JPS63194847A - Method and device for manufacturing mold - Google Patents

Method and device for manufacturing mold

Info

Publication number
JPS63194847A
JPS63194847A JP2565687A JP2565687A JPS63194847A JP S63194847 A JPS63194847 A JP S63194847A JP 2565687 A JP2565687 A JP 2565687A JP 2565687 A JP2565687 A JP 2565687A JP S63194847 A JPS63194847 A JP S63194847A
Authority
JP
Japan
Prior art keywords
mold
sand
green
gas
molding sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2565687A
Other languages
Japanese (ja)
Inventor
Tadashi Maezawa
前沢 征
Tamotsu Nozawa
野沢 保
Kiichi Shinada
品田 基一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2565687A priority Critical patent/JPS63194847A/en
Publication of JPS63194847A publication Critical patent/JPS63194847A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain even a complicated mold with high productivity at low cost by forming a green-sand mold by pressurizing and compressing a casting sand with maintaining the inside of a mold frame where the cast and for self- hardening mold is filled up in a pressure reducing state, thereafter, hardening it by gas. CONSTITUTION:The pressure reducing and concurrently releasing device 51 holding a pattern plate 1 is fed with a casting sand 25 in a fixed amt. at the lower part of a casting sand packing device to perform an uniform packing inside a mold frame 5. Thereafter, the device 51 is ascended to bring the mold frame 5 into contact with a pressurizing device 31. In this state, the upper faces of the mold frame 5 and casting sand 25 are covered by a flexible film 37 and the casting sand 25 is shut off from the upper space. The inside of the mold frame 5 is made in pressure reducing state by sucking via a vent hold 1a and piping 59 from the lower side of the pattern plate 1 and the casting sand 25 is stamped by working a sand rammer 34 to form a green-sand mold in uniform density. A self-hardening mold is obtd. by passing a gas through this green-sand mold.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、鋳型の製造方法及びその装置に関する。[Detailed description of the invention] B. Industrial application field The present invention relates to a mold manufacturing method and an apparatus therefor.

口、従来技術 複雑な形状の鋳型や複数の冷し金が互いに接近して配さ
れる鋳型にあっては、生砂では造型に際して鋳物砂の流
動性が不十分であって鋳物砂が十分には充填されない部
分が出来、その結果、得られる鋳造品に「掬われ(すく
われ)」、「飛ばされ(洗われ)」等の鋳型強度の不足
に起因する欠陥が生じ易い。大形の鋳型にあっては、生
型ではこれに注入される溶湯の圧力に対して鋳型の強度
が不足し、得られる大形鋳造品に上記欠陥のほかに鋳型
の強度不足から「張り」によって寸法不良が発生し易い
。そのため、複雑な形状の鋳型や複数の冷し金が互いに
接近して配される鋳型にはシェルモールドが、大形の鋳
型には自硬性鋳型が夫々多用されている。
Conventional technology For molds with complex shapes or molds in which multiple cold metals are placed close to each other, the fluidity of the molding sand is insufficient when green sand is used to form the mold, and the molding sand cannot be used in a sufficient amount. As a result, the resulting cast product is likely to have defects such as "scooping" and "washing" due to insufficient mold strength. In the case of large molds, green molds do not have enough strength to withstand the pressure of the molten metal injected into them, and the resulting large cast products suffer from "stretching" due to the lack of strength of the mold, in addition to the defects mentioned above. dimensional defects are likely to occur. Therefore, shell molds are often used for complex-shaped molds or molds in which a plurality of chilled metals are arranged close to each other, and self-hardening molds are often used for large-sized molds.

シェルモールドは、鋳型材料費が高(、コスト高になる
。自硬性鋳型は、造型後の硬化に時間がかかり、硬化時
間を短縮しようとすると鋳物砂混練後の可使時間が短く
なって造型作業が困難になるという問題がある。自硬性
鋳型の中でも、例えばCO2プロセスでは、バインダに
水ガラスを使用し、造型後に炭酸ガスを鋳型に通して水
ガラスと炭酸ガスとの反応によって鋳型を短時間に硬化
させるが、複雑な鋳型や大形の鋳型にあっては、鋳型の
総ての部分に炭酸ガスを行き渡らせることが難しく、鋳
型が均一に硬化し難いことや硬化に長時間を要する等の
問題がある。
Shell molds require high mold material costs.Self-hardening molds take time to harden after molding, and if you try to shorten the hardening time, the pot life after mixing the molding sand will shorten, making molding difficult. There is a problem that the work becomes difficult. Among self-hardening molds, for example, in the CO2 process, water glass is used as a binder, and after molding, carbon dioxide gas is passed through the mold to shorten the mold due to the reaction between the water glass and carbon dioxide gas. However, for complex or large molds, it is difficult to distribute carbon dioxide gas to all parts of the mold, making it difficult to harden the mold uniformly and requiring a long time to harden. There are other problems.

ハ8発明の目的 本発明は、上記の事情に鑑みてなされたものであって、
複雑な鋳型、複数の冷し金が互いに接近して配される鋳
型或いは大形の鋳型でも、高い生産性と低コストとを以
て遂行できる鋳型の製造方法及びその装置を提供するこ
とを目的としている。
C.8 Purpose of the Invention The present invention has been made in view of the above circumstances, and includes:
The purpose of the present invention is to provide a mold manufacturing method and an apparatus therefor, which can be performed with high productivity and low cost even in complex molds, molds in which a plurality of cold molds are arranged close to each other, or large molds. .

二0発明の構成 本発明の第一の発明は、模型が配された模型保持手段に
セットされた鋳型枠内に自硬性鋳型用鋳物砂を充填し、
この鋳物砂が充填された前記鋳型枠内を減圧状態に維持
しながら前記鋳物砂を加圧、圧縮して生の鋳型を成形し
、しかる後に、前記生の鋳型に接する通気孔を介して前
記生の鋳型にガスを通過させてこのガスによって前記生
の鋳型を硬化させる、鋳型の製造方法に係る。
20 Structure of the Invention The first invention of the present invention is to fill a mold flask set in a model holding means in which a model is arranged, with self-hardening molding sand,
While maintaining the mold flask filled with this molding sand in a reduced pressure state, the molding sand is pressurized and compressed to form a green mold, and then the molding sand is passed through a vent in contact with the green mold. The present invention relates to a mold manufacturing method in which a gas is passed through a green mold and the green mold is hardened by the gas.

本発明の第二の発明は、模型が配された模型保持手段に
セットされた鋳型枠内に鋳物砂を充填する鋳物砂充填手
段と;前記鋳物砂が充填された前記鋳型枠内を減圧状態
にする減圧手段と;前記鋳型枠内に充填された鋳物砂を
加圧する加圧手段と;前記加圧によって圧縮、成形され
た生の鋳型にガスを通過させるガス供給手段と;前記ガ
スによって硬化した鋳型を前記模型保持手段から分離す
る離型手段とを有し、前記生の鋳型に前記ガスを通過さ
せるための通気孔が前記生の鋳型に接するように設けら
れ、かつ、前記鋳物砂充填手段、前記減圧手段、前記加
圧手段、前記ガス供給手段及び前記離型手段が、前記模
型保持手段に対向するように前記模型保持手段に対して
相対的に移動可能になっている、鋳型の製造装置に係る
A second aspect of the present invention provides a molding sand filling means for filling molding sand into a molding flask set in a mold holding means in which a model is disposed; pressure reduction means for pressurizing the molding sand filled in the mold flask; gas supply means for passing gas through the green mold compressed and molded by the pressurization; hardening by the gas. a mold release means for separating the mold from the model holding means, a vent hole for allowing the gas to pass through the raw mold is provided so as to be in contact with the raw mold, and the molding sand is filled with molding sand. means, the pressure reduction means, the pressurization means, the gas supply means, and the mold release means are movable relative to the model holding means so as to face the model holding means. Related to manufacturing equipment.

ホ、実施例 以下、カムノーズ部に冷し金を配したチルドカム軸用鋳
型を例に挙げて、本発明を具体的に説明する。
E. EXAMPLE Hereinafter, the present invention will be specifically explained by taking as an example a mold for a chilled camshaft in which a chilled metal is arranged in the cam nose part.

カム軸のカムノーズは、内燃機関の運転中にロッカアー
ム又はタペットと摺接するので耐摩耗性が要求され、カ
ムノーズ部を冷し金によってチル(急速凝固)させてカ
ムノーズ表面層を硬い白鋳鉄組織とした鋳鉄製カム軸が
多用されている。生産性を高くするために多数のカム軸
模型を貼付けると、鋳型中でカムノーズ部に配設される
冷し全同士が接近してその間隔が狭くなり、前述したよ
うな問題が起こる。本例では、次のようにしてこの問題
を解決している。
The cam nose of the camshaft comes into sliding contact with the rocker arm or tappet during operation of the internal combustion engine, so wear resistance is required.The cam nose is chilled (rapidly solidified) using a chiller to create a hard white cast iron surface layer. Cast iron camshafts are often used. When a large number of camshaft models are pasted together in order to increase productivity, the cooling elements disposed in the cam nose portion of the mold come close to each other and the distance between them becomes narrow, causing the problem described above. In this example, this problem is solved as follows.

第1図は後述する減圧兼離型装置の運転を示す概略正面
図である。
FIG. 1 is a schematic front view showing the operation of a depressurizing and mold releasing device, which will be described later.

減圧兼離型装置51は、図示しない駆動装置によって1
80°回転する回転軸81に取付けられた支持台80に
固定され、回転軸81に固定された支持台80上には、
回転軸81の図示しない中心線に関して対称に2台の減
圧兼離型装置51が夫々■位置、■位置に位置している
。支持台80を貫通し、図示しない駆動装置によって上
下するバー82.83によって、減圧兼離型装置51は
所定の工程で上昇又は下降し、■、■間及び■、■間で
上下動可能にしである。
The decompression and mold release device 51 is operated by a drive device (not shown).
It is fixed to a support stand 80 attached to a rotation shaft 81 that rotates 80 degrees, and on the support stand 80 fixed to the rotation shaft 81,
Two depressurizing/mold releasing devices 51 are located symmetrically with respect to a center line (not shown) of the rotating shaft 81 at positions (1) and (2), respectively. By means of bars 82 and 83 that pass through the support base 80 and are moved up and down by a drive device (not shown), the decompression/mold release device 51 is raised or lowered in a predetermined process, and can be moved up and down between ■ and ■ and between ■ and ■. It is.

位瓢復、■上方には鋳物砂充填装置11と加圧装置51
とが順次設けられ、位置◎、■上方にはガス供給装置4
1が設けられている。
■The upper part is the molding sand filling device 11 and the pressurizing device 51.
are installed in sequence, and gas supply device 4 is installed above positions ◎ and ■.
1 is provided.

第2図〜第8図はチルドカム軸鋳造用鋳型の製造過程を
示す概略断面図である。一般に、カム軸には複数のカム
が設けられ、各カムのカムノーズは夫々カム軸の所定の
半径方向に向いているが、第2図〜第7図では模型のカ
ムノーズ部が上方を向いて位置するカム部分を切断して
示しである。
2 to 8 are schematic sectional views showing the manufacturing process of a mold for casting a chilled camshaft. Generally, a camshaft is provided with a plurality of cams, and the cam nose of each cam faces in a predetermined radial direction of the camshaft. The cam part shown is cut away.

第2図fa)はパターンプレート1上の模型3のカムノ
ーズ部上に冷し金4を載置し、パターンプレート1の周
縁部に鋳型枠5をa置した状態を示す。
FIG. 2 fa) shows a state in which a chiller 4 is placed on the cam nose portion of the model 3 on the pattern plate 1, and a mold flask 5 is placed on the peripheral edge of the pattern plate 1.

パターンプレート1は、減圧兼離型装置51上に保持さ
れている。
The pattern plate 1 is held on a decompression/mold release device 51.

第2図(blは同図(a)の部分拡大図で、パターンプ
レート1上の模型3、冷し金4の存在しない個所には、
上端部にエアベンツ2を配した通気孔1aと上端に支承
部57aを設けた型抜きピン57が第1図のバー82の
上昇によって■位置に位置し、第3図に示すように鋳物
砂充填装置11下に位置される。
FIG. 2 (bl is a partially enlarged view of FIG. 2(a)), where the model 3 and chiller 4 on the pattern plate 1 are not present.
The ventilation hole 1a with the air vent 2 arranged on the upper end and the die-cutting pin 57 with the support part 57a on the upper end are positioned at the ■ position by the rise of the bar 82 in FIG. 1, and the molding sand is filled as shown in FIG. It is located below the device 11.

減圧兼離型装置51は、鋳型枠5の上方開口部5aが鋳
物砂充填装置11の最下部に位置する盛砂プレート24
の開口部24aに合致するように位置する。所定量の鋳
物砂は、サンドホッパ12内に収容され、エアシリンダ
14の作動によって開閉可能な底部13が開くことによ
り混練機15内に投入され、モータM1の駆動によって
回転するスクリュー16によって混練される。
The decompression/mold release device 51 includes a sand filling plate 24 in which the upper opening 5a of the mold flask 5 is located at the lowest part of the molding sand filling device 11.
It is positioned so as to match the opening 24a of. A predetermined amount of foundry sand is stored in a sand hopper 12, and is introduced into a kneading machine 15 by opening a bottom portion 13 that can be opened and closed by operating an air cylinder 14, where it is kneaded by a screw 16 that is rotated by the drive of a motor M1. .

なお、後述する所定量のバインダ及び硬化剤は、混練機
15への鋳物砂投入の際に混練機15に投入する。
Note that predetermined amounts of the binder and curing agent, which will be described later, are added to the kneader 15 when casting sand is introduced into the kneader 15.

上記バインダには熱硬化性樹脂(例えばフラン系又はフ
ェノール系樹脂)と酸硬化剤(例えば有機スルホン酸)
を使用する。混練された鋳物砂25は、エアシリンダ1
9によって底蓋18が開くことにより、シュート17を
経由して砂充填用ホッパ20内に投入される。ホッパ2
0にはエアシリンダ23のピストンロッド23aが取付
けてあり、エアシリンダ23の駆動によってホッパ20
はガイドレール22に沿って移動する。このとき、モー
タM2によって駆動されるスクリュー21により、鋳物
砂25は、ホッパ20から鋳型枠5と盛砂プレート24
の開口部24aとの内側に均一に充填される。
The above binder contains a thermosetting resin (e.g. furan-based or phenolic resin) and an acid curing agent (e.g. organic sulfonic acid).
use. The kneaded foundry sand 25 is transferred to the air cylinder 1
When the bottom cover 18 is opened by 9, the sand is thrown into the sand filling hopper 20 via the chute 17. Hopper 2
A piston rod 23a of an air cylinder 23 is attached to the hopper 20.
moves along the guide rail 22. At this time, the molding sand 25 is transported from the hopper 20 to the mold flask 5 and the sand filling plate 24 by the screw 21 driven by the motor M2.
The inside of the opening 24a is uniformly filled.

次に、盛砂プレート24が図示しない駆動装置によって
少し上昇して鋳物砂25から抜出し、次いでエアシリン
ダ23の駆動によってホッパ20、ガイドレール22、
混練機15、サンドホッパ12が鋳型枠5の上方位置か
ら図に於いて左方に移動して取り除かれる。
Next, the sand filling plate 24 is slightly raised by a drive device (not shown) and extracted from the molding sand 25, and then the air cylinder 23 is driven to move the hopper 20, the guide rail 22,
The kneader 15 and sand hopper 12 are moved from a position above the mold flask 5 to the left in the figure and removed.

次に、第1図のバー82が更に上昇して鋳型枠5を支持
した減圧兼離型装置51が上昇し、第4図に示すように
、上方に位置する加圧装置31に鋳型枠5を対接させる
。梁33bに固定されたエアシリンダ33のピストンロ
ッド33aには、多数のサンドランマ34を取付けた筺
体32が取付けられ、筺体32の側壁下側には案内ピン
35を取巻くようにしてコイルばね36が取付けられ、
コイルばね36の下端には鋳型枠5の縁部に着座する当
接板37aが取付けてあり、当接板37aには可撓性膜
(例えば軟質ゴムの薄板)37が鋳物砂25を覆うよう
に取付けられている。
Next, the bar 82 in FIG. 1 further rises, and the decompression/mold release device 51 supporting the mold flask 5 rises, and as shown in FIG. to confront each other. A housing 32 to which a number of sand drummers 34 are attached is attached to the piston rod 33a of the air cylinder 33 fixed to the beam 33b, and a coil spring 36 is attached to the lower side wall of the housing 32 so as to surround the guide pin 35. is,
An abutment plate 37a is attached to the lower end of the coil spring 36 to sit on the edge of the mold flask 5, and a flexible membrane (for example, a thin plate of soft rubber) 37 is attached to the abutment plate 37a so as to cover the molding sand 25. installed on.

前記のように減圧兼離型装置51が上昇し、その上に支
持された鋳型枠5の縁部が当接板37aに対接すること
により、鋳型枠5及び鋳物砂25の上面は可撓性膜37
によって覆われ、鋳物砂25内は上方空間から遮断され
た状態となる。
As described above, the depressurization/mold release device 51 is raised and the edge of the mold flask 5 supported thereon comes into contact with the contact plate 37a, so that the upper surfaces of the mold flask 5 and the molding sand 25 become flexible. membrane 37
The inside of the molding sand 25 is shielded from the upper space.

この状態で、パターンプレート1の下側に位置する減圧
兼離型装置51の吸引ボックス54内を、排気孔54a
、配管59を経由して減圧ポンプ60で吸引、減圧し、
通気孔1a、ベントホール2(第2図(b)参照)を介
して鋳型枠5内を減圧状態とする。
In this state, the inside of the suction box 54 of the decompression/mold release device 51 located below the pattern plate 1 is opened through the exhaust hole 54a.
, suction and pressure reduction with a pressure reduction pump 60 via piping 59,
The inside of the mold flask 5 is brought into a reduced pressure state through the ventilation hole 1a and the vent hole 2 (see FIG. 2(b)).

上記減圧状態を維持しながら、サンドランマ34を駆動
させると、第5図に示すように、第4図の鋳物砂25は
可撓性膜37を介して圧縮され、搗固められて生の鋳型
38が成形される。サンドランマ34は多数個配しであ
るので、狭い部分も十分に搗固められ、生の鋳型38は
均一な密度となり、硬化後の鋳型は均一に弾固なものと
なる。この加圧時に、吸引ボックス54の排気口54a
から減圧ポンプ60によって吸引ボックス54内を減圧
しているので、第4図の鋳物砂25と共存している空気
が第2図(b)のエアベント2、通気孔1aを経由して
排出され、生の鋳型38の密度が上昇して硬化後の鋳型
を一層強固なものにする。前記可撓性膜37、吸引ボッ
クス54、排気孔54a、配管59及び減圧ポンプ60
によって減圧手段39が構成される。
When the sand rammer 34 is driven while maintaining the above-mentioned reduced pressure state, the foundry sand 25 shown in FIG. is formed. Since a large number of sand rammers 34 are arranged, narrow portions are sufficiently pounded and hardened, the green mold 38 has a uniform density, and the mold after hardening becomes uniformly elastic. During this pressurization, the exhaust port 54a of the suction box 54
Since the pressure inside the suction box 54 is reduced by the pressure reducing pump 60, the air coexisting with the foundry sand 25 shown in FIG. 4 is discharged via the air vent 2 and the ventilation hole 1a shown in FIG. The density of the green mold 38 increases, making the mold even stronger after hardening. The flexible membrane 37, the suction box 54, the exhaust hole 54a, the piping 59, and the vacuum pump 60
The pressure reducing means 39 is constituted by this.

生の鋳型38が成形されると、エアシリンダ33が駆動
し、加圧装置31が上昇して元の位置に復すると共に、
第1図のバー82が下降して鋳型枠5を支持した減圧兼
離型装置51が久装置に復して支持台81上に載置され
る。次に支持台81が180゛回転して減圧兼離型装置
51は■位置から■位置へと位置変更すると共に、■位
置に位置していた別の減圧兼離型装置151が■立置に
位置して、前述したと同様の工程を経て生の鋳型が成形
される。
When the green mold 38 is formed, the air cylinder 33 is driven, and the pressurizing device 31 is raised and returned to its original position.
The bar 82 in FIG. 1 is lowered, and the decompression/mold release device 51 that supported the mold flask 5 is returned to its original state and placed on the support stand 81. Next, the support stand 81 rotates 180°, and the decompression/mold release device 51 changes its position from the ■ position to the ■ position, and another depressurization/mold release device 151 located at the ■ position is moved to the vertical position. Then, a green mold is formed through the same steps as described above.

生の鋳型38を載置し、第1図の◎位置に位置した減圧
兼離型装置51は、バー83の上昇によっ式匝位置に位
置し、第6図に示すように、鋳型枠5及び生の鋳型38
がガス供給装置41に下方から圧接する。
The decompression/mold release device 51, which is placed with the green mold 38 and is located at the ◎ position in FIG. and raw mold 38
is pressed against the gas supply device 41 from below.

ガス供給装置41はガス吹き込み口42aを有するガス
導入部42並びにガス導入部42下に取付けられた外周
壁4゛3及び内周壁44によって構成され、外周壁43
は天蓋43a、側壁43b及び天蓋43aと側壁43b
との間に位置するベロー43cとからなっていて、側壁
43bが鋳型枠5上端に当接するようにしである。ガス
吹き込み口42aから50〜170℃の熱風を送ると、
熱風は外周壁43と内周壁44との間の空間46に導か
れ、ベロー43cが延びて側壁43bが鋳型枠5に圧接
し、ガス供給装置41と鋳型枠5との間が気密に保たれ
、減圧ポンプ6oによって排気口54aント2及び通気
孔1aを経由して流れ、この熱風の熱によって生の鋳型
38のバインダが硬化し、自硬性鋳型47Aとなる。上
記減圧は、前述した生の鋳型成形時と同様に、鋳型枠に
設けた通気孔を経由して減圧するようにもできるが、こ
の場合は、ガスが生の鋳型の総ての部分に十分に供給さ
れるよう、方案上の配慮が必要である。
The gas supply device 41 is composed of a gas introduction part 42 having a gas blowing port 42a, an outer peripheral wall 43 and an inner peripheral wall 44 attached below the gas introduction part 42, and the outer peripheral wall 43
are a canopy 43a, a side wall 43b, and a canopy 43a and a side wall 43b.
and a bellows 43c located between the mold flask 5 and the side wall 43b is configured to abut against the upper end of the mold flask 5. When hot air of 50 to 170°C is sent from the gas blowing port 42a,
The hot air is guided into the space 46 between the outer peripheral wall 43 and the inner peripheral wall 44, the bellows 43c extends and the side wall 43b comes into pressure contact with the mold flask 5, and the space between the gas supply device 41 and the mold flask 5 is kept airtight. The hot air flows through the exhaust port 54a and the air vent 1a by the vacuum pump 6o, and the heat of this hot air hardens the binder in the raw mold 38, forming a self-hardening mold 47A. The above-mentioned pressure reduction can also be done via a vent provided in the mold flask, as in the case of green mold forming described above, but in this case, the gas is sufficient to reach all parts of the green mold. Consideration must be given to the plan so that it is supplied to the public.

次に、第1図のバー83が下降し、それと共に減圧兼離
型装置51がガス供給装置41から離れて下降し、■位
置に復して支持台80上に載置される。
Next, the bar 83 shown in FIG. 1 is lowered, and at the same time, the depressurization/mold release device 51 is separated from the gas supply device 41 and lowered, returning to the position (2) and placed on the support base 80.

次に、又は上記下降と同時に、減圧兼離型装置51を作
動させ、自硬性鋳型47Aを鋳型枠5、パターンプレー
ト1から離型する。
Next, or at the same time as the lowering, the depressurizing/releasing device 51 is operated to release the self-hardening mold 47A from the mold flask 5 and pattern plate 1.

減圧兼離型装置51は、第7図に示すように、筺体52
内に設けられたエアシリンダ53と、エアシリンダ53
のピストンロッド53aに取付けられた押上げ板56と
、押上げ板56゛に取付けられた型抜きピン57とを有
し、型抜きピン57は、第7図(b)に示すように、押
上げ板56を収容する吸引ボックス54上に載置された
パターンプレート1の貫通孔1bに挿通し、コイルばね
58によって型抜きピン57の支承部57aの上面がパ
ターンプレート1の上面と同じ高さに位置するものであ
って、エアシリンダ53が駆動してピストンロット53
aがパターンプレート1に対して相対的に上昇し、押上
げ板56はガイドピン55を案内にして上昇し、型抜き
ピン57はコイルばね58の力に逆らって上昇し、支承
部57aが冷し金を取付けた自硬性鋳型47Aをパター
ンプレート1及び鋳型枠5から抜取って上昇させ、図示
しない把握装置によって自硬性鋳型47Aは所定の位置
へ搬送される。
As shown in FIG. 7, the depressurization/mold release device 51
Air cylinder 53 provided inside and air cylinder 53
A push-up plate 56 is attached to the piston rod 53a, and a die-cutting pin 57 is attached to the push-up plate 56'. It is inserted into the through hole 1b of the pattern plate 1 placed on the suction box 54 that accommodates the raising plate 56, and the upper surface of the support part 57a of the die-cutting pin 57 is at the same height as the upper surface of the pattern plate 1 by the coil spring 58. The piston rod 53 is located when the air cylinder 53 is driven.
a rises relative to the pattern plate 1, the push-up plate 56 moves up using the guide pin 55 as a guide, the die-cutting pin 57 rises against the force of the coil spring 58, and the support part 57a cools down. The self-hardening mold 47A with the pad attached is extracted from the pattern plate 1 and the mold flask 5 and raised, and the self-hardening mold 47A is conveyed to a predetermined position by a grasping device (not shown).

上記自硬性鋳型の上型47Aと同様にして自硬性鋳型の
下型47Bを造り、両者を合わせると第8図(a)に示
すようにチルドカム軸鋳造用自硬性鋳型47が完成する
。下型47Bは搬送の途中で上下が反転させられる。
A lower mold 47B of the self-hardening mold is made in the same manner as the upper mold 47A of the self-hardening mold, and when the two are combined, a self-hardening mold 47 for chilled camshaft casting is completed as shown in FIG. 8(a). The lower mold 47B is turned upside down during transportation.

前述したように、カム軸のカムは、カムノーズがカム軸
の所定の半径方向に夫々向いて設けてあって、第2図〜
第7図及び第8図[alはカムノーズ部が身切り面47
aから上型上方に向いている部分の断面を示している。
As mentioned above, the cams of the camshaft are provided with their cam noses facing in a predetermined radial direction of the camshaft, and as shown in FIGS.
Figures 7 and 8 [al shows the cam nose part is the cutting surface 47
A cross section of the part facing upward from the upper mold is shown.

第8図(blは同じ鋳型47のカムノーズ部が身切り面
47aから下型下方に向いている部分の断面図、同図f
c)は同じ鋳型47のカムノーズ部が身切り面47a方
向に向いている部分の断面図である。
Fig. 8 (bl is a sectional view of the part where the cam nose part of the same mold 47 faces downward from the cutting surface 47a, the same figure f
c) is a sectional view of a portion of the same mold 47 in which the cam nose portion faces toward the cutting surface 47a.

本例に於ける鋳物砂の温度は30℃、熱硬化性樹脂の配
合量は砂に対して0.8%、酸硬化剤の配合量は上記熱
硬化性樹脂に対して40%、吹き込み空気の温度は15
0°C1空気吹き込み量は単位平方米当たり約30mN
/min 、上型及び下型の厚さはいって離型が可能で
あり、迅速な造型がなされた。
In this example, the temperature of the foundry sand was 30°C, the amount of thermosetting resin was 0.8% based on the sand, the amount of acid curing agent was 40% based on the above thermosetting resin, and blown air was used. The temperature of is 15
0°C1 air blowing amount is approximately 30mN per unit square meter
/min, the thickness of the upper and lower molds allowed for rapid mold release.

また、離型後の鋳型強度は、鋳込み迄の間室温に保持さ
れることによって更に上昇し、5分間経過後には各部分
共10kg/c4以上にもなり、良品質の鋳造品を得る
上で特に必要とされる強固でかつ寸75X゛ 法精度の高い良好な鋳型ダ得られた。
In addition, the strength of the mold after release increases further by being kept at room temperature until pouring, and after 5 minutes, each part reaches 10 kg/c4 or more, which is important for obtaining high quality cast products. In particular, a good mold was obtained that was strong and had a high dimensional accuracy of 75X.

なお、本例では、熱風を鋳物砂の側から送り、パターン
プレートの通気孔を経由させて鋳型を硬化させているが
、これとは逆に、熱風をパターンプレートの裏側から通
気孔を経由して鋳型に通過させて鋳型を硬化させるよう
にしても良い。
In this example, hot air is sent from the molding sand side and passed through the ventilation holes of the pattern plate to harden the mold, but in contrast, hot air is sent from the back side of the pattern plate through the ventilation holes. Alternatively, the resin may be passed through a mold to harden the mold.

第9図は第8図の鋳型47に注湯して得られたカム軸素
材の正面図である。カム軸61の軸63には、ジャーナ
ノヒ部64が3個、スプロケットホイール部65と燃料
ポンプ用偏心カム部66が夫々1 +11i1、カム部
62が8開設けられ、カム部62のカムノーズ部62a
、その反対側の部分62bは、上方、前方、後方、下芳
へ90°の位相差で21囚ずつが向いている。
FIG. 9 is a front view of a camshaft material obtained by pouring metal into the mold 47 of FIG. 8. The shaft 63 of the cam shaft 61 is provided with three journal nozzle portions 64, one sprocket wheel portion 65 and one eccentric cam portion 66 for the fuel pump, eight cam portions 62, and a cam nose portion 62a of the cam portion 62.
, 21 portions 62b on the opposite side are oriented upward, forward, backward, and downward with a phase difference of 90°.

なお、鋳物砂のバインダには鋳物砂の流動性を悪くする
ものがあり、このようなバインダを使用すると、第3図
に示した鋳物砂充填工程でスクリュー21が詰まって鋳
物砂25の充填がスムーズに遂行できなくなることがあ
る。このような場合は、第3図の砂充填用ホッパ20に
替えて、第10図に示すようなホッパ70が好ましく使
用できる。
Note that some foundry sand binders impair the fluidity of foundry sand, and if such binders are used, the screw 21 will become clogged in the foundry sand filling process shown in FIG. It may not be possible to execute smoothly. In such a case, a hopper 70 as shown in FIG. 10 can be preferably used instead of the sand filling hopper 20 shown in FIG. 3.

ホッパ70は、工法がりになっていて、駆動ローラ72
によって駆動されるヘルドコンベヤ71上に位置し、パ
イブレーク70a、70bによって略垂直方向及び略水
平方向に振動するようにしてあり、鋳物砂25はホッパ
70とベルトコンベヤ71の従動ローラ73側との間の
間隙74を通り抜けて矢印で示すように図示しない下方
のパターンプレート上に供給するようにしである。
The hopper 70 is similar to the construction method, and the drive roller 72
The molding sand 25 is placed on a heald conveyor 71 driven by a belt conveyor 71, and is vibrated in substantially vertical and horizontal directions by pie breaks 70a and 70b. It passes through the gap 74 between them and is fed onto a lower pattern plate (not shown) as indicated by the arrow.

本例では、減圧手段と離型手段とに、共通の減圧兼離型
装置を使用しているが、減圧装置と離型装置とを別個に
設けても良い。
In this example, a common pressure reducing and mold releasing device is used for the pressure reducing means and the mold releasing means, but the pressure reducing device and the mold releasing device may be provided separately.

上記の例はチルドカム軸用鋳型の製造の例であるが、本
発明は、チルド鋳物以外の鋳造品にも適用可能であり、
特に鋳物砂の詰まりの悪いような形状を有する鋳造品用
の鋳型の製造や大形の鋳型の製造に適用して良好な結果
が得られる。
Although the above example is an example of manufacturing a mold for a chilled camshaft, the present invention is also applicable to cast products other than chilled castings.
In particular, good results can be obtained when applied to the production of molds for cast products having shapes that prevent clogging with foundry sand, and the production of large-sized molds.

また、熱硬化性樹脂をバインダとし、熱風によっ、て生
の鋳型を硬化させるほか、アミン系ガスによってバイン
ダ樹脂を硬化させるインキュア法等の自硬性鋳型にも、
本発明は適用可能である。
In addition, in addition to using thermosetting resin as a binder and hardening the green mold with hot air, we also use the incure method, which hardens the binder resin with amine gas, for self-hardening molds.
The present invention is applicable.

また、上記の例はパターンプレートを使用して造型する
例であるが、パターンプレート以外の模型保持手段を使
用する造型にも、本発明は同様に適用可能である。
Further, although the above example is an example of molding using a pattern plate, the present invention is similarly applicable to molding using a model holding means other than the pattern plate.

へ0発明の詳細 な説明したように、本発明は、自硬性鋳型用鋳物砂が充
瞑された鋳型枠内を減圧状態にしながら加圧、圧縮して
生の鋳型を成形するので、密度の高い生の自硬性鋳型が
成形される。更に、この生の自硬性鋳型に接する通気孔
にガスを通過させてこのガスによって前記生の自硬性鋳
型を硬化させるようにしているので、前記生の鋳型の総
ての部分に前記ガスが十分に供給される。その結果、得
られる鋳型は均一に強固なものとなり、冷し金の有無、
鋳造品の形状、鋳型の大きさに関係なく、得られる鋳造
品には鋳型強度の不足に起因する鋳造欠陥や寸法不良が
生ずる虞れがなく、鋳造品製造の歩留りが向上する。而
も短時間に鋳型の硬化が遂行されるので、造型の生産性
が高い。
As described in detail, the present invention molds a green mold by pressurizing and compressing the mold flask filled with self-hardening molding sand while reducing the pressure. A highly green self-hardening mold is formed. Furthermore, since gas is passed through the vents in contact with the raw self-hardening mold to harden the raw self-hardening mold, the gas is sufficiently supplied to all parts of the raw mold. supplied to As a result, the molds obtained are uniformly strong, with or without cooling metal,
Irrespective of the shape of the cast product or the size of the mold, the resulting cast product is free from casting defects or dimensional defects due to insufficient mold strength, and the yield in manufacturing the cast product is improved. Moreover, since the mold is hardened in a short time, the productivity of molding is high.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例を示すものであって、 第1図は減圧兼離型装置の運動を示す概略正面図、 第2図(alはパターンプレート上に冷し金及び鋳型枠
をセットした状態を示す断面図、 第2図(blは第2図(alの部分拡大図、第3図は鋳
物砂充填の状態を示す断面図、第4図は鋳物砂描面め(
加圧、圧縮)直前の状態を示す断面図、 第5図は鋳物砂描面め後の生の鋳型完成の状態を示す断
面図、 第6図は熱風供給によって生の鋳型を硬化させる状態を
示す断面図、 第7図は離型の状態を示す断面図、 第8図(al、(b)及び(C1は鋳型の断面図、第9
図は鋳造されたチルドカム軸IR#’li1図顧庶右I
!l〆l函Z)呵材面tiγlの正面図、第10図は鋳
物砂充填用ホッパの一例を示す部分断面図 である。 なお、図面に示された符号に於いて、 1・・・・・・・・・パターンプレート1a・・・・・
・・・・パターンプレートの通気孔2・・・・・・・・
・エアベント 3・・・・・・・・・模型 4・・・・・・・・・冷し金 5・・・・・・・・・鋳型枠 11・・・・・・・・・鋳物砂充填装置20.70・・
・・・・・・・鋳物砂充填用ホッパ24・・・・・・・
・・型砂プレート 25・・・・・・・・・鋳物砂 31・・・・・・・・・加圧装置 33.53・・・・・・・・・エアシリンダ34・・・
・・・・・・サンドランマ 37・・・・・・・・・可撓性膜 38・・・・・・・・・生の鋳型 39・・・・・・・・・減圧手段 54・・・・・・・・・吸引ボックス 41・・・・・・・・・ガス供給装置 42・・・・・・・・・ガス導入部 42a・・・・・・・・・ガス吹き込み口47・・・・
・・・・・鋳型 47A・・・・・・・・・上型 47B・・・・・・・・・下型 51・・・・・・・・・減圧兼離型装置56・・・・・
・・・・押上げ板 57・・・・・・・・・型抜きビン 57a・・・・・・・・・型抜きビンの鋳型支承部60
・・・・・・・・・減圧ポンプ 61・・・・・・・・・チルドカム軸素材である。
The drawings all show embodiments of the present invention, and Fig. 1 is a schematic front view showing the movement of the depressurization/mold release device, and Fig. 2 (al shows the cooling metal and mold flask on the pattern plate). A sectional view showing the set state, Fig. 2 (bl is a partial enlarged view of Fig. 2 (al), Fig. 3 is a sectional view showing the state of filling with foundry sand, Fig. 4 is a drawing of the foundry sand (
Figure 5 is a cross-sectional view showing the state immediately before the molding process (pressurization, compression), Figure 5 is a cross-sectional view showing the completed green mold after the molding sand has been painted, and Figure 6 is the state in which the green mold is hardened by supplying hot air. Figure 7 is a cross-sectional view showing the state of mold release; Figures 8 (al, (b) and (C1) are cross-sectional views of the mold;
The figure shows the cast chilled cam shaft IR#'li1 figure
! FIG. 10 is a front view of the material surface tiγl, and FIG. 10 is a partial sectional view showing an example of a hopper for filling molding sand. In addition, in the symbols shown in the drawings, 1... Pattern plate 1a...
...Pattern plate ventilation hole 2...
・Air vent 3...Model 4...Cold metal 5...Mold flask 11...Cast sand Filling device 20.70...
...... Hopper 24 for filling molding sand...
...Mold sand plate 25...Molding sand 31...Pressurization device 33.53...Air cylinder 34...
...... Sand drummer 37 ...... Flexible membrane 38 ...... Raw mold 39 ...... Pressure reduction means 54 ... ...Suction box 41 ... Gas supply device 42 ... Gas introduction part 42a ... Gas blowing port 47 ...・・・
...Mold 47A...Top mold 47B...Bottom mold 51...Depressurization/mold release device 56...・
...Push-up plate 57...Mold-cutting bottle 57a...Mold support part 60 of the die-cutting bottle
......Decompression pump 61...Child cam shaft material.

Claims (1)

【特許請求の範囲】 1、模型が配された模型保持手段にセットされた鋳型枠
内に自硬性鋳型用鋳物砂を充填し、この鋳物砂が充填さ
れた前記鋳型枠内を減圧状態に維持しながら前記鋳物砂
を加圧、圧縮して生の鋳型を成形し、しかる後に、前記
生の鋳型に接する通気孔を介して前記生の鋳型にガスを
通過させてこのガスによって前記生の鋳型を硬化させる
、鋳型の製造方法。 2、模型が配された模型保持手段にセットされた鋳型枠
内に鋳物砂を充填する鋳物砂充填手段と;前記鋳物砂が
充填された前記鋳型枠内を減圧状態にする減圧手段と;
前記鋳型枠内に充填された鋳物砂を加圧する加圧手段と
;前記加圧によって圧縮、成形された生の鋳型にガスを
通過させるガス供給手段と;前記ガスによって硬化した
鋳型を前記模型保持手段から分離する離型手段とを有し
、前記生の鋳型に前記ガスを通過させるための通気孔が
前記生の鋳型に接するように設けられ、かつ、前記鋳物
砂充填手段、前記減圧手段、前記加圧手段、前記ガス供
給手段及び前記離型手段が、前記模型保持手段に対向す
るように前記模型保持手段に対して相対的に移動可能に
なっている、鋳型の製造装置。
[Scope of Claims] 1. Filling molding sand for self-hardening molds into a molding flask set in a model holding means in which a model is placed, and maintaining the inside of said molding flask filled with this molding sand in a reduced pressure state. Meanwhile, the molding sand is pressurized and compressed to form a green mold, and then a gas is passed through the green mold through a vent in contact with the green mold, and the gas is used to form the green mold. A mold manufacturing method that hardens the mold. 2. a molding sand filling means for filling molding sand into a molding flask set in a mold holding means on which a model is arranged; a depressurizing means for reducing the pressure in the molding flask filled with the molding sand;
a pressurizing means for pressurizing the molding sand filled in the mold flask; a gas supply means for passing gas through the green mold compressed and formed by the pressurization; and a mold holding the mold hardened by the gas. a mold releasing means separated from the means, a vent hole for passing the gas through the green mold is provided so as to be in contact with the green mold, and the molding sand filling means, the depressurizing means, A mold manufacturing apparatus, wherein the pressurizing means, the gas supply means, and the mold releasing means are movable relative to the model holding means so as to face the model holding means.
JP2565687A 1987-02-06 1987-02-06 Method and device for manufacturing mold Pending JPS63194847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2565687A JPS63194847A (en) 1987-02-06 1987-02-06 Method and device for manufacturing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2565687A JPS63194847A (en) 1987-02-06 1987-02-06 Method and device for manufacturing mold

Publications (1)

Publication Number Publication Date
JPS63194847A true JPS63194847A (en) 1988-08-12

Family

ID=12171859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2565687A Pending JPS63194847A (en) 1987-02-06 1987-02-06 Method and device for manufacturing mold

Country Status (1)

Country Link
JP (1) JPS63194847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149364A (en) * 2006-12-20 2008-07-03 Maeda Sheru Service:Kk Casting die molding system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149364A (en) * 2006-12-20 2008-07-03 Maeda Sheru Service:Kk Casting die molding system

Similar Documents

Publication Publication Date Title
US3528481A (en) Core making machine with hardening gas manifold
CN1960822A (en) Method and device for pouring molten metal in vacuum molding and casting
CN104162632A (en) Casting sand core hot box and sand core molding method
JP5356564B2 (en) Casting method and apparatus
US6540007B2 (en) Molding process for the mass production of aluminum alloy castings and associated items of equipment
BRPI0417620A (en) method and apparatus for molding an upper mold and a lower mold without casting box and which fit together and method for replacing the adjusting plate
US3554271A (en) Molding assembly method
JP3966353B2 (en) Cast frame unit for molding machine and molding method using the same
US3878881A (en) Method for producing and assembling cope and drag mold parts
JPS63194847A (en) Method and device for manufacturing mold
US3817314A (en) Flaskless molding machine
JPH10146648A (en) Molding method for mold and molding machine
US2325501A (en) Molding machine
JP2005262254A (en) Method for reusing pattern plate and flaskless molding machine
CN204122687U (en) A kind of sand cores of castings hot box
CN105458185A (en) Back pressure modeling method for sand mold
US3605864A (en) Turntable shell moulding machine with pivotally interconnected mould parts
JPWO2018016123A1 (en) Mold molding method
JPS60158949A (en) Method and device for forming casting mold
US229294A (en) woolnoug-h
JP3040074U (en) Sand fall prevention device for molding machine
US230979A (en) woolnou-gh
EP1205270A1 (en) Method and device for collapsing and separating mold material and mold green sand from green sand mold
JPH0716705A (en) Horizontal split flask molding device
JP2607884B2 (en) Casting mold equipment