JPS63197440A - Examination apparatus using nuclear magnetic resonance - Google Patents

Examination apparatus using nuclear magnetic resonance

Info

Publication number
JPS63197440A
JPS63197440A JP62028229A JP2822987A JPS63197440A JP S63197440 A JPS63197440 A JP S63197440A JP 62028229 A JP62028229 A JP 62028229A JP 2822987 A JP2822987 A JP 2822987A JP S63197440 A JPS63197440 A JP S63197440A
Authority
JP
Japan
Prior art keywords
coil
refrigerant
magnetic resonance
nuclear magnetic
preamplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62028229A
Other languages
Japanese (ja)
Inventor
薮崎 征雄
山本 悦治
秀樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62028229A priority Critical patent/JPS63197440A/en
Publication of JPS63197440A publication Critical patent/JPS63197440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核磁気共鳴(NMR)を用いて物体の内部の
情報を計測する装置に係り、特に検出コイル、前置増幅
器を冷却するのに好適なNMRを用いた検査装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device that measures information inside an object using nuclear magnetic resonance (NMR), and particularly relates to a device that measures information inside an object using nuclear magnetic resonance (NMR). This invention relates to an inspection device using NMR suitable for.

〔従来の技術〕[Conventional technology]

従来の装置については、ジャーナル・オブ・マグネティ
ック・レゾナンス、60 (1984)第397頁から
第404頁(Journal of Magnetic
Resonance、  60(1984) pp、3
97−404)において論じられている。
For conventional devices, see Journal of Magnetic Resonance, 60 (1984), pp. 397-404.
Resonance, 60 (1984) pp, 3
97-404).

上記文献の中で述べられているようにNMRにおける雑
音は検出コイル、前置増幅器からの熱雑音によってほぼ
決まるが、これがNMRの高感度化を妨げる原因となっ
ている。そこでこの熱雑音を減少するために検出コイル
、前置増幅器を冷却することが試みられている。
As stated in the above-mentioned literature, the noise in NMR is almost determined by the thermal noise from the detection coil and preamplifier, and this is a cause that prevents high sensitivity of NMR. Therefore, attempts have been made to cool the detection coil and preamplifier in order to reduce this thermal noise.

NMRにおいてS/N (信号対雑音比)はで与えられ
る。ここでaはコイルの半径、p及び悲は各々コイルを
構成する導体の周囲長及び長さ、ξはコイルの近接係数
、Taは前置増幅器の等価雑音温度、Tcはコイルの温
度、ρ(Tc)はコイルの抵抗率、ω0は共鳴再周波数
である。ここで、ω0は一般に高周波数である。(例え
ば0.15テスラの静磁場強度では約6 M Hzの共
鳴周波数である。) 上記文献に述べられているように、冷却により(Ta+
Tc)及びρ(TC)が減少するのでS/Nを高くする
ことができる。この分析用NMRの雑音低減手法をNM
Rイメージング装置に適用すれば、S/N向上により画
質向上、撮像時間短縮等を図ることができる。
In NMR, S/N (signal-to-noise ratio) is given by: Here, a is the radius of the coil, p is the circumference and length of the conductor constituting the coil, ξ is the proximity coefficient of the coil, Ta is the equivalent noise temperature of the preamplifier, Tc is the temperature of the coil, and ρ( Tc) is the resistivity of the coil and ω0 is the resonant refrequency. Here, ω0 is generally a high frequency. (For example, at a static magnetic field strength of 0.15 Tesla, the resonant frequency is about 6 MHz.) As stated in the above literature, by cooling (Ta+
Since Tc) and ρ(TC) decrease, the S/N can be increased. This analytical NMR noise reduction method is
If applied to an R imaging device, it is possible to improve image quality and shorten imaging time by improving S/N.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は検出コイル及び前置増幅器を冷媒(液体
He )中に浸漬し、この両者から発生する熱雑音を低
減している。この従来例における分析用NMRでは検出
コイルの径が小さく、構成している導体の直径も、細い
銀製チューブを用いているために外部からの熱侵入をあ
まり考慮する必要がない。また、冷媒の消費量が少ない
ために冷媒のリザーバも小さくて済む、しかし、この方
式を人体等が入る検出コイルを有する装置に適用しよう
とすると検出コイルの径は大きくなり、構成する導体の
直径も太くしないと表皮効果によって大きな損失となり
、冷却する効果がなくなってしまう。上記従来例には上
述のような検出コイルが大きくなり、導体の直径も太く
なると熱侵入が多くなり冷媒の消費量が増大し装置の維
持費が増大してしまうという問題に関しては十分配慮さ
れていなかった。また、検出コイル及び前置増幅器が熱
平衡に達しない場合には動作が安定しないという問題も
残されていた。
In the prior art described above, the detection coil and the preamplifier are immersed in a coolant (liquid He) to reduce thermal noise generated from both. In this conventional analytical NMR, the diameter of the detection coil is small and the diameter of the constituting conductor is made of a thin silver tube, so there is no need to take into account heat intrusion from the outside. In addition, since the amount of refrigerant consumed is low, the refrigerant reservoir can also be small. However, if this method is applied to a device that has a detection coil into which a human body can enter, the diameter of the detection coil will increase, and the diameter of the conductor that makes up the system will increase. If it is not made thicker, there will be a large loss due to the skin effect, and the cooling effect will be lost. In the above conventional example, sufficient consideration has not been given to the problem that as the detection coil becomes larger and the diameter of the conductor becomes thicker, heat intrusion increases, refrigerant consumption increases, and equipment maintenance costs increase. There wasn't. Furthermore, there remains the problem that the operation is unstable if the detection coil and preamplifier do not reach thermal equilibrium.

本発明の目的は、検出コイルが大きくなった場合に問題
となる熱侵入を効果的に防ぎ、冷媒消費量を少なくしな
がら外部と実質的に直流的、交流的に電気接続したNM
R装置を提供することにある。
The purpose of the present invention is to effectively prevent heat intrusion, which becomes a problem when the detection coil becomes large, and to reduce refrigerant consumption while electrically connecting the NM to the outside in a substantially direct current or alternating current manner.
The purpose of the present invention is to provide an R device.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は検出コイル及び前置増幅器を完全に冷媒中に
浸漬し、密閉して断熱することにより熱の侵入を防止し
、外部との電気的接続は電磁誘導により行うことにより
達成される。なお、熱の侵入を防止する方法としては冷
媒消費量に応じて種々の方法を用いることができ1例え
ば真空断熱等既知の方法を用いて行うことができる。
The above object is achieved by completely immersing the detection coil and preamplifier in a refrigerant, sealing and insulating them to prevent heat from entering, and making electrical connection to the outside by electromagnetic induction. Note that various methods can be used to prevent the intrusion of heat depending on the amount of refrigerant consumed. For example, known methods such as vacuum insulation can be used.

〔作用〕[Effect]

熱侵入の防止は冷媒に浸漬された検出コイル、前置増幅
器を外部から完全に分離する(例えば真空断熱等)こと
によって達成することができる。
Prevention of heat intrusion can be achieved by completely separating the detection coil and preamplifier immersed in the coolant from the outside (for example, by vacuum insulation, etc.).

電気的な接続は前置増幅器の出力信号成分については信
号が高周波数であることに着目し、電磁誘導を用いて離
遠変化を生じさせることによって達成できる。また、冷
媒中の前置増幅器への直流の供給は外部から電磁誘導を
用いて磁束変化を生じさせることによって高周波数で供
給し、冷媒中の前置増幅器側で整流を行う。
Electrical connection can be achieved by noting that the output signal component of the preamplifier is a high frequency signal and causing a distance change using electromagnetic induction. Further, direct current is supplied to the preamplifier in the refrigerant at a high frequency by causing a magnetic flux change using electromagnetic induction from the outside, and rectification is performed on the preamplifier side in the refrigerant.

〔実施例〕〔Example〕

以下1本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第1図は人体等が入る検出コイルで受信されるNMR信
号を熱的に分離し、電気的に接続(交流接続)する一実
施例のブロック図である。
FIG. 1 is a block diagram of an embodiment in which NMR signals received by a detection coil into which a human body or the like is inserted are thermally separated and electrically connected (AC connection).

公知の方法で対象物体に核磁気共鳴を生じさせ冷媒中に
浸漬された検出コイル1とキャパシタCh、Cxから成
るLC共振回路により高周波のNMR信号を受信する。
A high-frequency NMR signal is received by an LC resonant circuit consisting of a detection coil 1 immersed in a coolant and capacitors Ch and Cx by generating nuclear magnetic resonance in a target object using a known method.

このNMR信号を冷媒中に浸漬された前置増幅器2で増
幅する。この増幅された高周波信号を結合回路3で熱的
に分離された状態の下で冷媒外に電気的に接続する0本
実施例では結合回路3は電磁誘導を用いて冷媒中の入力
側コイル7で高周波信号を磁束変化にし、冷媒外の出力
側コイル8によりこの磁束変化を検出し。
This NMR signal is amplified by a preamplifier 2 immersed in the refrigerant. This amplified high frequency signal is electrically connected to the outside of the refrigerant in a thermally isolated state in a coupling circuit 3. In this embodiment, the coupling circuit 3 uses electromagnetic induction to connect the input side coil 7 in the refrigerant. The high frequency signal is converted into a magnetic flux change, and this magnetic flux change is detected by the output side coil 8 outside the refrigerant.

電気信号に変換する。Convert to electrical signal.

第2図は前置増幅器2に供給される直流を熱的には分離
しながら電気的に接続する一実施例のブロック図である
。冷媒外から結合回路3′に交流を供給し、冷媒中に交
流を送る。この交流信号を整流回路4で整流し直流に変
換する。結合回路3′の動作は上記NMR信号の接続と
同様に行うことができ、整流回路4での整流の最も筒車
な構成は第2図に示すようにダイオード、抵抗及びキャ
パシタから構成される低域通過フィルタによって実現で
きる0以上のコイルによる交流的結合。
FIG. 2 is a block diagram of an embodiment in which direct current supplied to the preamplifier 2 is electrically connected while being thermally separated. An alternating current is supplied to the coupling circuit 3' from outside the refrigerant, and the alternating current is sent into the refrigerant. This alternating current signal is rectified by a rectifier circuit 4 and converted into direct current. The operation of the coupling circuit 3' can be performed in the same way as the connection of the NMR signal described above, and the most basic configuration of rectification in the rectifier circuit 4 is a low voltage configuration consisting of a diode, a resistor, and a capacitor, as shown in FIG. AC coupling using zero or more coils that can be realized by a bandpass filter.

整流の方法については公知の種々の構成を用いて実現す
ることができる。
The rectification method can be realized using various known configurations.

第3図には前置増幅器2の出力信号に対して周波数変換
を行い、検出コイル1と入力側コイル7の結合を防rh
する場合のブロック図を示す。@1図の構成では検出コ
イル1と結合回路の入力側コイルとは等しい周波数で動
作するためにコイル間の結合が生じる可能性がある。そ
こで検出コイル1からの高周波検出信号を増幅器2で増
幅した後周波数変換器5で信号の周波数を干渉しない周
波数に変換し、この変換された周波数の信号で結合回路
3の冷媒中の入力側コイル7を駆動する。この入力側コ
イル7による磁束変換を冷媒外の出力側コイル8で検出
し再び元の周波数の信号に周波数変換器5で変換する。
In Fig. 3, frequency conversion is performed on the output signal of the preamplifier 2 to prevent coupling between the detection coil 1 and the input coil 7.
A block diagram is shown below. @1 In the configuration shown in Figure 1, since the detection coil 1 and the input side coil of the coupling circuit operate at the same frequency, coupling between the coils may occur. Therefore, after the high frequency detection signal from the detection coil 1 is amplified by the amplifier 2, the frequency of the signal is converted to a frequency that does not interfere with the frequency converter 5, and the signal of this converted frequency is used to coil the input side coil in the refrigerant of the coupling circuit 3. Drive 7. This magnetic flux conversion by the input side coil 7 is detected by the output side coil 8 outside the refrigerant, and is converted back to the original frequency signal by the frequency converter 5.

第4図は結合回路部分の一実施例を示す、前置増幅器2
からの高周波信号は真空中に置かれた入力側コイル7に
入力され、磁束変化を生じる。この磁束変化を出力側コ
イル8で検出する方式である。この時、出力側コイル8
、入力側コイル7は共に真空中に、互いに接触しないよ
うに巻かれており、入力側コイル7から出力側コイル8
への冷熱の侵入を防ぐことができる。この時、熱輻射に
よる熱侵入を防ぐために反射率の高い材料でコイル表面
にメッキ等を行ってもよい。
FIG. 4 shows an embodiment of the coupling circuit portion of the preamplifier 2.
A high frequency signal from the input coil 7 is input to the input coil 7 placed in a vacuum, causing a change in magnetic flux. This magnetic flux change is detected by the output coil 8. At this time, the output side coil 8
, the input side coils 7 are both wound in a vacuum so as not to touch each other, and from the input side coil 7 to the output side coil 8.
It can prevent cold heat from entering. At this time, the surface of the coil may be plated with a material having a high reflectance in order to prevent heat intrusion due to thermal radiation.

また、第4図に示す実施例では冷媒中と真空中を接続す
る部分が存在し機械的な強度が不足することがある。こ
のような場合には第5図に示すように入力側コイル7を
完全に冷媒中に入れ、また出力側コイル8を完全に冷媒
外に出し、入力側コイル7と出力側コイル8を対向せし
めて設置することにより断熱層(例えば真空)を独立さ
せることが可能となり冷媒中の部分を完全に密閉するこ
とができる。
Further, in the embodiment shown in FIG. 4, there is a portion connecting the inside of the refrigerant and the inside of the vacuum, and the mechanical strength may be insufficient. In such a case, as shown in Fig. 5, the input side coil 7 is completely immersed in the refrigerant, and the output side coil 8 is completely taken out of the refrigerant, so that the input side coil 7 and the output side coil 8 face each other. By installing the refrigerant, the heat insulating layer (e.g. vacuum) can be made independent, and the part inside the refrigerant can be completely sealed.

上記方式は磁束変化による結合であるが、結合回路3の
方式としては静電結合のように電界の変化を介して電気
的に接続することも可能である。
Although the above method is a coupling based on a change in magnetic flux, the coupling circuit 3 may also be electrically connected via a change in an electric field, such as electrostatic coupling.

第6図(a)、(b)に静電結合の場合の結合回路3の
一実施例の斜視図と、側断面図を示す。
FIGS. 6(a) and 6(b) show a perspective view and a side sectional view of an embodiment of the coupling circuit 3 in the case of capacitive coupling.

第6図では冷媒中の横板90.92と冷媒外の横板91
.93との間を断熱層(例えば真空)で断熱し熱的な分
離を行い、極板90と極板91、極板92と極板93の
間で各々高周波信号による電界変化を介して電気的接続
を達成する。極板の配置については第4図と同様に極板
90,91゜92.93が断熱層中にある場合も可能で
ある。
In Figure 6, horizontal plates 90 and 92 inside the refrigerant and horizontal plates 91 outside the refrigerant.
.. 93 is thermally insulated with a heat insulating layer (e.g. vacuum), and electrical current is generated between the electrode plates 90 and 91, and between the electrode plates 92 and 93 through electric field changes caused by high frequency signals. Achieve connectivity. As for the arrangement of the electrode plates, it is also possible that the electrode plates 90, 91, 92, 93 are located in the heat insulating layer as in FIG.

本実施例によれば簡単な構成で熱侵入を防ぎ、冷却によ
る雑音低減をはかりながら冷媒の消費量を少なくし装置
の維持費を少なくすることができるという効果がある。
According to this embodiment, it is possible to prevent heat infiltration with a simple configuration, reduce the amount of refrigerant consumed while reducing noise due to cooling, and reduce the maintenance cost of the apparatus.

また、熱的な分離を行うことができるので熱平衡を維持
でき、冷却による雑音低減をはかりながら動作を安定な
ものにできるという効果がある。
Further, since thermal separation can be performed, thermal balance can be maintained, and operation can be stabilized while reducing noise through cooling.

また、本実施例では大型の検出コイルを例示したが、小
さな検出コイルに実施した場合でも冷媒の消費量少なく
する上では相応の効果を発揮できることは勿論である。
Further, in this embodiment, a large detection coil is used as an example, but it goes without saying that even if a small detection coil is used, a corresponding effect can be achieved in reducing the amount of refrigerant consumed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば熱的に分離できるので冷媒の消費量を少
なくでき、冷媒の量も少なく冷却によって熱雑音を低減
できるという効果がある。また、熱平衡の状態で動作す
るので安定に動作しながら熱雑音を低減できるという効
果がある。
According to the present invention, since thermal separation is possible, the consumption of refrigerant can be reduced, and the amount of refrigerant is also small, making it possible to reduce thermal noise through cooling. Furthermore, since it operates in a state of thermal equilibrium, it has the effect of reducing thermal noise while operating stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第3図は本発明の一実施例の交流的接続部のブ
ロック図、第2図は本発明の一実施例の直流的接続部の
ブロック図、第4図、第5図は一実施例になる結合回路
部の側断面図、第6図は他の実施例の結合回路部の斜視
図および側断面図である。 1・・・検出コイル、2・・・前置増幅器、3・・・結
合回路。 4・・・整流回路、5・・・周波数変換器、6・・・ガ
ラス、7・・・入力側コイル、8・・・出力側コイル、
9・・・極板。 第4図 ’IE、51!] Cb) 9埼板
1 and 3 are block diagrams of an AC connection section according to an embodiment of the present invention, FIG. 2 is a block diagram of a DC connection section according to an embodiment of the present invention, and FIGS. 4 and 5 are block diagrams of an AC connection section according to an embodiment of the present invention. FIG. 6 is a side sectional view of a coupling circuit section according to one embodiment, and FIG. 6 is a perspective view and a side sectional view of a coupling circuit section according to another embodiment. 1...Detection coil, 2...Preamplifier, 3...Coupling circuit. 4... Rectifier circuit, 5... Frequency converter, 6... Glass, 7... Input side coil, 8... Output side coil,
9... Pole plate. Figure 4 'IE, 51! ] Cb) 9 Saiita

Claims (1)

【特許請求の範囲】[Claims] 1、核磁気共鳴信号検出コイルと、該コイルにより検出
された核磁気共鳴信号を増幅する手段を、該増幅手段に
続く別の増幅手段から熱的に分離するとともに、2つの
増幅手段間に電磁誘導を利用した電気的接続手段を設け
たことを特徴とする核磁気共鳴を用いた検査装置。
1. The nuclear magnetic resonance signal detection coil and the means for amplifying the nuclear magnetic resonance signal detected by the coil are thermally separated from another amplifying means following the amplifying means, and there is an electromagnetic connection between the two amplifying means. An inspection device using nuclear magnetic resonance characterized by being provided with an electrical connection means using induction.
JP62028229A 1987-02-12 1987-02-12 Examination apparatus using nuclear magnetic resonance Pending JPS63197440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028229A JPS63197440A (en) 1987-02-12 1987-02-12 Examination apparatus using nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028229A JPS63197440A (en) 1987-02-12 1987-02-12 Examination apparatus using nuclear magnetic resonance

Publications (1)

Publication Number Publication Date
JPS63197440A true JPS63197440A (en) 1988-08-16

Family

ID=12242769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028229A Pending JPS63197440A (en) 1987-02-12 1987-02-12 Examination apparatus using nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS63197440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111116A (en) * 2012-11-16 2014-06-19 Bruker Biospin Ag Electric circuit in magnetic field of mr apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111116A (en) * 2012-11-16 2014-06-19 Bruker Biospin Ag Electric circuit in magnetic field of mr apparatus
US9606201B2 (en) 2012-11-16 2017-03-28 Bruker Biospin Ag Electrical circuit in the magnetic field of an MR apparatus

Similar Documents

Publication Publication Date Title
US11061089B2 (en) System and methods for grounding patients during magnetic resonance imaging
US10250081B2 (en) Method and system of wireless power transfer foreign object detection
US4810954A (en) Poynting vector probe for measuring electrical power
US5642041A (en) Alternating current sensor employing parallel plates and having high dynamic range and accuracy
EP2700970B1 (en) NMR detection module
EP0105550A1 (en) Nuclear magnetic resonance tomography apparatus including a Faraday cage
JP2002076453A (en) Weak magnetic field measuring dewar
US4924184A (en) Magnetic resonance apparatus
EP0532704A1 (en) Shielded gradient coil for nuclear magnetic resonance imaging
EP2700969A2 (en) NMR dectection probe
JP2007322361A (en) Nuclear magnetic resonance device and probe for same
JPH08322252A (en) Dc power unit
US4953408A (en) Capacitive type electromagnetic flowmeter
Mizuno et al. Extending the linearity range of eddy-current displacement sensor with magnetoplated wire
JPS63197440A (en) Examination apparatus using nuclear magnetic resonance
Mezzena et al. Sensitivity enhancement of Quantum Design dc superconducting quantum interference devices in two-stage configuration
US4754354A (en) Ferrite film insulating layer in a yoke-type magneto-resistive head
US10955512B2 (en) EPR apparatus equipped with specific RS coils and corresponding coil devices
JPH0197443A (en) High frequency coil apparatus for nmr
JP2833497B2 (en) Moving conductor detecting coil and moving conductor detecting device using the same
US3166707A (en) Nuclear magnetometers of the type making use of a high frequency pumping on an electronic transition
JP2005512704A (en) Electronic devices used in the electromagnetic field of MRI equipment
Rietveld et al. 1: 30000 cryogenic current comparator with optimum SQUID readout
WO1991019994A1 (en) Shielded gradient coil for nuclear magnetic resonance imaging
CN206223952U (en) A kind of MR imaging apparatus and system