JPS6128931A (en) Optical path switching mechanism
JPH05113582A (en) Optical switch
JPS60188922A (en) Optical switch
JPH0380287B2 (en)