JPS6319437A - Method for restraining vibration of building - Google Patents

Method for restraining vibration of building

Info

Publication number
JPS6319437A
JPS6319437A JP61163085A JP16308586A JPS6319437A JP S6319437 A JPS6319437 A JP S6319437A JP 61163085 A JP61163085 A JP 61163085A JP 16308586 A JP16308586 A JP 16308586A JP S6319437 A JPS6319437 A JP S6319437A
Authority
JP
Japan
Prior art keywords
building
vibration
natural period
dynamic damper
tertiary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61163085A
Other languages
Japanese (ja)
Inventor
Takeo Yoshikawa
吉川 剛夫
Seiji Watanabe
渡辺 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP61163085A priority Critical patent/JPS6319437A/en
Publication of JPS6319437A publication Critical patent/JPS6319437A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems

Abstract

PURPOSE:To restrain not only primary mode of vibration of a building, but also vibration immediately after an earthquake is transmitted by effectively absorbing vibrational energy even for the secondary and tertiary modes of vibration. CONSTITUTION:A dynamic damper provided on the top of a building has a multimass system configuration for generating at least tertiary vibration. And the primary natural period, secondary natural period and tertiary natural period of the building of main body are respectively set equally to the primary, secondary and tertiary natural periods of the dynamic damper.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、中高層の建造物の頂部付近にダイナミック
・ダンパーを設けて、地震などによる建造物の揺れを抑
制する制震方法で、極く自然に構造物に制置機能を保有
させた方性に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention is a seismic damping method that suppresses the shaking of buildings due to earthquakes, etc. by installing a dynamic damper near the top of mid-to-high-rise buildings. It relates to the orientation that naturally allows structures to have a restraining function.

(従来の技術) 最近のダイナミック・ダンパーによる塔状建造物の制震
方法の具体例としては、[千葉ボートタワー」が最近の
代表的なものである。この制置構造は、日経マグロウヒ
ス社「日経アーキテクチャ」1986年5月5日号など
に詳しく開示されているように、塔状建造物の頂部付近
に当該建造物の1次固有周期と等しい固有周期に設計し
たダイナミック・ダンパーを設けたものである。建造物
が1次固有周期で振動するとき、ダンパー系も自分の固
有周期で加振されて振動する。これによって建造物の振
動エネルギーの一部がダンパー系の振動エネルギーとし
て吸収される。
(Prior Art) The Chiba Boat Tower is a typical recent example of a vibration control method for a tower-like structure using a dynamic damper. As disclosed in detail in the May 5, 1986 issue of "Nikkei Architecture" published by Nikkei McGraw-His Co., Ltd., this fixed structure has a natural period equal to the first natural period of the building near the top of the tower-like structure. It is equipped with a dynamic damper designed in the same way. When a building vibrates at its first natural period, the damper system is also excited and vibrates at its own natural period. As a result, part of the vibration energy of the building is absorbed as vibration energy of the damper system.

(発明が解決しようとする問題点) 上述した従来技術にあっては、建造物の1次固有周期の
定常的な振動に対して大きな制置効果が得られるが、地
震が建造物に伝わった直後の初期振動に対してはあまり
有効でないという問題があった。
(Problems to be Solved by the Invention) The above-mentioned conventional technology has a large restraint effect on the steady vibration of the first natural period of the building, but it is difficult to prevent the earthquake from being transmitted to the building. There was a problem in that it was not very effective against the initial vibration immediately after.

本発明者らの研究によると、地震による発生入力に対す
る建造物の応答は次のようになる。入力波動が建造物に
伝播した後、まず3次以上の高次モードの振動が発生し
、次に2次モードの振動になり、1次モードの振動にな
るのは入力波動が伝わってから士数秒を経過した後であ
る。
According to the research conducted by the present inventors, the response of a building to input generated by an earthquake is as follows. After the input wave propagates into the building, vibrations in higher-order modes of 3rd order or higher occur first, then vibrations in the 2nd mode, and vibrations in the 1st mode only after the input wave propagates. After a few seconds have passed.

従来のように、建造物の1次固有周期にのみ合わせてダ
イナミック・ダンパーを設計したのでは、2次、3次の
振動には殆ど制置の効果はなく、従って地遍が11!造
物に伝わった直後の振動を抑制することはできない。
If a dynamic damper is designed to match only the first natural period of a building, as in the past, it will have little effect in controlling second- and third-order vibrations, and therefore the ground deviation will be 11! It is not possible to suppress vibrations immediately after they are transmitted to a structure.

この発明は上述した従来の問題点に鑑みなされたもので
、その目的は、地震が伝わった直後の高次モードの撮動
に対しても有効に作用するダイナミック・ダンパーによ
る建造物の制震方法を提供することにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to provide a vibration control method for buildings using a dynamic damper that is effective even when photographing high-order modes immediately after an earthquake is transmitted. Our goal is to provide the following.

(問題点を解決するための手段) そこでこの発明では、建造物の1次固有周期。(Means for solving problems) Therefore, in this invention, the first natural period of the building.

2次固有周期、3次固有周期のそれぞれに共振特性を合
わせた少なくとも3つの撮動質点系を有するダイナミッ
ク・ダンパーを建造物の頂部付近に設けることとした。
It was decided to install a dynamic damper near the top of the building, which has at least three imaging mass point systems whose resonance characteristics are matched to the second and third natural periods.

(作 用) 地震の波動が11迄物に伝わると、まず3次モードある
いはそれ以上の高次の振動が発生するが、このとき上記
ダイナミック・ダンパーにおける3次固有周期に合わせ
た上記振動質点系が共振し、これによって建造物の撮動
エネルギーが吸収される。IZ造物の撮動が2次モード
に変っていくと、2次固有周期に合わせた別の振動質点
系が共振し、やはり建造物の撮動エネルギーが効果的に
吸収される。最終的に1次モードの振動に移行すると、
1次固有周期に合わせたさらに別の撮動質点系が共振し
、撮動エネルギーを吸収する。
(Function) When the earthquake wave is transmitted to an object, third-order mode or higher-order vibration is generated. resonates, which absorbs the building's imaging energy. When the imaging of the IZ structure changes to the second-order mode, another vibrating mass point system that matches the second-order natural period resonates, and the imaging energy of the building is effectively absorbed. When it finally shifts to the first mode of vibration,
Yet another imaging mass point system tuned to the primary natural period resonates and absorbs the imaging energy.

ここで、従来技術の問題点および本発明の作用効果につ
いて理論的な面から説明をしなおす。
Here, the problems of the prior art and the effects of the present invention will be explained again from a theoretical perspective.

自然現象を解析する場合、解析が容易となるように、蹟
度を落さない程度のある種の仮定と置換を行なうことが
、現代科学での一般的な手法である。
When analyzing natural phenomena, it is a common method in modern science to make certain assumptions and substitutions to make the analysis easier.

耐震工学の場合も、このような置換はしばしば用いられ
ている。しかし、これらの置換は計ロロ的上は正しくと
も、完全なシュミレーションとはならない場合も当然あ
り得る。
Such substitutions are also often used in seismic engineering. However, even if these substitutions are technically correct, there may be cases where they do not result in a perfect simulation.

全高層ビルを考えると、ビルは完全な連続弾性体である
。この高層ピルが地盤からの入力地震波に対してどのよ
うに応答するのかを解析する際に、ビルの床面への集中
質量を考え、ビルと同じ周期と減衰係数を持つ質点系と
して応答計算を行なっている。この置換に基づく計算値
が実測値と最終的によく一致しているので、これは正し
い置換であると言える。
Considering all skyscrapers, buildings are perfect continuous elastic bodies. When analyzing how this high-rise pill responds to input seismic waves from the ground, we consider the concentrated mass on the floor of the building and calculate the response as a mass point system with the same period and damping coefficient as the building. I am doing it. Since the calculated value based on this replacement finally agrees well with the measured value, it can be said that this is a correct replacement.

しかし、実際には連続弾性体であるビルに地震波動が入
り、連続弾性体が質点系に置換できる動きをづるまでに
、波動から振動への変換がビルの中で行なわれる。これ
らは本発明者らの実験によって明らかにされた現象であ
る。
However, in reality, seismic waves enter a building, which is a continuous elastic body, and the wave is converted into vibration within the building until the continuous elastic body can produce a movement that can be replaced by a mass point system. These are phenomena revealed by experiments conducted by the present inventors.

波動が基礎底面から建物上部に伝達されると、建物は波
動の伝播時に発生する波長によって強制されるモードか
ら動き始める。その周期をT、建物の高さを)」、建物
の波動伝播速度をVSとすると、T=H/Vsである。
When waves are transmitted from the base of the foundation to the top of the building, the building begins to move from the modes forced by the wavelengths generated during wave propagation. If the period is T, the height of the building is), and the wave propagation speed of the building is VS, then T=H/Vs.

そして徐々に建物の固有周期のEノきに近ずき、十数秒
後に始めて建物の1次固有周期で振動が起きる。この時
点から前述した質点系としての置換が成立するのである
(質点系の場合、1次の周期が最も刺激されやすく、1
次が最”も動きやすいこととなっている)。
Then, the vibration gradually approaches E of the building's natural period, and vibrations begin to occur at the building's first natural period after about ten seconds. From this point on, the above-mentioned substitution as a mass point system is established (in the case of a mass point system, the first-order period is most easily stimulated,
The next one is the easiest to move around in.)

これらの現象を質点系としての置換で正しくシュミレー
トできるかどうかという問題に対し、■ダイナミック・
ダンパーを最上部に取り付けた建物の応答計算で、従来
のような一質点系のダイナミック・ダンパーでは初期制
置効果が出ない。
To address the question of whether these phenomena can be simulated correctly by replacing them as a mass point system,
When calculating the response of a building with a damper installed at the top, a conventional dynamic damper with a single mass point system does not produce an initial restraint effect.

■波動伝播速度と建物剛性が置換できる。■Wave propagation velocity and building stiffness can be replaced.

■波長と位相遅れが対比可能である。■Wavelength and phase delay can be compared.

などの点で、はぼシュミレートできる要素はあるものの
、過渡現象的には正しいシュミレートはできないことが
分った。
Although there are some elements that can be simulated, we found that it is not possible to accurately simulate transient phenomena.

これらのシュミレートできない真実の現象に適合させ、
初期のイ11震効果の高いダイナミック・ダンパーによ
る制震方法を提供するのが本発明である。
Adapted to these real phenomena that cannot be simulated,
The present invention provides a vibration control method using a dynamic damper that is highly effective against early A11 earthquakes.

本発明を実施するためのダイナミック・ダンパーは、初
期波動の伝播から発生する3次振動の形から順次1次系
に変動する性状を持ったダイナミツク・ダンパーである
必要がある。このようなダイナミック・ダンパーは3次
形の撮動を作り出す多賀点系の形態を有するものである
。そして、本体である建物の1次固有周期、2次固有周
期、3次固有周期と、これの頂部に設けるダイナミック
・ダンパーの1次固有周期、2次固有周期、3次固有周
期がそれぞれ等しいというのが条件になる。
The dynamic damper for carrying out the present invention needs to be a dynamic damper that has properties that change sequentially from the tertiary vibration form generated from the propagation of initial waves to the first order system. Such a dynamic damper has a form of a Taga point system that produces a three-dimensional type of imaging. It is said that the primary natural period, secondary natural period, and tertiary natural period of the building itself are equal to the primary natural period, secondary natural period, and 3rd natural period of the dynamic damper installed at the top of the building. is the condition.

(実施例) この発明の制震方法は、上述したような特性を持つダイ
ナミック・ダンパーを建物の頂部付近に設けることによ
って実施される。このダイナミック・ダンパーの構造形
式は一般の建物と同じであって良い。そして先に説明し
たように、ダイナミック・ダンパーの設計上の1次、2
次、3次の固有周期を本体である建物の1次、2次、3
次の固有周期と同一とする。このような固有周期の特性
をもたせるためには、ダイナミック・ダンパーは3つの
質点系を3層に積み重ねた構造のものとなる。各層の積
載荷重とそれをつなぐ構造体の剛性とを適宜に設定し、
上記のように固有周期と合せる。これらの構造体はベン
トハウスが適用可能であり、こめ場合の床剛性は大きい
程よい。
(Embodiment) The vibration damping method of the present invention is implemented by providing a dynamic damper having the characteristics described above near the top of a building. The structural form of this dynamic damper may be the same as that of a general building. As explained earlier, the primary and secondary characteristics of the dynamic damper design
The 1st, 2nd, and 3rd natural periods of the main body of the building are
It is the same as the next natural period. In order to have such natural period characteristics, the dynamic damper has a structure in which three mass point systems are stacked in three layers. The live load of each layer and the rigidity of the structure connecting it are set appropriately,
Match it with the natural period as above. Bent houses can be applied to these structures, and the greater the floor rigidity of the case, the better.

(発明の効果) 以上詳細に説明したように、この丸明に係る制震方法に
よれば、建造物の1次モードの撮動だけでなく、2次モ
ード、3次モードの撮動に対しても振動エネルギーを効
果的に吸収することができるので、地震の波動が伝わっ
た直後から建物に対して極く自然に制置的性状を与える
こととなる。
(Effects of the Invention) As explained in detail above, according to the seismic control method according to Marumei, it is possible to not only take pictures of buildings in the primary mode but also take pictures in the secondary and tertiary modes. Since it can effectively absorb vibration energy even when the earthquake waves are transmitted, it gives the building extremely natural constraining properties immediately after the earthquake waves are transmitted.

Claims (1)

【特許請求の範囲】[Claims] (1)建造物の頂部付近にダイナミック・ダンパーを設
ける制震方法において、ダイナミック・ダンパーとして
、建造物の1次固有周期、2次固有周期、3次固有周期
のそれぞれに共振特性を合わせた少なくとも3つの振動
質点系を有するものを構造物の一部として設置すること
を特徴とする建造物の制震方法。
(1) In a seismic control method in which a dynamic damper is installed near the top of a building, the dynamic damper is at least A vibration control method for a building, characterized by installing a system having three vibrating mass points as part of the structure.
JP61163085A 1986-07-11 1986-07-11 Method for restraining vibration of building Pending JPS6319437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163085A JPS6319437A (en) 1986-07-11 1986-07-11 Method for restraining vibration of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163085A JPS6319437A (en) 1986-07-11 1986-07-11 Method for restraining vibration of building

Publications (1)

Publication Number Publication Date
JPS6319437A true JPS6319437A (en) 1988-01-27

Family

ID=15766897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163085A Pending JPS6319437A (en) 1986-07-11 1986-07-11 Method for restraining vibration of building

Country Status (1)

Country Link
JP (1) JPS6319437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062519A (en) * 1989-05-31 1991-11-05 Mitsubishi Denki Kabushiki Kaisha Escalator system with convertible step unit
US5330042A (en) * 1992-01-23 1994-07-19 Kabushiki Kaisha Toshiba Escalator apparatus
US5332077A (en) * 1991-06-28 1994-07-26 Kabushiki Kaisha Toshiba Escalator apparatus
JPH06316393A (en) * 1994-03-10 1994-11-15 Toshiba Corp Escalator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144488A (en) * 1981-03-02 1982-09-07 Tokyo Shibaura Electric Co Nuclear reactor building

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144488A (en) * 1981-03-02 1982-09-07 Tokyo Shibaura Electric Co Nuclear reactor building

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062519A (en) * 1989-05-31 1991-11-05 Mitsubishi Denki Kabushiki Kaisha Escalator system with convertible step unit
US5332077A (en) * 1991-06-28 1994-07-26 Kabushiki Kaisha Toshiba Escalator apparatus
US5330042A (en) * 1992-01-23 1994-07-19 Kabushiki Kaisha Toshiba Escalator apparatus
JPH06316393A (en) * 1994-03-10 1994-11-15 Toshiba Corp Escalator
JP2504697B2 (en) * 1994-03-10 1996-06-05 株式会社東芝 Escalator

Similar Documents

Publication Publication Date Title
Li et al. H2 active vibration control for offshore platform subjected to wave loading
US5447001A (en) Vibration control device for structure
LIN Separation distance to avoid seismic pounding of adjacent buildings
JP5403372B2 (en) Truss beam structure
Takewaki Displacement–acceleration control via stiffness–damping collaboration
Vanshaj et al. Seismic response on soil–structure interaction of asymmetric plan buildings with active tuned mass dampers
JPS6319437A (en) Method for restraining vibration of building
Chazelas et al. Original technologies for proven performances for the new LCPC earthquake simulator
Tani et al. Innovative seismic response-controlled system with shear wall and concentrated dampers in lower stories
Lizunov et al. Vibro-impact damper dynamics depending on system parameters
JPH03250165A (en) Hybrid dynamic vibration reducer
Seto et al. Active vibration control of multiple buildings connected with active control bridges in response to large earthquakes
JP2006169719A (en) Horizontal base isolating apparatus
Li et al. Vibration control performance analysis and shake-table test of a pounding tuned rotary mass damper under the earthquake
Carneiro et al. Parametric study on multiple tuned mass dampers using interconnected masses
JP2007138421A (en) Floor structure
JP6456774B2 (en) Vibration control structure
Ümütlü et al. A backstepping control design for ATMD systems of building structure against earthquake excitations in the presence of parametric uncertainty
JP2662067B2 (en) Multi-degree-of-freedom dynamic vibration absorber
JPS63171966A (en) Earthquakeproof device for building
Tsuda et al. Bi-directional seismic vibration control of spatial structures using passive mass damper consisting of compliant mechanism
JP2621731B2 (en) Damping structure
JP2006161341A (en) Vibration control structure for construction
Jenniges et al. Alternative tuned absorbers for steady state vibration control of tall structures
JPH01165885A (en) Vibration-damping structure