JPS63197630A - Production of biaxially stretched polyester film - Google Patents

Production of biaxially stretched polyester film

Info

Publication number
JPS63197630A
JPS63197630A JP2970587A JP2970587A JPS63197630A JP S63197630 A JPS63197630 A JP S63197630A JP 2970587 A JP2970587 A JP 2970587A JP 2970587 A JP2970587 A JP 2970587A JP S63197630 A JPS63197630 A JP S63197630A
Authority
JP
Japan
Prior art keywords
film
polyester
stretching
stretched
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2970587A
Other languages
Japanese (ja)
Inventor
Kenji Tsunashima
研二 綱島
Seizo Aoki
青木 精三
Masayoshi Asakura
正芳 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2970587A priority Critical patent/JPS63197630A/en
Publication of JPS63197630A publication Critical patent/JPS63197630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To produce a film excellent in easy adhesiveness, by a method wherein a polyester pellet is melted in gas containing at least 1 vol.% of carbon dioxide to be formed into a film by extrusion and the extruded film is stretched 2.0- below 4.5 times in the longitudinal direction and subsequently stretched in the lateral direction to be subjected to heat treatment. CONSTITUTION:A polyester pellet is supplied to an extruder under an atmosphere containing at least 1 vol.% or more of CO2 and melted. The molten polyester sent out from the extruder passes through a filter and is quantitatively supplied by a gear pump to be guided to a molding die and emitted from a die slit to form a molten sheet which is, in turn, brought into close contact with a casting drum for cooling and solidifying said sheet to obtain a molded sheet. There is no special limit in a stretching system and a no-nip system or the like can be arbitrarily selected. The stretching magnification in the longitudinal direction is set to a range of 2.0- below 4.5 times. When the stretching magnification is too high, a polyester film excellent in adhesiveness and dielectric breakdown is not obtained. Stretching temp. is set to the glass transition temp. of the polyester pellet or more. Next, the stretching in the lateral direction and heat treatment are performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリエステルフィルムの製造方法に関するも
のであり、更に詳しくは、接着性に優れたフィルムの製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a polyester film, and more particularly to a method for producing a film with excellent adhesive properties.

[従来の技術] ポリエステルフィルムと他のもの、おるいは自分自身と
の接着性を向上させようという試みは、数多くあり、例
えば、接着性に優れた樹脂を該ポリエステルフィルムの
表面にコーティングあるいは゛複合する方法(例えば、
特開昭46−1123号など)、接着性に優れた樹脂を
該ポリエステルに添加する方法(例えば、特公昭5B−
25331号など)、さらに該ポリエステルフィルムの
表面をコロナ放電処理する方法(例えば特公昭53−3
1509号など)、プラズマ処理する方法(例えば特公
昭59−7725号など)などが提案されている。
[Prior Art] There have been many attempts to improve the adhesion between polyester films and other objects or themselves. How to combine (for example,
JP-A No. 46-1123, etc.), a method of adding a resin with excellent adhesiveness to the polyester (e.g., JP-A No. 5B-Sho.
No. 25331, etc.), and a method of corona discharge treatment of the surface of the polyester film (for example, Japanese Patent Publication No. 53-3).
1509, etc.), and plasma processing methods (for example, Japanese Patent Publication No. 59-7725, etc.).

[発明が解決しようとする問題点] しかしながら、上記の方法では、ボリエスルフイルムの
透明性、機械的強度、熱寸法安定性、易滑性、フィルム
の取り汲い性等のフィルム特性を悪化させることが多い
ばかりか、製造コストが非常に高くつくという欠点を有
していた。
[Problems to be Solved by the Invention] However, the above method deteriorates film properties such as transparency, mechanical strength, thermal dimensional stability, slipperiness, and ease of taking out the film. Not only does this have to be done frequently, but it also has the disadvantage of being extremely expensive to manufacture.

本発明は、上記のような原料や製造工程、あるいは付加
的な装置を用いなくても、易接着性に優れたポリエステ
ルフィルムを製造することを目的としている。
The object of the present invention is to produce a polyester film with excellent adhesive properties without using the above raw materials, production processes, or additional equipment.

[問題点を解決するための手段] 本発明は、ポリエステルベレットを、二酸化炭素を少な
くとも1体積%含んだガス中で溶融し、成形口金から押
出し成形されたポリエステルフィルムを、長手方向に2
.0倍以上4.5倍未満延伸した後、幅方向に延伸・熱
処理することを特徴とする二軸延伸ポリエステルフィル
ムの製造方法に関する。
[Means for Solving the Problems] The present invention involves melting a polyester pellet in a gas containing at least 1% by volume of carbon dioxide, and extruding the polyester film from a molding die into a polyester film in the longitudinal direction.
.. The present invention relates to a method for producing a biaxially stretched polyester film, which comprises stretching the film by 0 times or more and less than 4.5 times, followed by stretching and heat treatment in the width direction.

ポリエステルとは、主鎖中にエステル結合を有するポリ
マーであり、代表的なものとしては、ポリエチレンテレ
フタレート、ポリブチレンテレフタレート、ポリエチレ
ン2,6ナフタレート、ポリエチレンα、β−ビス(2
−クロルフェノキシ)エタン4.4′−ジカルボキシレ
ート、ポリ(1゜4−シクロヘキシレンジメチレンナフ
タレート)など、及びそれらの共重合体や、更には他の
ものとのブレンドなどである。かかるポリエステルは、
固有粘度(オルトクロフェノール中、35℃で測定)と
して、0.5以上のものが好ましい。
Polyester is a polymer having ester bonds in its main chain, and typical examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6 naphthalate, polyethylene α, β-bis(2
-chlorophenoxy)ethane 4,4'-dicarboxylate, poly(1°4-cyclohexylene dimethylene naphthalate), copolymers thereof, and blends with others. Such polyester is
The intrinsic viscosity (measured in orthochlorophenol at 35°C) is preferably 0.5 or more.

もちろん、該ポリエステルにポリマー用として公知の添
加剤、例えば安定剤、粘度調整剤、酸化防止剤、充填剤
、滑り剤、ブロッキング防止剤などを含有させてもよい
Of course, the polyester may contain additives known for use in polymers, such as stabilizers, viscosity modifiers, antioxidants, fillers, slip agents, antiblocking agents, and the like.

本発明のポリエステルフィルムの厚さとしては、特に限
定はしないが、500μm以下、好ましくは125μm
以下、ざらに好ましくは25μm以下の薄物フィルムの
場合に特に効果が顕著である。
The thickness of the polyester film of the present invention is not particularly limited, but is 500 μm or less, preferably 125 μm.
Hereinafter, the effect is particularly remarkable in the case of a thin film, preferably 25 μm or less.

二酸化炭素(以下CO2と称する)を含んだガス中でポ
リエステルペレットを溶融押出するとは、押出機に供給
されるポリエステルペレットの接する雰囲気ガスが、C
O2を少なくとも1体積%以上、好ましくは20体積%
以上含有する雰囲気下で押出機に供給されることである
。もちろん、溶融されたポリマーを口金から吐出する雰
囲気ガスは、CO2を少なくとも1体積%以上含んだも
のであると、本発明の効果は更に顕著になる。
Melt-extruding polyester pellets in a gas containing carbon dioxide (hereinafter referred to as CO2) means that the atmospheric gas in contact with the polyester pellets supplied to the extruder is
O2 at least 1% by volume or more, preferably 20% by volume
It is to be supplied to an extruder under an atmosphere containing the above. Of course, the effects of the present invention will be more pronounced if the atmospheric gas through which the molten polymer is discharged from the nozzle contains at least 1% by volume of CO2.

CO2ガスが1体積%未満であると、本発明の目的であ
る易接着性、特にA1蒸着膜との易接着性を付与するこ
とができないのみならず、表面の粗さくRa)が100
mμ以下の平滑なフィルムが得られなかったり、更には
絶縁破壊電圧(BDV)の高いフィルムが得にくい。
If the CO2 gas content is less than 1% by volume, not only will it not be possible to provide easy adhesion, especially easy adhesion to the A1 vapor deposited film, which is the objective of the present invention, but also the surface roughness (Ra) will be 100%.
It is difficult to obtain a smooth film with a diameter of mμ or less, and furthermore, it is difficult to obtain a film with a high dielectric breakdown voltage (BDV).

更に、本発明の場合、CO2以外の気体としては、各種
の酸化カーボン、各種の酸化窒素、各種の酸化イオウ、
窒素、アルゴン、ヘリウム、酸素などが好ましく、更に
はCO2と窒素との混合比が1/99〜10010.好
ましくは20/80〜80/20の範囲が本発明の効果
を顕著にする。 本発明の場合、CO2は、未溶融のポ
リエステルペレットの段階で供給されるべきであって、
特公昭50−6026号公報などのように、溶融したポ
リマーにCO2を吹込む方法では、本発明のような表面
が平滑で無欠点の高倍率延伸フィルムを得ることはでき
ない。
Furthermore, in the case of the present invention, gases other than CO2 include various carbon oxides, various nitrogen oxides, various sulfur oxides,
Nitrogen, argon, helium, oxygen, etc. are preferable, and the mixing ratio of CO2 and nitrogen is preferably 1/99 to 10010. Preferably, the range of 20/80 to 80/20 makes the effects of the present invention significant. In the case of the present invention, CO2 should be supplied at the stage of unmelted polyester pellets,
By the method of blowing CO2 into a molten polymer as disclosed in Japanese Patent Publication No. 50-6026, it is impossible to obtain a high-strength stretched film with a smooth surface and no defects as in the present invention.

また、ポリエステルペレットと接するCO2ガスの圧力
は特に限定されるものでなく、400mmHg程度の減
圧下から10気圧までの加圧まで、任意に選択できるが
、本発明の場合、1.5〜3気圧程度の加圧サイドの方
が効果が顕著になる。
Further, the pressure of the CO2 gas in contact with the polyester pellets is not particularly limited and can be arbitrarily selected from a reduced pressure of about 400 mmHg to an increased pressure of up to 10 atm, but in the case of the present invention, it is 1.5 to 3 atm. The effect is more pronounced on the pressurized side.

また、溶融後、口金から押出すまでにフィルターを取り
つけてもよく、フィルターとしては、公称1〜5μカツ
トまでの微細なフィルターを用いるほど、本発明の効果
が著しくなる。
Further, a filter may be attached after melting and before extrusion from the die, and the effect of the present invention becomes more significant as a finer filter with a nominal cut of 1 to 5 μm is used.

更に、該ポリエステルペレットを溶融圧縮脱泡する工程
で加わる圧力は、10〜500kO/ci。
Furthermore, the pressure applied in the step of melting, compressing and defoaming the polyester pellets is 10 to 500 kO/ci.

好ましくは20〜300kg/cJ、更に好ましくは8
0〜250kg/riの範囲であるものが本発明の場合
好ましい。
Preferably 20 to 300 kg/cJ, more preferably 8
A range of 0 to 250 kg/ri is preferred in the present invention.

溶融押出する温度は、融点Tll1以上で、かつTm 
+150℃以下の温度範囲で、しかも可能なかぎり低温
が、また、溶融ポリマーの滞留1時間も短く、好ましく
は30分未満、更に好ましくは10分未満であるのが、
熱分解の防止の点からだけでなく、本発明の効果を顕著
にするので好ましい。
The melt extrusion temperature is at least the melting point Tll1 and Tm
The temperature range is below +150° C., and the temperature is as low as possible, and the residence time of the molten polymer is also short, preferably less than 30 minutes, more preferably less than 10 minutes.
This is preferable not only from the viewpoint of preventing thermal decomposition but also because it makes the effects of the present invention more noticeable.

かくして押出機から送り出された溶融ポマーは、フィル
ターを通り、ギヤポンプで定量供給して成形用口金に導
かれ、口金スリットから溶融シートを吐出させ、これを
冷却固化するキャスティングドラム上に密着させ、成形
シートを得る。キャスティングドラムに密着させる方法
としては、公知の静電印加法やエアーナイフ法、プレス
ロール法などを用いることができる。得られるキャスト
フイルムの結晶性は、キャスティングドラムの温度を調
整することにより可能であり、本発明の場合、結晶化度
の効果は顕著ではないが、密度法(結晶密度と非晶密度
とから比例配分して求めたもの)の値として20%未満
が好ましく、より好ましくは10%未満のものである。
The molten pomer thus sent out from the extruder passes through a filter, is fed in a fixed amount by a gear pump, and is guided to a molding nozzle.The molten sheet is discharged from the nozzle slit, and is brought into close contact with the casting drum where it is cooled and solidified, and then molded. Get a sheet. As a method for bringing it into close contact with the casting drum, a known electrostatic application method, air knife method, press roll method, or the like can be used. The crystallinity of the obtained cast film can be achieved by adjusting the temperature of the casting drum, and in the case of the present invention, the effect of crystallinity is not significant, but the density method (proportional ratio between crystal density and amorphous density) (obtained by distribution) is preferably less than 20%, more preferably less than 10%.

もちろん結晶化度を20%以上にしたものでもよい。Of course, the crystallinity may be 20% or more.

次に、長手方向に延伸するロール表面材質は、金属ロー
ル、セラミックロール、ゴムロール、有機物表層コーテ
ィングロールなと、その使用目的によって任意に使い分
けられる。また、延伸方式についても特に限定はなく、
ノーニップ式、ニップ式、マルチアイドラ一式など任意
に選択し得る。
Next, the surface material of the roll stretched in the longitudinal direction can be arbitrarily selected depending on the purpose of use, such as a metal roll, a ceramic roll, a rubber roll, or a roll coated with an organic surface layer. Furthermore, there are no particular limitations on the stretching method;
You can arbitrarily select a no-nip type, a nip type, a multi-idler set, etc.

また、長手方向の延伸倍率は、2.0倍以上4゜5倍未
満、好ましくは2.2〜4.2倍の範囲内で延伸する。
The stretching ratio in the longitudinal direction is 2.0 times or more and less than 4.5 times, preferably 2.2 to 4.2 times.

延伸倍率が大きすぎると、接着性、特にAI蒸着膜との
接着性、高絶縁破壊性に優れたポリエステルフィルムと
はならない。また、延伸倍率が小さすぎると、接着性や
フィルム厚さにむらが出やすくなり、ざらに表面平滑性
が損われるため好ましくない。
If the stretching ratio is too large, the polyester film will not have excellent adhesion, especially adhesion to the AI deposited film, and high dielectric breakdown properties. On the other hand, if the stretching ratio is too small, the adhesiveness and film thickness tend to be uneven, and the surface smoothness is deteriorated, which is not preferable.

延伸する温度は、該ポリエステルペレットのガラス転移
温度To以上で延伸した方が、接着性、表面平滑性に優
れる。一方、Tg未満で延伸する方が絶縁破壊電圧の向
上には有利である。
The stretching temperature is higher than the glass transition temperature To of the polyester pellet for better adhesion and surface smoothness. On the other hand, stretching at a temperature lower than Tg is advantageous for improving dielectric breakdown voltage.

次に幅方向の延伸倍率は1.5倍〜4.5倍の一範囲の
ものが本発明の目的に相応しく、長手方向と幅方向の延
伸倍率の積が6〜16倍程度のものがよい。熱処理温度
及び時間・リラックス率などは用途によって自由に使い
分けられ、150〜190℃のものが好ましい。
Next, the stretching ratio in the width direction is suitable for the purpose of the present invention in a range of 1.5 to 4.5 times, and the product of the stretching ratio in the longitudinal direction and the width direction is preferably about 6 to 16 times. . The heat treatment temperature, time, relaxation rate, etc. can be freely used depending on the application, and a temperature of 150 to 190°C is preferable.

もちろん、二軸延伸フィルムの製造の任意の工程で、空
気中あるいは窒素、二酸化炭素などの特定ガス中でのコ
ロナ放電処理、更にはプラズマ処理、火炎処理、紫外線
、γ線、電子線などの放射線処理、更にはコーティング
、エンボス処理などを用いて本発明の効果を高めてもよ
い。
Of course, any process in the production of biaxially oriented films can include corona discharge treatment in air or specific gases such as nitrogen and carbon dioxide, plasma treatment, flame treatment, and radiation such as ultraviolet rays, gamma rays, and electron beams. Treatments such as coating, embossing, etc. may be used to enhance the effects of the present invention.

[測定法及び評価方法] (1)  表面粗ざRaは、JIS  80601−1
976に従い、カットオフ0.25mmで測定した中心
線平均粗さである。
[Measurement method and evaluation method] (1) Surface roughness Ra is JIS 80601-1
Centerline average roughness measured according to 976 with a cutoff of 0.25 mm.

(2)  絶縁破壊電圧(BDV)は、ASTM−D1
49に従い、25℃で100V/秒でテストした。
(2) Dielectric breakdown voltage (BDV) is ASTM-D1
49 at 100 V/sec at 25°C.

(3)  接着性は、真空度10’″’Torrでアル
ミニウムを厚さ200人蒸着し、該アルミ蒸着面にアト
コート503−3E−5Dと、アトコートFJとを混合
した接着剤を、厚さ1μmにコーティングし、更にその
上に、シーラントとして、“トレファン゛’No(東し
く株)製)P−3401の30μm厚みのフィルムの処
理面を80℃で圧着させ、40’Cで2日間エージング
し、ベースフィルムとシーラント間の90度剥離力を測
定する。
(3) Adhesion was determined by depositing aluminum to a thickness of 200 at a vacuum level of 10''' Torr, and applying an adhesive mixture of Atocoat 503-3E-5D and Atocoat FJ to a thickness of 1 μm on the aluminum vapor-deposited surface. On top of that, as a sealant, a 30 μm thick film of "Trefan'No" (manufactured by Toshiku Co., Ltd.) P-3401 was pressed onto the treated surface at 80°C, and aged at 40°C for 2 days. Then, measure the 90 degree peel force between the base film and the sealant.

剥離力によって、5段階に分けた。It was divided into 5 levels depending on the peeling force.

剥離力(g/cm) 5    200以上 4   160〜200未満 3   120〜160未満 2    80〜120未満 1      〜80未満 [実施例] 本発明を実施例に基づいて説明する。Peeling force (g/cm) 5 200 or more 4 160 to less than 200 3 120 to less than 160 2   80~less than 120 1 ~ less than 80 [Example] The present invention will be explained based on examples.

実施例1〜5.比較例1〜2 ポリエステルとしてポリエチレンテレフタレート(0−
クロルフェノール中での極限粘度0.58、ガラス転移
温度70℃、添加剤として平均粒径200mμの酸化ケ
イ素を0.3重量%含有)ペレットを用い、これをl 
m+nHgの真空下180℃で8時間乾燥後、二酸化炭
素25%、窒素75%の体積比で混合したガスで1気圧
まで放圧後、該ペレットを大気に触れることなく、上記
混合ガスで充満している溶融押出機のホッパーに供給し
た。押出機に供給されたペレットは、285℃で溶融さ
れ、公称8μm以上をカットするフィルターでシー過後
、口金からシート状に押出した後、静電荷を印加させな
がら、60℃に保たれたクロムメッキロール(0,18
に表面仕上)上にキャストして、非品性のキャストフィ
ルムを作成した。該シートを長手方向延伸装置を用いて
、65℃で種々の延伸倍率の延伸をし、続いて幅方向に
75℃で3゜5倍延伸後、175°Cで5秒間定長幅で
熱処理して、厚さ12μmの二軸延伸フィルムを得た。
Examples 1-5. Comparative Examples 1-2 Polyethylene terephthalate (0-
Using pellets (having an intrinsic viscosity of 0.58 in chlorophenol and a glass transition temperature of 70°C and containing 0.3% by weight of silicon oxide with an average particle size of 200 mμ as an additive),
After drying at 180° C. for 8 hours under a vacuum of m + nHg, the pressure was released to 1 atm with a gas mixture of 25% carbon dioxide and 75% nitrogen by volume, and the pellet was filled with the above mixed gas without exposing it to the atmosphere. The melt was fed into the hopper of a melt extruder. The pellets supplied to the extruder are melted at 285°C, passed through a filter that cuts nominally 8 μm or more, extruded into a sheet from a nozzle, and then chromium plated at 60°C while applying an electrostatic charge. Roll (0,18
surface finish) to create a cast film of poor quality. The sheet was stretched at various stretching ratios at 65°C using a longitudinal stretching device, then stretched 3°5 times in the width direction at 75°C, and then heat-treated at 175°C for 5 seconds at a constant width. A biaxially stretched film with a thickness of 12 μm was obtained.

表1に示したように、延伸倍率によって、A1蒸着膜の
接着性、表面平滑性が大幅に変わり、延伸倍率が4.5
倍未満、好ましくは2.2〜4゜2倍の範囲のものが接
着性などの諸特性に優れていることが分る。
As shown in Table 1, the adhesion and surface smoothness of the A1 deposited film vary greatly depending on the stretching ratio, and the stretching ratio is 4.5.
It can be seen that those with a ratio of less than 2 times, preferably in the range of 2.2 to 4.2 times, are excellent in various properties such as adhesiveness.

比較例3 実施例1〜5で使用したペレットの乾燥後及び押出しに
用いた二酸化炭素ガスを用いず、その代わりに酸素ガス
を用いて、実施例3と同様に二軸延伸・熱処理をし、厚
さ12μmのフィルムを得た。実施例と同様にして接着
性の評価をしたところ、その評価は1であり、接着性の
悪いものであった。
Comparative Example 3 After drying the pellets used in Examples 1 to 5 and without using the carbon dioxide gas used for extrusion, using oxygen gas instead, biaxial stretching and heat treatment were performed in the same manner as in Example 3, A film with a thickness of 12 μm was obtained. When the adhesiveness was evaluated in the same manner as in the examples, the evaluation was 1, indicating that the adhesiveness was poor.

表1 [発明の効果] 本発明は、ポリエステルペレットを二酸化炭素を含む雰
囲気下で溶融押出したキャストシートを用いたため、得
られた二軸配向ポリエステルフィルムは、つぎのような
優れた性質を示すのである。
Table 1 [Effects of the Invention] Since the present invention uses a cast sheet obtained by melt-extruding polyester pellets in an atmosphere containing carbon dioxide, the obtained biaxially oriented polyester film exhibits the following excellent properties. be.

■ 表面欠点のないフィルムが得られる。■ A film with no surface defects can be obtained.

■ ヤング率の高い高強度フィルムが得られる。■ A high-strength film with a high Young's modulus can be obtained.

■ 易接着性・易滑性に優れたフィルムとなる。■ It becomes a film with excellent adhesion and slipping properties.

■ オリゴマーなどの低分子量のブリードアウトしにく
いフィルムとなる。
■ Creates a film with low molecular weight such as oligomers that is difficult to bleed out.

■ 酸素、水蒸気などのガスバリア性に優れたフィルム
となる。
■ Creates a film with excellent barrier properties against gases such as oxygen and water vapor.

■ 熱寸法安定性に優れ、熱スキューの小さいフィルム
になる。
■ The film has excellent thermal dimensional stability and low thermal skew.

■ 絶縁破壊電圧の高いフィルムになる。■ It becomes a film with high dielectric breakdown voltage.

■ スリット性、即ちスリット端面に切り粉や、ヒゲの
発生のないフィルムとなる。
■ Slitting property, that is, the film is free from chips and hairs on the slit end surface.

■ 物性の経口変化のほとんどないフィルムとなる。■ It becomes a film with almost no change in physical properties after oral administration.

[株] 金属ロールのように粘着しやすい材質のロール
を用いても、高温でも粘着せず、表面の平滑なフィルム
が得られる。
[Co., Ltd.] Even if a roll made of a material that easily sticks, such as a metal roll, is used, it does not stick even at high temperatures, and a film with a smooth surface can be obtained.

Claims (1)

【特許請求の範囲】[Claims] ポリエステルペレットを、二酸化炭素を少なくとも1体
積%含んだガス中で溶融し、成形口金から押出し成形さ
れたポリエステルフィルムを、長手方向に2.0倍以上
4.5倍未満延伸した後、幅方向に延伸・熱処理するこ
とを特徴とする二軸延伸ポリエステルフィルムの製造方
法。
Polyester pellets are melted in a gas containing at least 1% by volume of carbon dioxide, and a polyester film extruded from a molding die is stretched 2.0 times or more and less than 4.5 times in the longitudinal direction, and then stretched in the width direction. A method for producing a biaxially stretched polyester film, which comprises stretching and heat treatment.
JP2970587A 1987-02-13 1987-02-13 Production of biaxially stretched polyester film Pending JPS63197630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2970587A JPS63197630A (en) 1987-02-13 1987-02-13 Production of biaxially stretched polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2970587A JPS63197630A (en) 1987-02-13 1987-02-13 Production of biaxially stretched polyester film

Publications (1)

Publication Number Publication Date
JPS63197630A true JPS63197630A (en) 1988-08-16

Family

ID=12283522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2970587A Pending JPS63197630A (en) 1987-02-13 1987-02-13 Production of biaxially stretched polyester film

Country Status (1)

Country Link
JP (1) JPS63197630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183846A (en) * 1990-11-16 1992-06-30 Sumitomo Metal Ind Ltd Stainless steel material for high purity gas and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183846A (en) * 1990-11-16 1992-06-30 Sumitomo Metal Ind Ltd Stainless steel material for high purity gas and its production

Similar Documents

Publication Publication Date Title
US6323308B1 (en) Aliphatic polyester film
EP0391740B1 (en) Dulled stretched moulding and process for producing the same
EP0614748B1 (en) Method for producing thermoplastic resin sheet or film
EP1476294B1 (en) Polypropylene biaxially oriented film
JP5726746B2 (en) Production method of polypropylene film
JPH05138835A (en) Polymer film
JPS63276529A (en) Air-permeable film manufactured from molten embossed polyolefine/filler precursor film
JPS6056101B2 (en) Manufacturing method of polyester film
JPS5845927A (en) Monoaxial orientation nylon film for supporter web of fiber reinforced plastic
JPWO2004048071A1 (en) Method for producing polybutylene terephthalate film
JPS63197630A (en) Production of biaxially stretched polyester film
JP2000289170A (en) Mold release film
JPS59215826A (en) Manufacture of super high molecular weight polyethylene film
EP0390191A2 (en) Biaxially stretched polyester film and process for producing the same
JPH02204020A (en) Biaxially stretched polyester film for forming, formed-transferring film and formed container
JP3640282B2 (en) Method for producing biaxially stretched polyester film
JPS63197629A (en) Production of polyester film
JPH0764023B2 (en) Method for producing biaxially stretched polyetheretherketone film
JPH0367629A (en) Biaxially oriented polyester film for molding
JP2943183B2 (en) Laminated molding
JP4636173B2 (en) Method for producing polylactic acid biaxially stretched film
JPS63176127A (en) Extruding method for thermoplastic polymer
KR100215480B1 (en) Method of manufacturing propylene-based polymer film
WO1992003495A1 (en) Method of producing biaxially oriented polyether ether ketone film
KR100252828B1 (en) Process for the preparation of coextruded polypropylene film having low weight and excellent opaqueness