JPS63195233A - Deoxidizing method for trace amount of oxygen - Google Patents

Deoxidizing method for trace amount of oxygen

Info

Publication number
JPS63195233A
JPS63195233A JP2724587A JP2724587A JPS63195233A JP S63195233 A JPS63195233 A JP S63195233A JP 2724587 A JP2724587 A JP 2724587A JP 2724587 A JP2724587 A JP 2724587A JP S63195233 A JPS63195233 A JP S63195233A
Authority
JP
Japan
Prior art keywords
oxygen
metallic
metallic chromium
deoxidation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2724587A
Other languages
Japanese (ja)
Inventor
Yoshio Tanaka
義雄 田中
Shigeru Shibata
繁 柴田
Toru Inoue
亨 井上
Yoshiharu Matsumoto
松本 吉晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2724587A priority Critical patent/JPS63195233A/en
Publication of JPS63195233A publication Critical patent/JPS63195233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To reduce reaction temperature, by subjecting metallic Cr containing trace amounts of oxygen to gaseous reduction under reduced pressure. CONSTITUTION:Metallic Cr containing, as an impurity, trace amounts of oxygen is subjected, while held at >=1,100 deg.C, to gaseous reduction under reduced pressure under a reducing-gas atmosphere of 1-100mmHg pressure. By this method, deoxidation can be effectively carried out in case of metallic Cr of oxygen content up to about 2wt.%. Further, deoxidation can be exerted at low temp., evaporation losses can be reduced, and also the amount of reducing gas used for deoxidizing reaction can be reduced. Moreover, as to the shape of metallic Cr to be deoxidized, any of crushed articles, powdery articles, formed parts, etc., can be used, but it is preferable to use formed parts from the viewpoint of operability at the time of deoxidizing reaction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属クロムに含有する微量酸素の脱酸方法に関
するものである。更に詳しくは、不純物として微量酸素
を含有する金属クロムを減圧ガス還元し、脱酸精製する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for deoxidizing trace amounts of oxygen contained in metallic chromium. More specifically, the present invention relates to a method for deoxidizing and purifying metallic chromium containing a trace amount of oxygen as an impurity by reducing it with reduced pressure gas.

金属クロムは合金成分として用いた場合、合金耐蝕性 の耐熱性、耐摩耗πz墳与に著しい効果をもたらすので
、ニッケル、コバルト、鉄等への添加成分とし【多用さ
れている。
When metal chromium is used as an alloy component, it has a remarkable effect on the corrosion resistance, heat resistance, and wear resistance of the alloy, so it is frequently used as an additive component to nickel, cobalt, iron, etc.

また最近、半導体、電子材部品および乾式メッキ用素材
としても広く用いられるようになっているが、これらの
分野では高純度の金属クロム、特に低酸素金属クロムが
必要となっている。
Recently, it has also been widely used as a material for semiconductors, electronic parts, and dry plating, and these fields require high-purity metallic chromium, especially low-oxygen metallic chromium.

(従来の技術およびその問題点) 金属クロムの製造法には大別して乾式精錬法と湿式精錬
法とがある。
(Prior art and its problems) Methods for producing metallic chromium can be broadly classified into pyrometallurgical refining and hydrometallurgical refining.

乾式精錬法は、三二酸化クロム等の酸化クロムをアルミ
ニウムを用いて還元するテルミット法で代表され、一方
湿式精錬法は、三価のクロム塩水溶液を電解還元する電
解法で代表される。
The pyrometallurgical method is typified by the thermite method in which chromium oxide such as chromium sesquioxide is reduced using aluminum, while the hydrometallurgical method is typified by the electrolytic method in which a trivalent chromium salt aqueous solution is electrolytically reduced.

しかし、これらの製造法で得られた金属クロム中の酸素
含有景はα05〜(L5重量%程度であり、なお低酸素
の金属クロムが要求されている。
However, the oxygen content in metallic chromium obtained by these production methods is approximately α05~(L5% by weight), and low oxygen metallic chromium is still required.

更に上記金属クロム中の酸素を除去する方法として、上
記金属クロムの粉砕品、成形品を高温の常圧水素下で脱
酸を行う方法又は溶融クロムをカルシア質炉材で構成さ
れた容器内で真空又はアルボン雰囲気下にて希土類元素
を用いて脱酸する方法(特開昭61−225142号公
報)等が提案されている。
Furthermore, as a method for removing oxygen in the metal chromium, a method is to deoxidize the pulverized product or molded product of the metal chromium under high temperature normal pressure hydrogen, or a method of deoxidizing the molten chromium in a container made of calcia furnace material. A method of deoxidizing using a rare earth element in a vacuum or an argon atmosphere (Japanese Unexamined Patent Publication No. 61-225142) has been proposed.

しかし、高温の常圧水素下で脱酸を行う方法は、常圧で
反応を行なうため及び反応中生成する水の分圧を下げる
ために、大量の水素ガスを用いなければならず、又反応
温度も高くしなければならないという問題点があるうえ
に、得られる金属クロムの品位についても満足できるも
のではない。−万、溶融クロムを脱酸する方法は、高価
な希土類元素を用いるものであり、またこれら希土類元
素の製品中への残留は免れず、更に反応温度が高いため
金属クロムの蒸発による収率の低下という問題点を有す
る。
However, the method of deoxidizing under normal pressure hydrogen at high temperature requires the use of a large amount of hydrogen gas in order to carry out the reaction at normal pressure and to reduce the partial pressure of water produced during the reaction. In addition to the problem that the temperature must be high, the quality of the obtained metallic chromium is also not satisfactory. - The method of deoxidizing molten chromium uses expensive rare earth elements, and these rare earth elements inevitably remain in the product.Furthermore, the reaction temperature is high, which reduces the yield due to evaporation of metallic chromium. This has the problem of a decline in

(問題点を解決するための手段) 本発明者等は上記問題点を解決するために鋭意検討を行
った結果、減圧下でガス還元を行うことにより、金属ク
ロムに含有する微量酸素の脱酸を行うことができること
を見出し、本発明を完成するに至った。
(Means for Solving the Problems) As a result of intensive studies in order to solve the above problems, the present inventors have deoxidized trace amounts of oxygen contained in metallic chromium by performing gas reduction under reduced pressure. The present inventors have discovered that it is possible to perform the following steps, and have completed the present invention.

すなわち、本発明は不純物として微量酸素を含有する金
属クロムを温度1100℃以上に保持しながら、圧力1
〜100 m+llHgの還元性ガス雰囲気下で減圧ガ
ス還元を行うことを特徴とする金属クロムに含有する微
量酸素の脱酸方法である。
That is, in the present invention, metal chromium containing a trace amount of oxygen as an impurity is maintained at a temperature of 1100°C or higher and at a pressure of 1.
This is a method for deoxidizing trace amounts of oxygen contained in metallic chromium, which is characterized by carrying out reduced pressure gas reduction in a reducing gas atmosphere of ~100 m+llHg.

本発明において、微量酸素を含有する金属クロムとは例
えば前記の乾式精錬法あるいは湿式精錬法で得られる金
属クロムであるが、含有酸素量が2重量%程度までの金
属クロムであれば、本発明の脱酸方法によって効果的に
脱酸を行な5ことができる。
In the present invention, metallic chromium containing a trace amount of oxygen is, for example, metallic chromium obtained by the above-mentioned pyrometallurgical method or hydrometallurgical method. Deoxidation can be effectively carried out by the deoxidation method described in (5).

また、脱酸を行う金属クロムの形状は、粗粉砕品、粉状
品、成形品等いずれのものでも用いることができるが、
脱酸反応の際の操作性を考えれば成形品を用いることが
好ましい。
Furthermore, the metal chromium used for deoxidation can be in any form such as coarsely pulverized, powdered, or molded.
Considering the operability during the deoxidizing reaction, it is preferable to use a molded product.

この成形品は例えば前述した金属クロムを粉砕し、該粉
砕物に、粘結剤として有機高分子質、例えばフェノール
、レゾルシン、ポリウレタン、エポキシ等の樹脂、ポリ
酢酸ビニル、ポリビニルアルコール、ポリビニルブチラ
ール、ポリアクリル酸エステルまたはデンプン、デキス
トリン、アラビアゴム、カゼイン等を混合し、成形圧力
11〜5t/(4で加圧成形を行なえば得ることができ
る。
For example, this molded product is made by grinding the metal chromium mentioned above, adding an organic polymer as a binder, such as a resin such as phenol, resorcinol, polyurethane, or epoxy, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, or polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, or It can be obtained by mixing acrylic ester, starch, dextrin, gum arabic, casein, etc. and performing pressure molding at a molding pressure of 11 to 5 t/(4).

このときの粉砕物の粒径は特に制限されないが、脱酸の
効果を考えれば細かいものが良く、52メツシエ以下の
粉砕物であることが好ましい。また、粘結剤の使用量は
金属クロム粉砕物の粒径1粒度分布によって異なるが、
通常は3〜50重量%の粘結剤水溶液を金属クロム粉砕
物の1〜20重量慢用いる。
The particle size of the pulverized product at this time is not particularly limited, but in view of the deoxidizing effect, fine particles are preferred, and pulverized material with a particle size of 52 mesh or less is preferable. In addition, the amount of binder used varies depending on the particle size distribution of the pulverized metal chromium product.
Usually, a 3 to 50% by weight aqueous binder solution is used in an amount of 1 to 20% by weight of the ground metal chromium.

更にこの様にして得られた成形物中の水分の大部分、好
ましくは95%以上の水分を通常の乾燥炉、ヒーター等
を用いて脱水した後に脱酸反応に供すれば、反応中に成
形物の崩壊が生じKくくなり、操作性が良好となる。
Furthermore, if most of the moisture in the molded product obtained in this way, preferably 95% or more, is dehydrated using an ordinary drying oven, heater, etc., and then subjected to the deoxidation reaction, the molding can be completed during the reaction. Objects are less likely to collapse, resulting in better operability.

次いで、これらの金属クロムを雰囲気熱処理炉等に装入
し、温度1100℃以上、好ましくは1200〜150
0℃に保持しながら、圧力1〜100鵡Hgの還元性ガ
ス雰囲気下で減圧ガス還元を行う。
Next, these metal chromiums are charged into an atmospheric heat treatment furnace or the like and heated to a temperature of 1100°C or higher, preferably 1200 to 150°C.
While maintaining the temperature at 0°C, reduced pressure gas reduction is performed in a reducing gas atmosphere at a pressure of 1 to 100 mercury.

このとき、処理温度が高い場合、脱酸に要する時間は短
いが、金属クロムの蒸発が起こり、また還元性ガスの圧
力が低い場合も金属クロムの蒸発が起こり、金属クロム
の蒸発損失を招いてしまう。
At this time, if the processing temperature is high, the time required for deoxidation is short, but evaporation of metallic chromium occurs, and if the pressure of the reducing gas is low, evaporation of metallic chromium also occurs, resulting in evaporation loss of metallic chromium. Put it away.

従って、処理温度と還元性ガスの圧力は、金属クロムの
蒸発損失を考慮して決定する必要があり、これらの条件
によって脱酸の時間は異なるが、通常は5〜20時間で
ある。
Therefore, the treatment temperature and the pressure of the reducing gas must be determined in consideration of the evaporation loss of metallic chromium, and the deoxidation time varies depending on these conditions, but is usually 5 to 20 hours.

また、還元性ガスとしては水素ガス、メタンガス等の炭
化水素系のガスあるいはこれらの2W1以上を含む混合
ガスを挙げることができ、ガス中にアルゴンやヘリウム
等の不活性ガスを混合しても良く、これらのガスを例え
ば炉内に連続的に流通したり、間欠的に導入することに
より、ガスの圧力を調整することができる。
In addition, examples of the reducing gas include hydrocarbon gases such as hydrogen gas and methane gas, or mixed gases containing 2W1 or more of these gases, and inert gases such as argon and helium may be mixed in the gas. The pressure of the gases can be adjusted by, for example, continuously or intermittently introducing these gases into the furnace.

(実施例) 以下、実施例にもとづき本発明を説明するが、本発明は
何らこれらに限定されるものではない。
(Examples) Hereinafter, the present invention will be explained based on Examples, but the present invention is not limited to these in any way.

実施例1 表−1に示す不純物を含有する湿式精錬法で得た金属ク
ロムを振動ミルで粉砕し、粒度32メツシユ以下の金属
クロム粉砕物とした。その後粉砕物1000gに対し粘
結剤として濃度50重量%のポリビニルアルコール20
0−を添加し、良く混練した後2t/cdの圧力で50
%φ×40%φの大きさの円柱状成形体に圧縮成形し、
乾燥した。
Example 1 Metallic chromium obtained by a hydrometallurgical method containing the impurities shown in Table 1 was pulverized using a vibrating mill to obtain a pulverized metal chromium product having a particle size of 32 mesh or less. After that, 20% polyvinyl alcohol with a concentration of 50% by weight was used as a binder for 1000g of the crushed material.
After adding 0- and kneading well, 50
Compression molded into a cylindrical molded body with a size of %φ x 40%φ,
Dry.

次いで該成形体を雰囲気熱処理炉に装入し、1300℃
で10時間保持した。このとき炉内に水素ガスを連続的
に流通して、炉内の水素ガスの圧力を10m)(gに調
整し、減圧ガス還元を行なりた。還元終了後水素ガスの
流通を停止し真空雰囲気で冷却した。
Next, the molded body was placed in an atmospheric heat treatment furnace and heated to 1300°C.
It was held for 10 hours. At this time, hydrogen gas was continuously passed through the furnace to adjust the pressure of the hydrogen gas inside the furnace to 10 m) (g), and reduced pressure gas reduction was performed.After the reduction, the flow of hydrogen gas was stopped and a vacuum Cooled in atmosphere.

脱酸終了後の金属クロムの主な不純物の含有量と収率を
表−1に示す。
Table 1 shows the main impurity content and yield of metallic chromium after deoxidation.

実施例2 実施例1で得られた金属クロムの成形体を、雰囲気熱処
理炉に装入し、1400℃で8時間保持し、炉内には容
積比が2=1の水素ガスとメタンガスの混合ガスを流通
して、炉内の還元性ガスの圧力を150)igに調整し
た以外は、実施例1と同様の減圧ガス還元を行った′。
Example 2 The metallic chromium molded body obtained in Example 1 was charged into an atmospheric heat treatment furnace and held at 1400°C for 8 hours, and a mixture of hydrogen gas and methane gas with a volume ratio of 2 = 1 was placed in the furnace. Reduced pressure gas reduction was carried out in the same manner as in Example 1, except that the pressure of the reducing gas in the furnace was adjusted to 150)ig by circulating gas.

脱酸終了後の金属クロムの主な不純物の含有量と収率な
表−1に示す。
Table 1 shows the main impurity content and yield of metallic chromium after deoxidation.

実施例3 実施例1で得られた金属クロムの成形体を、雰囲気熱処
理炉に装入し、1400℃で7時間保持し、炉内には水
素ガスを連続的に流通して、炉内の水素ガスの圧力を4
0 al)(gに調整した以外は実施例1と同様の減圧
ガス還元を行った。
Example 3 The metallic chromium molded body obtained in Example 1 was charged into an atmospheric heat treatment furnace and held at 1400°C for 7 hours, and hydrogen gas was continuously passed through the furnace to cool the inside of the furnace. The pressure of hydrogen gas is 4
The same reduced pressure gas reduction as in Example 1 was performed except that the amount was adjusted to 0 al) (g).

脱酸終了後の金属クロムの主な不純物の含有量と収率を
表−1に示す。
Table 1 shows the main impurity content and yield of metallic chromium after deoxidation.

実施例4 実施例1で得られた金属クロムの成形体を雰囲気熱処理
炉に装入し、1400℃で7時間保持し、炉内には水素
ガスを間欠的に導入して、炉内の水素ガスの圧力を10
〜50 mlllHgに調整した以外は実施例1と同様
の減圧ガス還元を行った。
Example 4 The metallic chromium molded body obtained in Example 1 was charged into an atmospheric heat treatment furnace and held at 1400°C for 7 hours, and hydrogen gas was intermittently introduced into the furnace to remove hydrogen in the furnace. Increase the gas pressure to 10
The same reduced pressure gas reduction as in Example 1 was performed except that the pressure was adjusted to ~50 mlHg.

脱酸終了後の金属クロムの主な不純物の含有量と収率な
表−1に示す。
Table 1 shows the main impurity content and yield of metallic chromium after deoxidation.

実施例5 実施例1で得られた金属クロムの成形体を雰囲気熱処理
炉に装入し、1450℃で6時間保持し、炉内には水素
ガスを連続的に流通して、炉内の水素ガスの圧力を80
 mlllHgに調整した以外は実施例1と同様の減圧
ガス還元を行った。
Example 5 The metallic chromium molded body obtained in Example 1 was charged into an atmospheric heat treatment furnace and held at 1450°C for 6 hours, and hydrogen gas was continuously passed through the furnace to remove hydrogen in the furnace. gas pressure to 80
The same reduced pressure gas reduction as in Example 1 was performed except that the pressure was adjusted to mlllHg.

脱酸終了後の金属クロムの主な不純物の含有量と収率を
表−1に示す。
Table 1 shows the main impurity content and yield of metallic chromium after deoxidation.

比較例 実施例1で得られた金属クロムの成形体を雰囲気熱処理
炉に装入し、1600℃の常圧水素下で10時間保持し
て、脱酸反応を行った。
Comparative Example The metallic chromium molded body obtained in Example 1 was placed in an atmospheric heat treatment furnace and held under normal pressure hydrogen at 1600° C. for 10 hours to perform a deoxidation reaction.

反応終了後の金属クロムの主な不純物の含有量を表−1
に示す。
Table 1 shows the content of main impurities in metallic chromium after the completion of the reaction.
Shown below.

表−1 (発明の効果) 本発明の様に、減圧ガス雰囲気下で金属クロムの脱酸を
行えば、脱酸の過程で生成する水の分圧が低くなり、金
属クロムから酸素が抜は易くなるので効果的である。
Table 1 (Effects of the invention) If metallic chromium is deoxidized in a reduced pressure gas atmosphere as in the present invention, the partial pressure of water generated during the deoxidation process will be lowered, and oxygen will not be removed from metallic chromium. It is effective because it becomes easier.

また、得られる金属クロムは酸素のみならず、水素、窒
素、硫黄の含有量も少ないので、合金用添加材及び乾式
メッキ分野、半導体分野の素材として用いることができ
る。
In addition, the obtained metallic chromium has a low content of not only oxygen but also hydrogen, nitrogen, and sulfur, so it can be used as an additive for alloys and a material in the dry plating and semiconductor fields.

更に、本発明によれば、低い温度で脱酸を行5ことがで
き、蒸発損失も少なく、脱酸反応に用いる還元性ガスの
量も少ないので、経済的にも有利である。
Further, according to the present invention, deoxidation can be carried out at a low temperature, evaporation loss is small, and the amount of reducing gas used for the deoxidation reaction is small, so it is economically advantageous.

Claims (1)

【特許請求の範囲】[Claims] 不純物として微量酸素を含有する金属クロムを温度11
00℃以上に保持しながら、圧力1〜100mmHgの
還元性ガス雰囲気下で減圧ガス還元を行うことを特徴と
する金属クロムに含有する微量酸素の脱酸方法。
Metallic chromium containing a trace amount of oxygen as an impurity is heated to a temperature of 11
A method for deoxidizing trace amounts of oxygen contained in metallic chromium, which comprises carrying out reduced pressure gas reduction in a reducing gas atmosphere at a pressure of 1 to 100 mmHg while maintaining the temperature at 00°C or higher.
JP2724587A 1987-02-10 1987-02-10 Deoxidizing method for trace amount of oxygen Pending JPS63195233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2724587A JPS63195233A (en) 1987-02-10 1987-02-10 Deoxidizing method for trace amount of oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2724587A JPS63195233A (en) 1987-02-10 1987-02-10 Deoxidizing method for trace amount of oxygen

Publications (1)

Publication Number Publication Date
JPS63195233A true JPS63195233A (en) 1988-08-12

Family

ID=12215693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2724587A Pending JPS63195233A (en) 1987-02-10 1987-02-10 Deoxidizing method for trace amount of oxygen

Country Status (1)

Country Link
JP (1) JPS63195233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183086A (en) * 2002-12-06 2004-07-02 Nikko Materials Co Ltd Method of producing high purity chromium, and high purity chromium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413408A (en) * 1977-07-01 1979-01-31 Toyo Soda Mfg Co Ltd Manufacture of high purity metallic chromium
JPS5956540A (en) * 1982-08-20 1984-04-02 セ・デラシヨ Manufacture of high purity metal or alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413408A (en) * 1977-07-01 1979-01-31 Toyo Soda Mfg Co Ltd Manufacture of high purity metallic chromium
JPS5956540A (en) * 1982-08-20 1984-04-02 セ・デラシヨ Manufacture of high purity metal or alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183086A (en) * 2002-12-06 2004-07-02 Nikko Materials Co Ltd Method of producing high purity chromium, and high purity chromium

Similar Documents

Publication Publication Date Title
EP3100804A1 (en) Manufacturing method for nickel powder
US20070092434A1 (en) Production of high-purity niobium monoxide and capacitor production therefrom
US8545690B1 (en) Purification method of zinc sulfate leachate
CA3101795C (en) Methods for the production of fine metal powders from metal compounds
US1277523A (en) Magnetic iron product and method of making same.
US4148628A (en) Process of producing metallic chromium
JPH04231406A (en) Preparation of metal powder
JP2004510889A (en) Chromium purification method
CN111676409B (en) Preparation method of low-density low-cost Fe-Mn-Al-C intermediate entropy alloy
EP0482808B1 (en) Method for producing high-purity metallic chromium
JPS63199832A (en) Manufacture of high-purity metallic chromium
EP4311612A9 (en) Method for producing tantalum powder for capacitor by reducing tantalum oxide using alkaline earth metal
JPS63195233A (en) Deoxidizing method for trace amount of oxygen
CN111558713B (en) Oxygen reduction method for small-particle-size titanium powder
JPH0339426A (en) Manufacture of metallic niobium
US3048484A (en) Production of columbium and tantalum
CN111992725A (en) Zr2Preparation method and application of Fe alloy powder
US4294609A (en) Process for the reduction of iron oxide
JPH086121B2 (en) Method for producing low oxygen metal chromium powder
US2778725A (en) Method for making powdered vanadium metal
JPH058260B2 (en)
US1103747A (en) Extraction of nickel from mixtures of nickel and other metals.
US3114629A (en) Production of columbium and tantalum
JP2744867B2 (en) Method and apparatus for producing high purity chromium metal
JPS61153201A (en) Method for regenerating scrap of magnet containing rare earth element