JPS6319535A - Evaluating instrument for fine particle in liquid - Google Patents

Evaluating instrument for fine particle in liquid

Info

Publication number
JPS6319535A
JPS6319535A JP61163621A JP16362186A JPS6319535A JP S6319535 A JPS6319535 A JP S6319535A JP 61163621 A JP61163621 A JP 61163621A JP 16362186 A JP16362186 A JP 16362186A JP S6319535 A JPS6319535 A JP S6319535A
Authority
JP
Japan
Prior art keywords
light
fine particles
liquid
narrow tube
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61163621A
Other languages
Japanese (ja)
Inventor
Shinobu Hase
長谷 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61163621A priority Critical patent/JPS6319535A/en
Publication of JPS6319535A publication Critical patent/JPS6319535A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4716Using a ring of sensors, or a combination of diaphragm and sensors; Annular sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately evaluate fine particles in a liquid by flowing a sample liquid in a transparent narrow tube to form a certain flow passage and projecting a laser light to the narrow tube in the vertical direction and detecting the diffracted light and the scattered light due to fine particles in the liquid by a Fourier transform optical system. CONSTITUTION:The light from a laser oscillator 2 is not only expanded but also converted to parallel rays of a luminous flux by a beam expanding system 3. A Fourier transform lens 5 is arranged on the opposite side of a narrow tube 4, and a scattered pattern evaluating semiconductor detector 6 is set on the focal surface of the lens 5. Washing water including fine particles 9 flows from the upper flow passage and traverses the laser light at right angles. A diffracted and scattered pattern 7, which is generated when fine particles 9 pass the center part of the wide projected light, is received by a photodetector 6. The photodetector 6 consists of light receiving areas having concentricity and directivity, and an address code is given to each light receiving area, and the output condition from an optional element is unequivocally determined. Consequently, signals from concentric light receiving areas are analyzed to obtain an extreme value of the intensity distribution expressed with the Bessel function, and the particle size is determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、極微小物体の計数方法に係り、特に液中に不
溶解物として存在する微粒子を簡易かつ高速で計数する
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for counting extremely small objects, and particularly to an apparatus for simply and rapidly counting microparticles present as insoluble matter in a liquid.

〔従来の技術〕[Conventional technology]

半導体素子製造プロセス中で用いられる水を含めた各種
洗浄水に重金属物質やゴミ等が混入していると最終製品
に悪影響を与え、場合によっては不良品ができてしまう
If heavy metal substances, dust, etc. are mixed into various types of cleaning water, including water used in the semiconductor device manufacturing process, it will have an adverse effect on the final product, and in some cases, produce defective products.

このような影響に関しては、従来から問題となっていた
が近来、集積度の増加に伴って早急な対応が必要となっ
てきた。これに対処する方法としてはコールタカウンタ
法、光散乱法、超音波散乱法9画像形成法などがある。
Such effects have long been a problem, but in recent years, as the degree of integration has increased, urgent measures have become necessary. Methods for dealing with this include the Coulter counter method, light scattering method, ultrasonic scattering method, and image forming method.

これらの中で画像形成法が比較的採用されている。本発
明は、画像形成法に最も近い形であることから、従来装
置としてこれに関連した装置を取り上げ説明する。
Among these, image forming methods are relatively adopted. Since the present invention is closest to the image forming method, a related device will be described as a conventional device.

従来の装置は、特開54−24683号公報に記載のよ
うに細管部に直接レーザ光を照射するとともに、照射光
前方に拡大投影系を設けることで細管中の微粒子を画像
化する構成となっている6画像を形成する場所(モニタ
部)には、スクリーンとホトトランジスタが配置される
。ここでのスクリーンの役割は試料液が通過する細管内
部と拡大投影光学系の位置関係を確認すること及びスク
リーン上で微粒子形状を目で見て判定するという項目で
ある。
As described in Japanese Unexamined Patent Publication No. 54-24683, the conventional device has a structure in which a laser beam is directly irradiated onto the thin tube portion, and an enlarged projection system is provided in front of the irradiated light to image the fine particles in the thin tube. A screen and a phototransistor are placed in the area (monitor section) where six images are formed. The role of the screen here is to confirm the positional relationship between the inside of the capillary through which the sample liquid passes and the enlarged projection optical system, and to visually determine the shape of the particles on the screen.

微粒子の検出はスクリーン上部に配列したホトトランジ
スタアレイ(以後ホトトラと略称)を用いることで行う
。微粒子を拡大した像がホトトラ上にでき、個々の素子
からの出力信号を評価することで微粒子の存在及び大き
さを求めることができる。また、細管部における光の干
渉によるモアレに関しては、断続的な変化信号となるこ
とから、シュミット回路とワンショットマルチ回路を併
設してこの障害を解決している。
Particles are detected using a phototransistor array (hereinafter abbreviated as phototransistor) arranged above the screen. An enlarged image of the fine particles is formed on the photodetector, and the existence and size of the fine particles can be determined by evaluating the output signals from the individual elements. Furthermore, since moiré caused by light interference in the thin tube section results in an intermittent changing signal, a Schmitt circuit and a one-shot multi-circuit are installed together to solve this problem.

〔発明が解決しようとする問題点3 以上述べた従来装置ではアレイが一次元的に並んでいる
ことから、それに平行な位置での寸法が明らかになるに
すぎない。従って、この方法では微粒子の大きさを固定
することは困難である。特許公開公報によれば50μm
以上の微粒子検出が可能であると書かれている。
[Problem to be Solved by the Invention 3] In the conventional device described above, since the arrays are arranged one-dimensionally, the dimensions at a position parallel to the arrays are only clear. Therefore, it is difficult to fix the size of the fine particles using this method. According to the patent publication, 50μm
It is written that it is possible to detect the above particles.

さらに、像拡大(従来装置の場合倍率100である)の
ためのレンズには顕微鏡対物レンズのようなものを採用
する必要があることから、細管内部の視野が制限されて
しまう、この結果、細管内部の流路断面の径も制限され
、流路に送り出せる試料液の流量も少ないものとなる。
Furthermore, since it is necessary to use a lens similar to a microscope objective lens for image magnification (magnification of 100 in the conventional device), the field of view inside the tubule is limited. The diameter of the cross section of the internal channel is also limited, and the flow rate of the sample liquid that can be delivered to the channel is also small.

従来装置では5ccを溶液容器に貯水し、細管内部径0
.8rrnを流速9■/sacで試料液を流すことで測
定している。
In the conventional device, 5 cc of water is stored in the solution container, and the inner diameter of the tube is 0.
.. 8rrn was measured by flowing the sample solution at a flow rate of 9/sac.

半導体製造プロセス中で取り扱われる各種洗浄液は大量
であることから、上記装置を用いて洗浄液をインライン
評価することは困難であるといえる。
Since a large amount of various cleaning liquids are handled during the semiconductor manufacturing process, it can be said that it is difficult to evaluate the cleaning liquids in-line using the above-mentioned apparatus.

本発明の目的は、液中微粒子の大きさ、形状を求めると
ともに可及的に半導体プロセス中でインプロセス測定を
実現し得る液中微粒子の評価装置を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide an evaluation apparatus for fine particles in liquid, which can determine the size and shape of fine particles in liquid and can perform in-process measurement as much as possible during a semiconductor process.

〔問題点を解決するための手段〕[Means for solving problems]

このような問題点を克服するため、従来装置における測
定原理である拡大投影系の像評価にかわり1本発明では
試料液中の微粒子による回折、散乱現象を取り扱う0回
折現象はよく知られているように円形あるいはスリット
等などの対象物に光を照射したとき、3次元空間で対象
物に特有なパターンが発生することである。
In order to overcome such problems, instead of image evaluation using an enlarged projection system, which is the measurement principle in conventional devices, the present invention deals with diffraction and scattering phenomena due to fine particles in sample liquid.The 0 diffraction phenomenon is well known. When light is irradiated onto an object such as a circle or a slit, a pattern unique to the object is generated in three-dimensional space.

回折現象はプレネル回折およびフラウンホーファ回折の
2種に大別できるが、解析的には後者が容易であること
からこれに即した光学系配置を取ることが多く本発明で
もこの配置としたが、必ずしも固執する必要がないこと
は言うまでもない。
Diffraction phenomena can be roughly divided into two types: Presnel diffraction and Fraunhofer diffraction, but since the latter is easier to analyze, the optical system is often arranged in accordance with this. Needless to say, there is no need to be persistent.

回折パターンの形と対象物の形状の間には相関関係があ
ることから、これを評価することで従来装置の問題点1
を解決することができる。第2番目の測定流量の問題に
関しては、レーザ光をビーム拡大系を用いて広げるとと
もに平行光束とすることで対処できる。ビーム拡大系に
は顕微鏡対物レンズと単レンズの組み合わせを用いる。
Since there is a correlation between the shape of the diffraction pattern and the shape of the object, it is possible to evaluate this and solve the problem 1 of conventional devices.
can be solved. The second problem of the measured flow rate can be solved by expanding the laser beam using a beam expansion system and converting it into a parallel beam. The beam expansion system uses a combination of a microscope objective lens and a single lens.

細管内部径は、ビーム拡大径に伴って大きくすることが
でき、従来装置の0.8−径に比較して御所以上大きな
径を確保できる。この結果、流量は二指程度多くなりプ
ロセス中のインライン計測の可能性もでてくる。
The inner diameter of the thin tube can be increased along with the beam expansion diameter, and a diameter much larger than the 0.8-diameter of the conventional device can be secured. As a result, the flow rate increases by about two fingers, creating the possibility of in-line measurement during the process.

〔作用〕[Effect]

半導体製造プロセスで用いられる洗浄液に含まれるゴミ
あるいは不溶解物の大きさは0.1〜3μm程度である
ことから、それらの形状は近似的には球形と考えてもよ
いとされている。従って本発明を説明するに当っては、
理解を容易にするうえからも液中微粒子の形が球形であ
ると最初に仮定する。
Since the size of dust or undissolved substances contained in cleaning liquids used in semiconductor manufacturing processes is about 0.1 to 3 μm, their shape can be considered to be approximately spherical. Therefore, in explaining the present invention,
For ease of understanding, it is first assumed that the particles in the liquid are spherical in shape.

球形粒子にレーザ光を照射したとき発生する回折パター
ンは1球形粒子の断面が円形であることからレーザ光伝
達方向に対1垂直な面ではベッセル関数で表わされる強
度分布を有する回折パターンとなる。このベッセル関数
の極値の位置が粒径によって変化する。各々の極値の位
置を求めることで粒径を同定することが可能となる。ま
た、回折パターン強度の方向性を評価することから円形
パターンからずれた状態も推定可能となる。
Since the cross section of each spherical particle is circular, the diffraction pattern generated when a spherical particle is irradiated with a laser beam has an intensity distribution expressed by a Bessel function in a plane perpendicular to the laser beam transmission direction. The position of the extreme value of this Bessel function changes depending on the particle size. By determining the position of each extreme value, it becomes possible to identify the particle size. Furthermore, by evaluating the directionality of the diffraction pattern intensity, it is possible to estimate a state where the pattern deviates from a circular pattern.

〔実施例〕〔Example〕

以下、実施例の構成及び動作の説明を第1図。 The configuration and operation of the embodiment will be explained below with reference to FIG.

第2図に従って説明する。This will be explained according to FIG.

第1図は、測定原理の中心部を成す構成を示す。FIG. 1 shows the configuration forming the core of the measurement principle.

従来装置は、レーザ発振器2からの光が直接細管4を照
射し、細管4の反対側に顕微鏡対物レンズのような拡大
用レンズを配置し、その像面に倍率100で拡大した像
が形成される構成となっている。またその像面には細管
4中の液中微粒子9の大きさを求めるためのホトトラが
一次元的に配列される。
In the conventional device, light from a laser oscillator 2 directly irradiates a thin tube 4, and a magnifying lens such as a microscope objective lens is placed on the opposite side of the thin tube 4, and an image magnified at a magnification of 100 is formed on the image plane. The configuration is as follows. Further, on the image plane, phototracers for determining the size of the submerged particles 9 in the capillary tube 4 are arranged one-dimensionally.

本発明では、レーザ発振器2からの光をビーム拡大系3
でビームを太くすると同時に平行光束とし細管4(従来
装置に比較し10倍程度太くすることができる)に照射
する。フーリエ変換レンズ5を細管4の反対側に配置す
るとともに、そのレンズの焦点面に第2図に示す回折、
散乱パターン評価用の半導体検出器6を設定する。半導
体製造プロセス中の微粒子9を含む洗浄水(ここでは試
料液1と表示)が上方の流路から流れてきてレーザ光を
直角に横切る。微粒子9が太い照射光の中心部を通過す
る点で発生した回折、散乱パターン7を光検知器6で受
光する。光検知器6の表面形状は第2図のようになって
いて、同心状、方位性を合わせもつ受光領域からなって
いる。各々の受光領域にはアドレス符号が与えられ、任
意素子からの出力状況が一義的に決定できる。従って、
同心状の受光領域からの信号、例えば8Art。
In the present invention, the light from the laser oscillator 2 is transferred to the beam expansion system 3.
At the same time, the beam is made thicker, and at the same time, it is made into a parallel light beam and irradiated to the thin tube 4 (which can be made about 10 times thicker than the conventional device). A Fourier transform lens 5 is placed on the opposite side of the thin tube 4, and the diffraction beam shown in FIG.
The semiconductor detector 6 for scattering pattern evaluation is set. Cleaning water (indicated as sample liquid 1 here) containing fine particles 9 during the semiconductor manufacturing process flows from the upper channel and crosses the laser beam at right angles. A photodetector 6 receives the diffraction and scattering pattern 7 generated at the point where the fine particles 9 pass through the center of the thick irradiation light. The surface shape of the photodetector 6 is as shown in FIG. 2, and consists of a light-receiving area that is both concentric and directional. An address code is given to each light-receiving area, and the output status from any element can be uniquely determined. Therefore,
Signals from concentric light receiving areas, for example 8Art.

8A21.・・・・・・8A目を解析することで、ベッ
セル関数で表わされる強度分布の極値が求められ、粒径
を決定することができる。
8A21. By analyzing the 8A, the extreme value of the intensity distribution expressed by the Bessel function can be found, and the particle size can be determined.

また、方位性の受光素子8A1z、 8A21.・・・
・・・8AIJから強度のバラツキを検出することがで
きる。この結果、微粒子9が極端に扁平な楕円や矩形に
なった状態を推定することができる。例えば。
In addition, directional light receiving elements 8A1z, 8A21. ...
...Intensity variations can be detected from 8AIJ. As a result, it is possible to estimate the state in which the fine particles 9 have an extremely flat elliptical or rectangular shape. for example.

矩形形状の微粒子ならば、方位性受光素子6Azt。If it is a rectangular fine particle, the directional light receiving element is 6Azt.

6A11Sの直角成分で強度が大きくなるが、6Ata
The intensity increases with the right angle component of 6A11S, but 6Ata
.

6A17で弱くなるということが起こる。It happens that 6A17 becomes weaker.

第1図に示す構成で液中微粒子9を測定するとき、試料
液1に微粒子9が存在しない状態でも細管4による反射
、散乱光あるいは試料液1によるレーリー散乱が定常的
に存在する。これによって直流分からなる雑音成分が本
来目的とする信号成分に重畳することになり微粒子検出
が困雛となってしまう。このような欠点を克服するため
本発明の装置では、測定前段階として微粒子9を含まな
い状態(清浄水供給状態)で回折、散乱パターン評価用
検出器での各素子の出力値を記憶する。
When measuring microparticles 9 in a liquid with the configuration shown in FIG. 1, even when there are no microparticles 9 in the sample liquid 1, reflections and scattered light by the capillary tube 4 or Rayleigh scattering by the sample liquid 1 are constantly present. As a result, noise components consisting of DC components are superimposed on the originally intended signal components, making it difficult to detect particles. In order to overcome such drawbacks, the apparatus of the present invention stores the output values of each element in the diffraction/scattering pattern evaluation detector in a state where no particulates 9 are included (clean water supply state) as a pre-measurement step.

第3図に本発明における信号処理系統図を示す。FIG. 3 shows a signal processing system diagram in the present invention.

前述した微粒子を含まない状態での信号8A1118A
IJ、8Bは信号変換記憶回路10.10’にすべてア
ドレスに対応して信号強度という形で記憶される。次に
、微粒子9を含む試料液1を流し、信号変換記憶回路1
0′で前に記憶した内容と異なる性質の信号が表われた
とき、信号変換を行いその信号強度とパルス幅を記憶す
る。差動増幅回路11で信号記憶回路10.10’ か
らの信号の差をとり、先に説明した細管4や清浄試料液
1による直流分を消去する。ここで得られたアドレス信
号は1強度及びパルス幅の形でパターン判定回路12に
送られる。
Signal 8A1118A without the above-mentioned particulates
IJ and 8B are all stored in the signal conversion storage circuit 10.10' in the form of signal strength corresponding to the address. Next, the sample liquid 1 containing the fine particles 9 is poured into the signal conversion storage circuit 1.
When a signal with properties different from those previously stored at 0' appears, signal conversion is performed and the signal intensity and pulse width are stored. A differential amplifier circuit 11 takes the difference between the signals from the signal storage circuits 10 and 10', and eliminates the DC component caused by the thin tube 4 and the clean sample liquid 1 described above. The address signal obtained here is sent to the pattern determination circuit 12 in the form of one strength and pulse width.

強度の発生状態やパルス幅等から1球状、楕円体等の形
状とともに大きさなどが求められる。判定後の信号は、
表示装置13で視覚的に表わされる。
The shape and size, such as a sphere or an ellipsoid, are determined from the intensity generation state, pulse width, etc. The signal after the judgment is
It is visually represented on the display device 13.

洗浄プロセス中における測定装置の配置は、主流をなす
洗浄水から分岐した状態の液体を対象とすることになる
。第4図に表わすように、測定系の一部に背景雑音成分
測定を目的とした清浄水を用意する。
The arrangement of the measuring device during the cleaning process targets the liquid that is branched from the main stream of cleaning water. As shown in FIG. 4, clean water is prepared in a part of the measurement system for the purpose of measuring background noise components.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、測定対象物固有の回折光発生状態を放
射状、同心状形状を合わせもつ光検知器で解析的に評価
できるので、測定対象物(ここでは液中微粒子)の大き
さ、形状を容易にすることができる。また、検出原理が
空間周波数を取り扱うことから、像形成による評価に比
べて分解能の増加が見込める。なぜなら、像形成法では
拡大倍率に制限をうけてしまう。
According to the present invention, the generation state of diffracted light unique to the measurement object can be analytically evaluated using a photodetector having both radial and concentric shapes. can be facilitated. Furthermore, since the detection principle deals with spatial frequencies, an increase in resolution can be expected compared to evaluation by image formation. This is because the image forming method is limited in magnification.

本発明ではさらに、フーリエ変換法を利用することから
細管径の拡大が可能となり、測定流量も2桁程度増大す
ることができる。したがって、主流から分岐した半イン
プロセス的な測定ができ、液中微粒子評価も比較的正確
に行える。
Further, in the present invention, since the Fourier transform method is used, the diameter of the thin tube can be increased, and the measured flow rate can also be increased by about two orders of magnitude. Therefore, semi-in-process measurements branched from the mainstream can be performed, and in-liquid particle evaluation can be performed relatively accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定主要部を示す横断面図、第2図は
第1図の光検知器の正面図、第3図は信号処理のための
電子回路図、第4図は本発明の実施例の全体植成を示す
横断面図である。
Fig. 1 is a cross-sectional view showing the main measurement part of the present invention, Fig. 2 is a front view of the photodetector of Fig. 1, Fig. 3 is an electronic circuit diagram for signal processing, and Fig. 4 is the invention of the present invention. FIG. 2 is a cross-sectional view showing the entire implantation of an example.

Claims (1)

【特許請求の範囲】[Claims] 1、試料液を透明細管中に流動せしめて一定の流路を形
成し、該細管に垂直方向からレーザ光を照射したとき液
中微粒子によつて生じる回折、散乱光を、フーリ変換光
学系で検出することで微粒子の大きさ、形状を固定する
ことを特徴とした液中微粒子の評価装置。
1. A sample liquid is made to flow in a transparent capillary to form a certain flow path, and when the capillary is irradiated with a laser beam from the perpendicular direction, the diffraction and scattered light generated by fine particles in the liquid is detected using a Fouri transform optical system. An evaluation device for fine particles in liquid that is characterized by fixing the size and shape of fine particles through detection.
JP61163621A 1986-07-14 1986-07-14 Evaluating instrument for fine particle in liquid Pending JPS6319535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163621A JPS6319535A (en) 1986-07-14 1986-07-14 Evaluating instrument for fine particle in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163621A JPS6319535A (en) 1986-07-14 1986-07-14 Evaluating instrument for fine particle in liquid

Publications (1)

Publication Number Publication Date
JPS6319535A true JPS6319535A (en) 1988-01-27

Family

ID=15777408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163621A Pending JPS6319535A (en) 1986-07-14 1986-07-14 Evaluating instrument for fine particle in liquid

Country Status (1)

Country Link
JP (1) JPS6319535A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466567U (en) * 1990-10-19 1992-06-11
US5534999A (en) * 1993-03-05 1996-07-09 Shinmikuni Kikai Ltd. Monitoring sub-micron particles
JP2010091548A (en) * 2008-10-06 2010-04-22 Msp Corp Apparatus counting fibers in air with high accuracy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466567U (en) * 1990-10-19 1992-06-11
US5534999A (en) * 1993-03-05 1996-07-09 Shinmikuni Kikai Ltd. Monitoring sub-micron particles
JP2010091548A (en) * 2008-10-06 2010-04-22 Msp Corp Apparatus counting fibers in air with high accuracy

Similar Documents

Publication Publication Date Title
JP2930710B2 (en) Particle size analysis using differential polarization intensity scattering
KR100261387B1 (en) Method and equipment for inspecting foreign substance
US4540283A (en) Apparatus and method for determining the size and velocity of particles, droplets, bubbles or the like using laser light scattering
JP3248910B2 (en) Analysis of particle properties
US7788067B2 (en) Means and methods for signal validation for sizing spherical objects
EP0737854A2 (en) Method and apparatus for measuring the change in crosssection of a sample volume defined by two crossed laser beams
US5748311A (en) Apparatus and method of particle geometry measurement by speckle pattern analysis
US10768086B2 (en) Method for determining the average particle size of particles which are suspended in a liquid and flowing medium, by means of dynamic light scattering, and a device therefore
JP2001524215A (en) Surface analysis using Gaussian beam distribution
US7362421B2 (en) Analysis of signal oscillation patterns
EP0383460B1 (en) Apparatus for measuring particles in liquid
US6794625B2 (en) Dynamic automatic focusing method and apparatus using interference patterns
JPS6319535A (en) Evaluating instrument for fine particle in liquid
JP3745947B2 (en) Method and apparatus for measuring particle size of fine particles in fluid
US20030122054A1 (en) Vertical cavity surface emitting laser array for velocity measurement
EP0909944A1 (en) Apparatus and procedure for the characterization of sprays composed by spherical particles
JPH04122042A (en) Foreign matter inspection device
JP2003130784A (en) Apparatus for detecting particulate in fluid
JP3102493B2 (en) Foreign matter inspection method and apparatus
JPH0565020B2 (en)
Köhler et al. Comparison of laser diffraction and image analysis under identical dispersing conditions
JP2001272355A (en) Foreign matter inspecting apparatus
JP3241403B2 (en) Foreign matter inspection apparatus and method
JPH0495859A (en) Optically inspecting apparatus for printed board
JP3258890B2 (en) Scattering type particle size distribution analyzer