JPS63195969A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS63195969A
JPS63195969A JP62026724A JP2672487A JPS63195969A JP S63195969 A JPS63195969 A JP S63195969A JP 62026724 A JP62026724 A JP 62026724A JP 2672487 A JP2672487 A JP 2672487A JP S63195969 A JPS63195969 A JP S63195969A
Authority
JP
Japan
Prior art keywords
fuel gas
fuel
concentration
stack
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62026724A
Other languages
Japanese (ja)
Inventor
Masao Kumeta
粂田 政男
Akira Hamada
陽 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62026724A priority Critical patent/JPS63195969A/en
Publication of JPS63195969A publication Critical patent/JPS63195969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain uniform, high fuel utilization coefficient by computing a fuel utilization coefficient based on the CO2 concentration in fuel gas on cell stack side and the CO2 concentration on each outlet, and controlling the fuel gas supply amount so that a fuel utilization coefficient in each part is uniform. CONSTITUTION:CO2 in fuel gas does not react in cell reaction but H2 in the fuel gas is consumed in the cell reaction, so, CO2 concentration in the fuel gas is increased on an outlet side. Fuel gas samples are gathered from representative cells by sampling pipes 8 and CO2 concentration in each fuel gas is analized with an analyzer 12 and the results are sent to an arithmetic unit 13 to calculate the fuel utilization coefficient in each representative cell. The fuel utilization coefficient is compared with a standard utilization coefficient, and the deviation is entered into each flow rate control valve 5 of each branch pipe 4 as a control signal 14 from the arithmetic unit 13. When the deviation is plus (flow rate is low), the valve 5 is controlled so as to open it. When the deviation is minus (flow rate is high), the valve 5 is controlled so as to throttle it. Fuel gas supply amount to each part of the stack is made uniform.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は燃料ガスとして天然ガスやメタノールを改質し
た水素リッチガスを用いる燃料電池、特にセル積重数の
多い電池における燃料ガスの分配制御に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION A) Industrial Application Field The present invention relates to fuel cells that use hydrogen-rich gas obtained by reforming natural gas or methanol as fuel gas, and in particular to fuel gas distribution control in batteries with a large number of stacked cells. It is something.

口)従来技術 周知の如く前記改質燃料ガスの組成はH2:C02Φ8
0.20容積%であり、電池に供給された燃料ガスはH
2成分のみを消費するので、電池出口側燃料ガスのCO
2濃度が高く電池スタック下部に向って燃料ガスの比重
が大きくなる。それゆえスタックの上下における入口側
と出口側間の差圧は、上部で大きく下部で小さくなり、
その結果燃料ガス流量は上部で犬、下部で小となる。こ
の傾向はスタックが高くなるにつれ、又作動圧力があが
るにつれ顕著になり、スタックの上下で燃料ガス流量の
不均一が生ずる。
) As is well known in the prior art, the composition of the reformed fuel gas is H2:C02Φ8
0.20% by volume, and the fuel gas supplied to the battery was H
Since only two components are consumed, CO in the fuel gas on the battery outlet side is
2 concentration is high and the specific gravity of the fuel gas increases toward the bottom of the battery stack. Therefore, the differential pressure between the inlet and outlet sides at the top and bottom of the stack is large at the top and small at the bottom,
As a result, the fuel gas flow rate is small at the top and small at the bottom. This tendency becomes more pronounced as the stack becomes taller and the operating pressure increases, causing non-uniformity in the fuel gas flow rate above and below the stack.

このような燃料ガス配分の不均一を抑えるためにマニホ
ルドの形状改善などが行われているが、広い作動圧力や
電流値の範囲で常に均一な燃料ガス分配を達成すること
が難しかった。
Improvements in the shape of the manifold have been made to suppress such unevenness in fuel gas distribution, but it has been difficult to consistently achieve uniform fuel gas distribution over a wide range of operating pressures and current values.

ハ)発明が解決しようとする問題点 この発明は積重セル数の多い電池スタックに積重方向全
体に亘り燃料ガス流量分布を均一化して前記問題点を解
消するものである。
C) Problems to be Solved by the Invention The present invention solves the above problems by making the fuel gas flow rate distribution uniform throughout the stacking direction in a battery stack having a large number of stacked cells.

二)問題点を解決するための手段 この発明は燃料ガスとして炭化水素燃料を改質した水素
リッチガスを用いる燃料電池シこおいて、電池スタック
の少くとも上中下部における出口側燃料ガス中の各CO
2’a度を検出し、この各検出信号と入口側燃料ガス中
のCO2′a度からスタック出口側各部における燃料利
用率を演算し、基準利用率からの偏差に応して電池スタ
ックの少くとも上中下部への燃料ガス供給量を調節せし
めることを特徴とするものである。
2) Means for Solving the Problems This invention provides a fuel cell using hydrogen-rich gas obtained by reforming a hydrocarbon fuel as fuel gas. C.O.
2'a degree is detected, and the fuel utilization rate at each part on the stack outlet side is calculated from each detection signal and the CO2'a degree in the fuel gas on the inlet side. Both are characterized by adjusting the amount of fuel gas supplied to the upper, middle and lower parts.

ホ)作用 この発明では燃料ガスの入口側C02f11度と出口側
各部の検出されたCO2濃度とから、電池スタック出口
側各部の燃料利用率を演算して各部の利用率が一定にな
るよう燃料ガス供給量を制御し′ ているので、特に高
いスタックの上部から下部に向って燃料ガス流量の低下
する傾向を補償し、いかなる作動条件下においても適正
な流量分布が得られ、電池性能を向上することができる
E) Function In this invention, the fuel utilization rate of each part on the cell stack outlet side is calculated from the C02F11 degrees on the inlet side of the fuel gas and the CO2 concentration detected at each part on the outlet side, and the fuel gas is Since the supply amount is controlled, it compensates for the tendency of the fuel gas flow rate to decrease, especially from the top to the bottom of a tall stack, ensuring proper flow distribution under any operating conditions and improving cell performance. be able to.

ヘン 実施例 本発明の実施例を図について説明する。Hen Example Embodiments of the present invention will be described with reference to the figures.

電池スタック(1)に取付けた入口側マニホルドく2)
への燃料ガス供給は、スタック上中下部に配管(3)を
3つに分岐許せた各分岐’i?(4)より流量調整バル
ブ(5)を介して行われる。入口側マニホルド(2)は
スタック上中下部・−の燃料ガス供給かはy個別に行え
るよう内部を仕切板く6)で3一つに区分している。配
管(3)には改質器く図示せず〉から供給される燃料ガ
スの採取管(7)を有し、又スタック上中下部に夫々代
表セルを決めてこれらセルの燃料ガスチャンネルの出口
もしくは出口付近に排燃料ガスの各採取管(8)を挿入
もしくは配置している。第2図に採取箇所の概略を示し
、ガス分離板(9)の燃料ガスチャンネル(10)は採
取管(8)が挿入できるよう巾広としている。
Inlet side manifold attached to battery stack (1) 2)
Fuel gas is supplied to each branch 'i?' which allows piping (3) to be branched into three at the top, middle and bottom of the stack. (4) via the flow rate adjustment valve (5). The inlet side manifold (2) is divided into three parts by a partition plate 6) so that fuel gas can be supplied to the upper, middle, and lower parts of the stack and -y separately. The piping (3) has a sampling pipe (7) for the fuel gas supplied from the reformer (not shown), and representative cells are determined at the top, middle and bottom of the stack, respectively, and the outlets of the fuel gas channels of these cells are determined. Alternatively, exhaust fuel gas sampling pipes (8) are inserted or arranged near the outlet. Figure 2 shows an outline of the sampling location, and the fuel gas channel (10) of the gas separation plate (9) is wide enough to allow insertion of the sampling tube (8).

これら採取管(8)はフッ素樹脂チューブよりなり出口
側マニホルド(11)を気密的に貫通し、供給燃料ガス
の採取管(7)と共にCO2分析装f[(12>に接続
されている。燃料ガスの採取は電池負荷の変動などの作
動条件が変化した場合に随時行われる。
These sampling tubes (8) are made of fluororesin tubes, pass through the outlet side manifold (11) in an airtight manner, and are connected to the CO2 analyzer f[(12>) together with the supply fuel gas sampling tube (7). Gas sampling is performed whenever operating conditions change, such as changes in battery load.

燃料ガス中のCO2は電池反応に対し不活性で、燃料ガ
スの組成は、電池反応によりN2が消費され℃出口側の
co2′a度が増大する。この002?#度を採取管(
8)で検出し分析装置(12)で同時に分析する。この
分析値を演算装置(13)に入力し次式を用いて各部代
表セルの燃料利用率(y)が算出される。
CO2 in the fuel gas is inert to the cell reaction, and the composition of the fuel gas is such that N2 is consumed by the cell reaction and the degree of CO2'a on the outlet side increases. This 002? #Collection tube (
8) and simultaneously analyzed by the analyzer (12). This analysis value is input to the arithmetic unit (13), and the fuel utilization rate (y) of each representative cell is calculated using the following formula.

燃料ガス供給量:x。Fuel gas supply amount: x.

採取時の′を流における理論燃料ガスgk:L燃料ガス
入口部のCO2濃度:a(容積%〉//   出口部 
 tt    Hbn(/’)(n=1.2.3の整数
) とすれば xa=(x−L)b−+x=Lbn/(bn−a)72
− L/(1−a )x−(bn−a )/(1−a 
)bnXlooこの式より夫々算出されたスタック上中
下各部の燃料利用率<zn)は、基準利用率(70〜8
0%)と比較されその偏差値は演算装置(13)より制
御信号(14)として分岐管(4)の各流量調整バルブ
(5〉に入力される。偏差値が十のときく流量小)バル
ブ(5)を開く方向に、偏差値が−のときく流量大)バ
ルブ(5)を絞る一方向に、夫々バルブの開度を調整す
るという制御ループで、スタック上中下部への燃料ガス
供給量が均一化される。
Theoretical fuel gas gk in the flow ' at the time of collection: L CO2 concentration at the fuel gas inlet: a (volume %) // Outlet
tt Hbn (/') (n = integer of 1.2.3) then xa = (x-L)b-+x = Lbn/(bn-a)72
- L/(1-a)x-(bn-a)/(1-a
) bn
0%), and the deviation value is input from the calculation device (13) as a control signal (14) to each flow rate adjustment valve (5>) of the branch pipe (4).When the deviation value is 10, the flow rate is small) In the control loop, the opening degree of each valve is adjusted in the direction in which the valve (5) is opened (when the deviation value is -, the flow rate is large) and in the direction in which the valve (5) is throttled. Supply amount is equalized.

かくて電池の作動条件が変化しても短時間で電池スタッ
クの上下に亘り均一な燃料ガスの分配が達成される。
In this way, uniform fuel gas distribution across the top and bottom of the cell stack can be achieved in a short period of time even if the cell operating conditions change.

尚酸化剤ガスとして用いられる空気の組成は(02:N
2420:80容積%)Tあッテ、02とN2とは前記
燃料ガスのN2とCO2のように比重に大きな差がない
ため、C2が消費された出口側の上下でガス比重に差を
生ずることがなく、従ってスタックの入口出口間の差圧
にもとづく流量の不均一を生ずるおそれがない。よって
本発明のような燃料ガスの供給制御を必要とし?い。
The composition of the air used as the oxidant gas is (02:N
2420:80% by volume) T, 02 and N2 do not have a large difference in specific gravity like the fuel gas N2 and CO2, so there is a difference in gas specific gravity above and below the outlet side where C2 is consumed. Therefore, there is no risk of non-uniformity in flow rate due to differential pressure between the inlet and outlet of the stack. Therefore, is it necessary to control the supply of fuel gas as in the present invention? stomach.

ト)発明の効果 本発明によれば、燃料ガスの電池スタック入口(51C
O2濃度と出口側各部のco濃度から、燃料利用率を演
算して各部の利用率が一定になるよう燃料ガス供給量を
制御しているので、積重セル数の多い高スタックの上部
から下部に向って流量が順次低下する傾向を補償し、い
かなる作動条件下においても適正な流量分配が行われ、
均一で高い燃料利用率での電池作動が達成される。
g) Effects of the invention According to the invention, the fuel gas cell stack inlet (51C
The fuel utilization rate is calculated from the O2 concentration and the CO concentration of each part on the outlet side, and the fuel gas supply amount is controlled so that the utilization rate of each part is constant. It compensates for the tendency for the flow rate to gradually decrease towards
Cell operation with uniform and high fuel utilization is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明燃料電池の燃料ガス供給制御システムを
示す概要図、第2図は同上の要部拡大斜面図である。 1:電池スタック、2.11:マニホルド、4:分岐管
、5:流量調整バルブ、6:仕切板、7゜8:採取管(
燃料ガス入口側及び出口側)、12:002分析装置、
13:演算装置、14:制御信号。
FIG. 1 is a schematic diagram showing a fuel gas supply control system for a fuel cell according to the present invention, and FIG. 2 is an enlarged perspective view of the main parts of the same. 1: Battery stack, 2.11: Manifold, 4: Branch pipe, 5: Flow rate adjustment valve, 6: Partition plate, 7° 8: Collection pipe (
fuel gas inlet side and outlet side), 12:002 analyzer,
13: Arithmetic device, 14: Control signal.

Claims (2)

【特許請求の範囲】[Claims] (1)燃料ガスとして炭化水素燃料を改質した水素リッ
チガスを用いる燃料電池であって、電池スタック出口側
の少くとも上中下部における排燃料ガス中の各CO_2
濃度及び前記スタック入口側燃料ガス中のCO_2濃度
を検出する分析装置と、前記CO_2濃度からスタック
各部における燃料利用率を算出する演算装置と、演算さ
れた前記利用率の基準利用率からの偏差値にもとづき電
池スタッックの少くとも上中下部への燃料ガス供給量を
制御する手段とを備えることを特徴とする燃料電池
(1) A fuel cell that uses hydrogen-rich gas obtained by reforming hydrocarbon fuel as fuel gas, and each CO_2 in the exhaust fuel gas at least in the upper, middle, and lower portions of the cell stack exit side.
an analyzer that detects the CO_2 concentration and the CO_2 concentration in the stack inlet side fuel gas; a calculation device that calculates the fuel utilization rate in each part of the stack from the CO_2 concentration; and a deviation value of the calculated utilization rate from a reference utilization rate. 1. A fuel cell characterized by comprising: means for controlling the amount of fuel gas supplied to at least the upper, middle and lower parts of a battery stack based on the invention.
(2)前記電池スタックの入口側マニホルドが前記検出
部分に対応して少くとも上中下部に区分されていること
を特徴とする特許請求の範囲第1項記載の燃料電池
(2) The fuel cell according to claim 1, wherein the inlet side manifold of the cell stack is divided into at least upper, middle and lower parts corresponding to the detection portion.
JP62026724A 1987-02-06 1987-02-06 Fuel cell Pending JPS63195969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026724A JPS63195969A (en) 1987-02-06 1987-02-06 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026724A JPS63195969A (en) 1987-02-06 1987-02-06 Fuel cell

Publications (1)

Publication Number Publication Date
JPS63195969A true JPS63195969A (en) 1988-08-15

Family

ID=12201274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026724A Pending JPS63195969A (en) 1987-02-06 1987-02-06 Fuel cell

Country Status (1)

Country Link
JP (1) JPS63195969A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677073A (en) * 1994-07-13 1997-10-14 Toyota Jidosha Kabushiki Kaisha Fuel cell generator and method of the same
NL1003042C2 (en) * 1996-05-06 1997-11-07 Stichting Energie Method for determining the flow rate of reactants in each cell of an electrochemical cell stack.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677073A (en) * 1994-07-13 1997-10-14 Toyota Jidosha Kabushiki Kaisha Fuel cell generator and method of the same
NL1003042C2 (en) * 1996-05-06 1997-11-07 Stichting Energie Method for determining the flow rate of reactants in each cell of an electrochemical cell stack.
WO1997042674A1 (en) * 1996-05-06 1997-11-13 Stichting Energieonderzoek Centrum Nederland Method for determining the flow rate of reactants in each cell of an electrochemical cell stack
US6162557A (en) * 1996-05-06 2000-12-19 Stichting Energieonderzoek Centrum Nederland Method for determining the flow rate of reactants in each cell of an electrochemical cell stack

Similar Documents

Publication Publication Date Title
US4046956A (en) Process for controlling the output of a selective oxidizer
US5397656A (en) Differential pressure controlling method and apparatus for plate reformer of fuel cell power generation system
US6770391B2 (en) Hydrogen sensor for fuel processors of a fuel cell
US20090142631A1 (en) Fuel cell system
JPS5923066B2 (en) Fuel cell power generator equipped with fuel processing means
KR20150135542A (en) Flow control assembly for use with fuel cell systems operating on fuels with varying fuel composition
CA2484683A1 (en) Solid oxide fuel cell
US6602628B2 (en) Control system for fuel cell
JPS63195969A (en) Fuel cell
US6299853B1 (en) Method and apparatus for operating a reformer/co oxidation unit
Shikhar et al. Exploring the Possibility of Using Molten Carbonate Fuel Cell for the Flexible Coproduction of Hydrogen and Power
CN102208667B (en) Utilization-based fuel cell monitoring and control
CN113937322A (en) Multifunctional solid oxide fuel cell stack testing system and operation method thereof
US6821664B2 (en) Method and apparatus for a combined fuel cell and hydrogen purification system
JP2705242B2 (en) Reactor gas supply system for fuel cell
JPH0636860B2 (en) Ejector group device
US8497042B2 (en) Fuel cell system
JP4282584B2 (en) Fuel cell evaluation test equipment
US3525642A (en) Fuel reactor with control system
CN110474073A (en) Detect the method and device of carbon distribution inside solid oxide fuel cell system
JP4686115B2 (en) Humidifier for polymer electrolyte fuel cell
JPH0831324B2 (en) Fuel cell power generation system Fuel system recirculation device
CN111052472B (en) Method for operating a fuel cell system
JP2002100387A (en) Reforming system
JP2003100326A (en) Fuel cell power generation system