JPS63194782A - Sorter for fine powder - Google Patents

Sorter for fine powder

Info

Publication number
JPS63194782A
JPS63194782A JP2775687A JP2775687A JPS63194782A JP S63194782 A JPS63194782 A JP S63194782A JP 2775687 A JP2775687 A JP 2775687A JP 2775687 A JP2775687 A JP 2775687A JP S63194782 A JPS63194782 A JP S63194782A
Authority
JP
Japan
Prior art keywords
classification
fine powder
area
classifier
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2775687A
Other languages
Japanese (ja)
Inventor
英夫 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2775687A priority Critical patent/JPS63194782A/en
Publication of JPS63194782A publication Critical patent/JPS63194782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は微粉の分級装置に係り、とくに気体に随伴され
ている固体材料の乾式による微粉の分級装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fine powder classification apparatus, and more particularly to a dry fine powder classification apparatus for solid materials entrained in gas.

[従来の技術] ミクロン級粒子ならびにサブミクロン級粒子製造への要
求に対応して、粉砕機による微粉砕とともに微粉の粉砕
品を分級することによって、上記の微粒子を得ることが
行われ、とくに分級の精密化か強く要請されている。
[Prior Art] In response to the demand for the production of micron-level particles and submicron-level particles, the above-mentioned fine particles are obtained by pulverizing the pulverized product using a pulverizer and classifying the pulverized product. There is a strong demand for precision.

従来、この種の微粉の分級装置としては、分級のための
操作力に対応して、種々のものが提出されており、例え
ば、慣性力を操作力とする分級方法をはじめコアンダ効
果を利用したものなどが提案されている。
Conventionally, various devices have been proposed as this type of fine powder classification device, depending on the operating force required for classification. Things are being suggested.

]アンダ効果とは、流体が高速で壁面にそって流れると
きその円柱壁などの曲面に付着して流動する現象である
。(例えば、「機械工学便覧」改訂第6版(昭54.7
.20)、 P8−15 ”)。
] The under effect is a phenomenon in which when fluid flows along a wall surface at high speed, it adheres to a curved surface such as a cylindrical wall and flows. (For example, "Mechanical Engineering Handbook" revised 6th edition (Showa 54.7)
.. 20), P8-15'').

従来の慣性力及びコアンダ効果を利用する微粉分級機と
しては、エルボ−ジェット分級機などが試みられていた
。(例えば、化学工学協会「粉粒体工学」、(昭66、
11.1.) 、槙書店、 P2S5)。
As a conventional fine powder classifier that utilizes inertial force and the Coanda effect, an elbow jet classifier and the like have been attempted. (For example, the Society of Chemical Engineers, “Powder and Granule Engineering,” (1986,
11.1. ), Maki Shoten, P2S5).

エルボ−ジェット分級機は二次元の非回転分級体よりな
り、機械的方法が用いられることなく、気流をコアンダ
効果を利用して方向変換し、その際空気中に含まれてい
る粒子の慣性力を操作力として分級を行うものでおり、
粒子を運び去るために空気が吹込まれ、このさい細粉は
気流の流線上に浮んで運動し、粗粉には慣性力によって
直進的流下するため、微粉は細粉と粗粉とに分級するこ
とができる。
Elbow-jet classifiers consist of a two-dimensional non-rotating classifier that uses the Coanda effect to change the direction of airflow without using any mechanical methods. Classification is performed using the operating force.
Air is blown in to carry away the particles, and the fine powder floats and moves on the streamlines of the airflow, and the coarse powder flows straight down due to inertia, so the fine powder is classified into fine powder and coarse powder. be able to.

また、コアンダ効果を充分に生成させるためには、気流
の流入域の先端開口の幅寸法(厚さを代表する)と気流
の速度、空気の粘性とによって定まるRe数が、所定の
Re数を超えて気流を吹出すことが必要である。
In addition, in order to sufficiently generate the Coanda effect, the Re number determined by the width dimension (representative of the thickness) of the tip opening of the airflow inflow region, the speed of the airflow, and the viscosity of the air must exceed a predetermined Re number. It is necessary to blow out the airflow beyond.

[発明が解決しようとする問題点] しかしながら、上記従来の微粉の分級装置、とくにコア
ンダ効果を利用する分級装置では、気流の流入域の先端
開口の幅寸法が大きくて気流の厚さが大である場合には
、充分なコアンダ効果を発生させることができず、これ
を回避するために気流の流速を著しく増大させる必要が
あった。また、反対に、上記の先端開口の幅寸法が小さ
くて気流の厚さが小である場合には、気流の膜が破裂さ
れやすく安定したコアンダ効果を発生させることができ
ないという欠点を有しており、さらに分級体の表面の広
範囲にわたって気流を導くことが出来ないので、微粉の
充分な分級が行われなくなり、分級精度を低下させてし
まうという問題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional fine powder classification devices, especially in the classification devices that utilize the Coanda effect, the width of the opening at the end of the airflow inflow region is large, and the thickness of the airflow is large. In some cases, it has not been possible to generate a sufficient Coanda effect, and to avoid this it has been necessary to significantly increase the velocity of the airflow. On the other hand, if the width of the tip opening is small and the thickness of the airflow is small, the airflow membrane is likely to rupture and a stable Coanda effect cannot be generated. Furthermore, since the airflow cannot be guided over a wide range of the surface of the classifier, there is a problem in that the fine powder cannot be classified sufficiently and the classification accuracy is reduced.

本発明はこのような従来の問題を解決するものであり、
気体に随伴されている微粉の分級にあたりコアンダ効果
を著しく改善することができて、分級精度を向上するこ
とができる優れた微粉の分級装置を提供することを目的
とするものでおる。
The present invention solves these conventional problems,
The object of the present invention is to provide an excellent fine powder classification device that can significantly improve the Coanda effect and improve the classification accuracy when classifying fine powder entrained in gas.

r問題点を解決するための手段] 本発明は上記目的を達成するために、回転する円柱状の
分級体と、分級体の上半部に設けた粒子を含んでいる気
体の流入域と、分級体の下半部に設けた分級体の回転方
向に前記気体が分級体の表面に沿って流れる分級領域と
、該分級領域の周方向に設けた複数の区画域と、該区画
域から分級粒子をそれぞれ排出させるようにし、また、
粒子を含んでいる気体の流入域に隣接して、該流入域に
ほぼ平行する流れ方向を有する気体のみの流入域を併置
するようにし、さらにまた、分級領域の区画域が粗粉域
と、中間粉域と、細粉域とよりなるようにしたものであ
る。
Means for Solving Problems] In order to achieve the above object, the present invention includes a rotating cylindrical classifier, an inlet region for gas containing particles provided in the upper half of the classifier, A classification region, in which the gas flows along the surface of the classification body in the rotating direction of the classification body, provided in the lower half of the classification body, a plurality of partitioned areas provided in the circumferential direction of the classification area, and a classification area from the partitioned area. The particles are discharged individually, and
Adjacent to the inflow area of the gas containing particles, an inflow area of only gas having a flow direction substantially parallel to the inflow area is placed, and furthermore, the divided area of the classification area is a coarse powder area, It consists of an intermediate powder region and a fine powder region.

[作 用] 本発明は上記のような構成により次のような作用を有す
る。すなわち、気体に随伴されている微粉の分級に必た
り、粒子を含んでいる気体が気流の乱れを発生すること
なく、粘性流体となって分級体の表面に沿って流れるこ
とによりコアンダ効果による気体の付着をさらに助勢す
るのみならず、分級体の表面の末端まで気体の付着が継
続されるので細粉は気体流れの後流側から捕集されるこ
とにより、細粉とくに微細粉を主として分離するにいた
り、気体の流れ方向変換の少い粗粉の慣性弁離と対応し
て、微粉の分級における分級精度を著しく向上すること
ができる。
[Function] The present invention has the following effects due to the above configuration. In other words, when classifying fine powder that is accompanied by a gas, the gas containing particles becomes a viscous fluid and flows along the surface of the classifier without causing any airflow turbulence. Not only does this further promote the adhesion of the gas, but also the adhesion of the gas continues to the end of the surface of the classifier, so the fine powder is collected from the downstream side of the gas flow, and the fine powder, especially the fine powder, is mainly separated. As a result, the classification accuracy in fine powder classification can be significantly improved, corresponding to the inertial separation of coarse powder with less change in gas flow direction.

[実施例] 以下、本発明の実施例を図面について詳細に述べる。第
1図は本発明の一実施例の構成をしめすものである。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of an embodiment of the present invention.

第1図において、10は分級機をしめし、18は粒子を
含んでいる気体の流入域であり、12は分級体をしめす
。分級体12は円柱状よりなり図示を省略した中心軸を
両端に備えて回転可能に軸承され駆動装置をもちいて矢
印にしめすごとく時計方向に回転せられる。14は分級
体12の両端に設けた鍔で必る。16は上部ケーシング
をしめし、分級体12の下半部を収容するために設けら
れ、前記の気体の流入域18を備えるとともに、気体の
流入域18の先端開口は分級体12の上半部の円柱状表
面にほぼ垂直方向に接するごとく位置せられ、上記流入
域18の先端開口の反対側には、微粉供給口22が上部
ケーシングに取付けられている。分級体12の下半部に
は分級体12の回転に伴ない、その回転方向に前記の流
入した気体が円柱状表面に沿って流れる分級領域が形成
ぜられる。分級領域の周方向の円柱状表面から離れた空
間はそれぞれ区画域28.30゜32とに区画せられ、
区画域28は粗粉域、区画域30は中間粉域、区画域3
2は細粉域としてそれぞれ区画されている。また、区画
域30を省略した構成とすることも可能である。
In FIG. 1, 10 represents a classifier, 18 represents an inflow area for gas containing particles, and 12 represents a classifier. The classifier 12 has a cylindrical shape, has central shafts (not shown) at both ends, is rotatably supported, and is rotated clockwise as shown by the arrow using a drive device. 14 is a collar provided at both ends of the classifier 12. Reference numeral 16 indicates an upper casing, which is provided to accommodate the lower half of the classifier 12, and includes the gas inflow region 18, and the tip opening of the gas inflow region 18 is located in the upper half of the classifier 12. A fine powder supply port 22 is attached to the upper casing so as to be in contact with the cylindrical surface in a substantially perpendicular direction, and on the opposite side of the opening at the tip of the inflow region 18 . A classification region is formed in the lower half of the classification body 12 as the classification body 12 rotates, in which the inflowing gas flows along the cylindrical surface in the direction of rotation. The space away from the circumferential cylindrical surface of the classification area is divided into compartment areas 28.30°32,
The compartment area 28 is a coarse powder area, the compartment area 30 is an intermediate powder area, and the compartment area 3
2 are each divided as a fine powder area. Moreover, it is also possible to have a configuration in which the partition area 30 is omitted.

26は下部ケーシングをしめし、分級体12の下半部を
収容するために設けられ、34は下部ケーシング26に
固定して取付けた誘導子をしめし、また、同様に36は
下部ケーシング26の誘導子34と反対側の位置にて固
定して取付けた誘導子をしめす。導板46は誘導子34
とともに区画域28を形成し、導板48は導板46とと
もに区画域30を形成しており、さらに誘導子36は導
板48とともに区画域32を形成している。
Reference numeral 26 indicates a lower casing, which is provided to accommodate the lower half of the classifier 12, 34 indicates an inductor fixedly attached to the lower casing 26, and similarly, 36 indicates an inductor of the lower casing 26. The inductor is shown fixedly attached at a position opposite to 34. The conductive plate 46 is the inductor 34
The conductive plate 48 and the conductive plate 46 together form a divided area 30 , and the inductor 36 and the conductive plate 48 form a divided area 32 .

誘導子34、導板46、導板48および誘導子36の表
面形状はほぼ流線形をなしており、気流の流れにさいし
て乱れの発生を可能な限り抑制させている。
The surface shapes of the inductor 34, the conductive plate 46, the conductive plate 48, and the inductor 36 are substantially streamlined to suppress the occurrence of turbulence in the airflow as much as possible.

導板46および導板48の端部はそれぞれ分級体12の
円柱状表面に近接しており、気体が円柱状表面に沿って
流れるさいの分級領域の形成を確実にさせている。
The ends of the conductive plates 46 and 48 are each adjacent to the cylindrical surface of the classifier 12 to ensure the formation of a classified region as the gas flows along the cylindrical surface.

導板46の他の端部は軸50と固着されており、軸50
の回動により、図示を省略した連結材をもちいて導板4
6の位置を移動させることができるので、前記の区画域
を可動的に調整しつるようにさせている。
The other end of the conductive plate 46 is fixed to the shaft 50.
Due to the rotation of the guide plate 4, using a connecting member (not shown)
Since the position of 6 can be moved, the partitioned area can be adjusted movably and hung.

38は粗粉排出口、40は中間排出口、42は細粉排出
口をそれぞれしめし、いずれも下部ケーシング26内の
粗粉域28、中間粉域30、細粉域32にそれぞれ対応
して取付けられ、分級領域からの粗粉、中間粉および細
粉が区画されて気流とともに排出せられる。
Reference numeral 38 indicates a coarse powder discharge port, 40 indicates an intermediate discharge port, and 42 indicates a fine powder discharge port, all of which are installed corresponding to the coarse powder area 28, intermediate powder area 30, and fine powder area 32 in the lower casing 26, respectively. The coarse powder, intermediate powder and fine powder from the classification area are separated and discharged with the air flow.

上部ケーシング16には細粉域32に隣接して円柱状表
面の反対側に空隙56および58が設けられ、それぞれ
通路52および54に接続されている。通路52には外
部から過圧流体が導入せられ、一方通路54では該過圧
流体の吸引が行われることにより、前記空隙56および
58近傍において気密作用を行わせ流体圧力の平衡を維
持して分級領域を流れる気体が分級柱上半部の表面上に
移動することを阻止している。
Upper casing 16 is provided with voids 56 and 58 on opposite sides of the cylindrical surface adjacent to fines zone 32 and connected to passages 52 and 54, respectively. Overpressure fluid is introduced into the passage 52 from the outside, while the overpressure fluid is sucked into the passage 54, thereby creating an airtight effect in the vicinity of the gaps 56 and 58 and maintaining fluid pressure balance. The gas flowing through the classification area is prevented from moving onto the surface of the upper half of the classification column.

次に上記実施例の動作について説明する。上記実施例に
おいて、分級体12が時計方向に回転すると円柱状表面
では気体は粘性流体として粘性力が大きく作用し表面に
付着して流れ、表面から離れた場所では気体は粘性力に
比して慣性力が大きく作用して乱れを伴って流れる。微
粉は気流とともに粒子を含んでいる気体として流入域1
8より供給されて気流に充分に分散懸濁されて、分級に
好適な状態となり、上記流入域18の先端開口から分級
体12の円柱状表面に接するごとく流入される。流入し
た気体は]アンダ効果の作用のもとて分級体12の円柱
状表面に付着して前記に)ホべたごとく流れて微粉の分
級領域が形成せられ、気体の流れ方向が鋭く変換されて
細粉は分級領域における気流とともに分級体12の末端
部まで導かれて区画域28から排出され、図示を省略し
た捕集装置により捕集される。また、分級領域を通過す
る気体に含まれている粒子のうちの粗粉成分は、気体の
速度に対応した粗粉の速度にもとづく慣性力が操作力と
なって作用し流入方向に直線的に流れ、前記の分級体1
2の円柱状表面から離れた方向に飛翔して、気流ととも
に導かれて区画域28から排出され、図示を省略しだ捕
集装置により捕集される。
Next, the operation of the above embodiment will be explained. In the above embodiment, when the classifier 12 rotates clockwise, the gas acts as a viscous fluid on the cylindrical surface, where a large viscous force acts, adheres to the surface, and flows, and at a location away from the surface, the gas has a strong viscous force. The flow is turbulent due to the large inertial force. The fine powder flows into the inflow area 1 as a gas containing particles along with the airflow.
8, the particles are sufficiently dispersed and suspended in the airflow to be in a state suitable for classification, and then flowed in from the tip opening of the inlet region 18 so as to be in contact with the cylindrical surface of the classifier 12. The inflowing gas adheres to the cylindrical surface of the classifier 12 due to the under effect and flows like a lump (as described above), forming a classified region of fine powder, and the direction of gas flow is sharply changed. The fine powder is guided to the end of the classifier 12 along with the airflow in the classification area, is discharged from the compartment area 28, and is collected by a collection device (not shown). In addition, the coarse powder component of the particles contained in the gas passing through the classification area is linearly moved in the inflow direction by the inertia force based on the velocity of the coarse powder that corresponds to the velocity of the gas. Flow, the above-mentioned classified body 1
The particles fly in a direction away from the cylindrical surface of 2, are guided along with the airflow, are discharged from the compartment 28, and are collected by a collecting device (not shown).

同様に分級領域を通過する気体に含まれている粒子のう
ちの中間粉成分は、前記の細粉成分と粗粉成分の運動と
ほぼ中間的な運動を呈して飛翔して気流とともに導かれ
て区画域30から排出される。
Similarly, the intermediate powder component among the particles contained in the gas passing through the classification region flies with a motion that is approximately intermediate to that of the fine powder component and the coarse powder component, and is guided along with the airflow. It is discharged from the compartment area 30.

以上のごとく粒子とくに超微粒子を含んでいる気体が粘
性流体となって分級体の表面に沿って流れることにより
コアンダ効果による気体の付着をさらに助勢するととも
に分級体の末端まで流れるので、気体の流れ方向変換の
少い粗粉の慣性分離に対応して、細粉の流れ方向変換を
著しく増大させて細粉は気体流れの後流側でおる末端か
ら捕集されるに至り、細粉とくに微細粉を分離する微粉
の分級が行われる。ざらに、導板46.48によって粗
粉が細粉側、中間検測に、または細粉が粗粉側、中間検
測に捲き込まれることを防止していることも作用して、
微粉の分級における分級精度を向上することができる。
As described above, the gas containing particles, especially ultrafine particles, becomes a viscous fluid and flows along the surface of the classifier, further promoting the adhesion of gas due to the Coanda effect and flowing to the end of the classifier, resulting in a flow of gas. Corresponding to the inertial separation of coarse powder with less direction change, the flow direction change of fine powder is significantly increased, and fine powder is collected from the end downstream of the gas flow. Fine powder classification is performed to separate the powder. In addition, the conductive plates 46 and 48 prevent coarse powder from being drawn into the fine powder side and intermediate measurement, or fine powder from being drawn into the coarse powder side and intermediate measurement.
The classification accuracy in classifying fine powder can be improved.

次に、他の実施例について述べる。第1図にしめす構成
において、20は気体のみの流入域をしめし、粒子を含
んでいる気体の流入域18に隣接して、上部ケーシング
16内において分級体12の上半部に併置せられており
、該流入域18にほぼ平行する流れ方向が得られるよう
に気体のみの流入域20の先端開口は分級体12の上半
部の円柱状表面にほぼ接線方向に開口させられるよう位
置せられ、また上記流入域20の先端開口の反対側には
、空気供給口24が上部ケーシングに取付けられている
。したがって、この実施例では粒子を含んでいる気体の
流入域18からの気体が急激に拡大された区域に流れて
気流か乱れることが流入域20からの気体の噴流によっ
て阻止されて分級体12の分級領域へ円滑に移行させる
ことができるので、微粉の分級精度をさらに改善するこ
とができる。
Next, other embodiments will be described. In the configuration shown in FIG. 1, reference numeral 20 indicates an inflow region for gas only, which is placed in the upper casing 16 in the upper half of the classifier 12, adjacent to the inflow region 18 for gas containing particles. In order to obtain a flow direction substantially parallel to the inflow region 18, the tip opening of the gas-only inflow region 20 is positioned to open substantially tangentially to the cylindrical surface of the upper half of the classifier 12. Further, on the opposite side of the opening at the tip of the inflow region 20, an air supply port 24 is attached to the upper casing. Therefore, in this embodiment, the gas containing particles from the inflow region 18 flows into the rapidly expanded area and the airflow is prevented from being disturbed by the jet of gas from the inflow region 20, and the classified body 12 is prevented from being disturbed. Since it can be smoothly transferred to the classification area, the classification accuracy of fine powder can be further improved.

なお、本発明の実施態様は、上記実施例のみに限定され
るものではなく、分級体、流入域、区画域など多くの実
施態様をもちいることができる。
Note that the embodiments of the present invention are not limited to the above-mentioned embodiments, and many embodiments such as a classification body, an inlet region, a partition region, etc. can be used.

[発明の効果] 本発明は上記実施例より明らかなように、分級体の表面
に沿った]アンダ効果による気体の付着をざらに助勢し
て分級体の末端まで気体の付着が継続されるので、気体
に随伴されている微粉の分級にあたり、コアンダ効果を
著しく改善することができて、細粉とくに微細粉は分級
体の表面に付着して運動し分離されるので分級精度を著
しく向上することができる実用上の効果は多大である。
[Effects of the Invention] As is clear from the above embodiments, the present invention roughly supports the adhesion of gas due to the under effect along the surface of the classified body, so that the gas adhesion continues to the end of the classified body. When classifying fine powders that are accompanied by gas, the Coanda effect can be significantly improved, and the fine powders, especially fine powders, adhere to the surface of the classifier and move to be separated, thereby significantly improving the classification accuracy. The practical effects that can be achieved are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における微粉の分級装置の正
面断面図である。
FIG. 1 is a front sectional view of a fine powder classification device in an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)回転する円柱状の分級体と、分級体の上半部に設
けた粒子を含んでいる気体の流入域と、分級体の下半部
に設けた分級体の回転方向に前記気体が分級体の表面に
沿つて流れる分級領域と、該分級領域の周方向に設けた
複数の区画域と、該区画域から分級粒子をそれぞれ排出
させることを特徴とする微粉の分級装置。
(1) A rotating cylindrical classifier, an inlet area of the gas containing particles provided in the upper half of the classifier, and a flow direction of the gas containing particles in the rotation direction of the classifier provided in the lower half of the classifier. A device for classifying fine powder, comprising: a classification region that flows along the surface of a classification body; a plurality of divisions provided in the circumferential direction of the classification region; and discharge of classified particles from each of the divisions.
(2)粒子を含んでいる気体の流入域に隣接して、該流
入域にほぼ平行する流れ方向を有する気体のみの流入域
を併置したことを特徴とする特許請求の範囲第1項に記
載の微粉の分級装置。
(2) Adjacent to the inflow region of gas containing particles, an inflow region of only gas having a flow direction substantially parallel to the inflow region is disposed. fine powder classification equipment.
(3)分級領域の区画域が粗粉域と、中間粉域と、細粉
域とよりなることを特徴とする特許請求の範囲第1項に
記載の微粉の分級装置。
(3) The apparatus for classifying fine powder according to claim 1, wherein the classification area consists of a coarse powder area, an intermediate powder area, and a fine powder area.
JP2775687A 1987-02-09 1987-02-09 Sorter for fine powder Pending JPS63194782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2775687A JPS63194782A (en) 1987-02-09 1987-02-09 Sorter for fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2775687A JPS63194782A (en) 1987-02-09 1987-02-09 Sorter for fine powder

Publications (1)

Publication Number Publication Date
JPS63194782A true JPS63194782A (en) 1988-08-11

Family

ID=12229858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2775687A Pending JPS63194782A (en) 1987-02-09 1987-02-09 Sorter for fine powder

Country Status (1)

Country Link
JP (1) JPS63194782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018086627A (en) * 2016-11-29 2018-06-07 日鉄鉱業株式会社 Two-class classifier by air flow

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556433A (en) * 1978-06-28 1980-01-17 Nisshin Steel Co Ltd Stainless steel radiator and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556433A (en) * 1978-06-28 1980-01-17 Nisshin Steel Co Ltd Stainless steel radiator and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018086627A (en) * 2016-11-29 2018-06-07 日鉄鉱業株式会社 Two-class classifier by air flow

Similar Documents

Publication Publication Date Title
EP1534436B1 (en) Apparatus and method for separating particles
GB1579357A (en) Method and apparatus for selectively comminuting particles of a frangible material
CA1081163A (en) Pneumatic classifier
US20070221550A1 (en) Particle sorting by fluidic vectoring
KR890012707A (en) Air classifier
JPS63194782A (en) Sorter for fine powder
JPS6345872B2 (en)
US3441135A (en) Particle classification device and method
JPS6142380A (en) Dry type sorter
JPH01224082A (en) Particle classifying device
JP3482504B2 (en) Air classifier
JP3482503B2 (en) Eddy current air classifier
Chiné et al. Comparison between flow velocity profiles in conical and cylindrical hydrocyclones
US3288285A (en) Air classifier
JPH01207177A (en) Particle classifying device
SU908426A1 (en) Inertial pneumatic classifier
JPS63224775A (en) Sorter for fines
JP2005205267A (en) Cyclone classifier
SU848087A1 (en) Method and apparatus for fractionating powders
JPH0116546Y2 (en)
JPS63248485A (en) Method of controlling operation of sorter for fine
JP2807841B2 (en) Ultra fine powder classifier
JPS62241583A (en) Method and device for sorting impalpable powder
US538310A (en) Martin bernhard zerener
SU1428475A1 (en) Vortex dust collector