JPS63194189A - Thermosyphon - Google Patents

Thermosyphon

Info

Publication number
JPS63194189A
JPS63194189A JP2347987A JP2347987A JPS63194189A JP S63194189 A JPS63194189 A JP S63194189A JP 2347987 A JP2347987 A JP 2347987A JP 2347987 A JP2347987 A JP 2347987A JP S63194189 A JPS63194189 A JP S63194189A
Authority
JP
Japan
Prior art keywords
inner tube
condensate
vapor
heat
passageway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2347987A
Other languages
Japanese (ja)
Inventor
Katsumi Ubusawa
生澤 勝美
Hideaki Ono
英明 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2347987A priority Critical patent/JPS63194189A/en
Publication of JPS63194189A publication Critical patent/JPS63194189A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thermosyphon, not generating flooding even when the transporting amount of heat is increased and capable of transporting much amount of heat, by a method wherein an inner tube, whose both ends are opened in a lower evaporating part and an upper condensing part, isolated from the ascending passageway of vapor and forming the flowdown passageway of condensate having a sectional area smaller than the same of the ascending passageway of vapor, is provided in a heat insulating part. CONSTITUTION:An inner tube 6, forming the flowdown passageway of condensate, is provided in a thermosyphon main body 1, consisting of an evaporating part 1a, a heat insulating part 1b and a condensing part 1c, and a condensate collector 4 is provided continuously on the upper part of the inner tube 6 while the upper end thereof is brought in contact with the inside of the main body 1 to collect the condensate, being generated on the inner wall of the tube of the condensing part 1c, and flow down into the inner tube 6. Operating fluid 2 is heated and becomes vapor, ascending through the ascending passageway of vapor between the main body 1 and the inner tube 6, then, passes through an opening 5 and enters into the condensing part 1c. The heat exchange of the vapor, entered into the condensing part 1c, is effected and the vapor is condensed on the inner wall of the tube of the condensing part 1c of the main body 1, then, flows down and collected into a condensate collector 4, thereafter, is returned to the evaporating part 1a through the inner tube 6. The sectional area of the inner tube 6 is small and the inner tube is filled with the condensate without dipping the lower end thereof into the operating fluid 2, therefore, the inner tube will never become the ascending passageway of the vapor.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は排熱回収熱交換器等に使用されるサーモサイ
ホンの改良に係るものであり、熱輸送能力の大きいサー
モサイホンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an improvement of a thermosiphon used in an exhaust heat recovery heat exchanger, etc., and relates to a thermosiphon with a large heat transport capacity.

[従来の技術] 従来のサーモサイホンは第4図に示す構造のもので、サ
ーモサイホン本体1内に作動流体2を封入し、高温側の
蒸発部1aから断熱部1bを介して低温側の凝縮部IC
へ、作動流体2の蒸気を介して熱を輸送するものである
[Prior Art] A conventional thermosiphon has a structure shown in FIG. 4, in which a working fluid 2 is sealed in a thermosiphon body 1, and condensation is carried out from an evaporating section 1a on a high temperature side to a heat insulating section 1b on a low temperature side. Department IC
The heat is transported to the working fluid 2 through the vapor of the working fluid 2.

蒸発部1aで加熱された作動流体2は蒸気となって上昇
し、凝縮部ICで熱交換されて凝縮する。
The working fluid 2 heated in the evaporator 1a rises as vapor, undergoes heat exchange in the condenser IC, and is condensed.

凝縮液3は管内壁をつたわって、蒸発部1aに還流する
The condensed liquid 3 flows through the inner wall of the tube and returns to the evaporation section 1a.

上記サイクルの過程で、蒸発部1aでの入熱は凝縮部I
Cで放熱され、熱の輸送が行われる。
In the process of the above cycle, the heat input in the evaporating section 1a is transferred to the condensing section I.
Heat is radiated by C, and heat is transported.

[発明が解決しようとする問題点] 従来のサーモサイホンの場合、構造が単管式であるため
、同一の管内を蒸気の上昇と凝縮液の流下が同時に行わ
れ、気液対向の二相流が形成される。このため、作動流
体の蒸発量が増加して、上昇する蒸気流速がある値に達
すると、凝縮液が蒸気流に妨げられて流下して来なくな
る現象、所謂フラッディング現象が起る。このフラッデ
ィング現象が起ると、蒸発部の作動流体が極度に減少す
る状態になり、熱輸送量は著しく低下する。
[Problems to be solved by the invention] Conventional thermosiphons have a single-tube structure, so steam rises and condensate flows simultaneously in the same pipe, resulting in a two-phase flow of gas and liquid opposing each other. is formed. For this reason, when the amount of evaporation of the working fluid increases and the rising vapor flow rate reaches a certain value, a so-called flooding phenomenon occurs, in which the condensate is blocked by the vapor flow and stops flowing down. When this flooding phenomenon occurs, the amount of working fluid in the evaporator is extremely reduced, and the amount of heat transported is significantly reduced.

フラッディング現象を起さない熱輸送の限界値は一般に
次式によって示されている。この式は推算式であるが、 但し Qmax:熱輸送限界値 C:定数 L  :作動流体の潜熱 S  :流路面積 g  :重力加速度 D  =管径 ρ4  工作動流体の密度 pQ:作動流体蒸気の密度 発明者の実験でも、サーモサイホン本体が呼び径20A
で、作動流体がフロン113の場合約I KW、水の場
合約4KW、熱媒体油(商品名ダウサムA)の場合約0
.4KWであり、推算値と略々一致している。これらの
値はフラッディングが熱輸送の小さい領域で起ることを
示しており、上記の値を使用してサーモサイホンの設計
を行うと、設備が大型になると言う間通があった。
The limit value of heat transport that does not cause flooding is generally expressed by the following equation. This formula is an estimation formula, but Qmax: Heat transport limit value C: Constant L: Latent heat of working fluid S: Channel area g: Gravitational acceleration D = Pipe diameter ρ4 Density of working fluid pQ: Working fluid vapor density Density In the inventor's experiment, the thermosiphon body had a nominal diameter of 20A.
When the working fluid is Freon 113, it is about I KW, when it is water, it is about 4 KW, and when the working fluid is heat transfer oil (trade name Dowsome A), it is about 0.
.. It is 4KW, which almost matches the estimated value. These values indicate that flooding occurs in areas with low heat transport, and there was a misunderstanding that if the above values were used to design a thermosiphon, the equipment would be large.

この発明は上記のような問題点を解消するためになされ
たもので、熱輸送量が増加してもフラッディング現象を
起さず、多量の熱輸送ができるサーモサイホンを得るこ
とを目的としたものである。
This invention was made to solve the above-mentioned problems, and the purpose is to obtain a thermosiphon that can transport a large amount of heat without causing a flooding phenomenon even when the amount of heat transport increases. It is.

[問題点を解決するための手段] この発明は断熱部内に、両端部が下部蒸発部と上部凝縮
部とにそれぞれ開口し、蒸気の上昇通路と隔離され、蒸
気の上昇通路の断面積より断面積が小さい凝縮液の流下
路を形成する内管を設け、上記問題の解決を図ったもの
である。
[Means for Solving the Problems] The present invention has a heat insulating part that has both ends open to a lower evaporating part and an upper condensing part, and is isolated from a steam ascending passage, and has a cross-sectional area smaller than the cross-sectional area of the steam ascending passage. The above problem is solved by providing an inner pipe that forms a condensate flow path with a small area.

[作用] 上述のように、断熱部内に凝縮液の流下路を設けること
によって、蒸発部で発生した蒸気は断面積の大きい通路
を上昇し、凝縮部で生成した凝縮液は上記流下路を通っ
て蒸発部に還流する。このように蒸気と凝縮液の通路が
分離できるので、気液対向の二相流は形成せず、フラッ
ディング現象も解消される。
[Function] As mentioned above, by providing a flow path for condensate in the heat insulating section, the vapor generated in the evaporation section ascends through the passage with a large cross-sectional area, and the condensate generated in the condensation section passes through the flow path. and reflux to the evaporation section. Since the passages for steam and condensate can be separated in this way, a two-phase flow opposite to that of gas and liquid is not formed, and the flooding phenomenon is also eliminated.

[実施例] この発明の一実施例について説明する。[Example] An embodiment of this invention will be described.

第1図はこの発明によるサーモサイホンの断面図であり
、蒸発部1a、断熱部1b、凝縮部1cよりなるサーモ
サイホン本体1内に凝縮液の流下路となる内管6を設け
て構成されている。内管6の上部には漏斗状の凝縮液捕
集器4が連設されており、凝縮液捕集器4の上端は本体
1の内側に密接し、凝縮部ICの管内壁に生成した凝縮
液を捕集して、内管6に流下させる構造となっている。
FIG. 1 is a sectional view of a thermosiphon according to the present invention, which is constructed by providing an inner pipe 6 serving as a flow path for condensed liquid in a thermosiphon main body 1 consisting of an evaporating section 1a, a heat insulating section 1b, and a condensing section 1c. There is. A funnel-shaped condensate collector 4 is connected to the upper part of the inner pipe 6, and the upper end of the condensate collector 4 is in close contact with the inside of the main body 1 to collect condensate generated on the inner wall of the condensing part IC. It has a structure that collects the liquid and causes it to flow down into the inner tube 6.

また凝縮液捕集器4の漏斗状下部は液溜り4aとなって
おり、凝縮液の一時貯留ができるようにしである。また
凝縮液捕集器4には開口部5を穿設し、断熱部1bから
凝縮部ICに通ずる蒸気流の通路を設けである。
Further, the funnel-shaped lower part of the condensate collector 4 is a liquid reservoir 4a, which is designed to temporarily store the condensate. Further, an opening 5 is provided in the condensate collector 4 to provide a passage for vapor flow leading from the heat insulating part 1b to the condensing part IC.

上述の構成において、内管6と凝縮液捕集器4の位置は
内管6の下端が蒸発部1aの上端付近、凝縮液捕集器4
の上端が凝縮部1cの下端付近にする必要がある。
In the above configuration, the positions of the inner tube 6 and the condensate collector 4 are such that the lower end of the inner tube 6 is near the upper end of the evaporator 1a, and the condensate collector 4
The upper end needs to be near the lower end of the condensing section 1c.

内管6と凝縮液捕集器4のより好ましい取付位置は内管
6の下端が蒸発部1aの上端から20〜30mの下部、
凝縮液捕集器4の上端が凝縮部1cの下端である。
A more preferable mounting position for the inner pipe 6 and the condensate collector 4 is a lower part where the lower end of the inner pipe 6 is 20 to 30 m from the upper end of the evaporation section 1a.
The upper end of the condensate collector 4 is the lower end of the condensing part 1c.

また内管6の下端は蒸発部1aに貯留されている作動流
体の中に浸漬されていても、または浸漬されていなくて
も何れでもよい。
Further, the lower end of the inner tube 6 may or may not be immersed in the working fluid stored in the evaporator 1a.

次に作用について説明する。Next, the effect will be explained.

作動流体2は加熱されて蒸気となり、矢印にて図示した
如く、本体1と内管6の間の蒸気の上昇通路を通って上
昇し、開口部5を通過して凝縮部ICに入る。凝縮部I
Cに入った蒸気は熱交換されて、本体1の凝縮部IC管
内壁に凝縮して流下し、凝縮液捕集器4に集められ、矢
印にて図示した如く、流下路である内管6を通って蒸発
部1aに還流する。
The working fluid 2 is heated to steam and rises through the steam rising passage between the body 1 and the inner tube 6, as shown by the arrow, and passes through the opening 5 into the condensing section IC. Condensing part I
The steam that entered C undergoes heat exchange, condenses on the inner wall of the condensing part IC pipe of the main body 1, flows down, is collected in the condensate collector 4, and flows into the inner pipe 6, which is a flow path, as shown by the arrow. , and refluxes to the evaporation section 1a.

凝縮液の流下路を形成する内管6は断面積が小さいので
、下端を作動流体2の中に浸漬してなくても流下路の一
部または全部に凝縮液が満たされるので、蒸気の上昇通
路になることはない。
Since the inner pipe 6 that forms the condensate flow path has a small cross-sectional area, even if the lower end is not immersed in the working fluid 2, part or all of the flow path is filled with condensate, so that steam rises. It will never become a passageway.

この実施例では内管6が1本の場合を図示したが、内管
6は1本に限定されるものではなく、複数本にし流下路
の断面積の合計が同じになるようにしても同様の効果を
得ることができる。また上記サーモサイホンを構成する
凝縮液捕集器4は第2図に示す如く、下部が液溜り4a
のない構造のものであってもよい。
Although this embodiment shows a case in which there is one inner pipe 6, the number of inner pipes 6 is not limited to one, and the same effect can be obtained by using a plurality of inner pipes so that the total cross-sectional area of the flow path is the same. effect can be obtained. Further, as shown in FIG. 2, the condensate collector 4 constituting the thermosiphon has a liquid reservoir 4a at the bottom.
It may also have a structure without.

第3図は他の実施例の断面図であり、蒸発部la、断熱
部1b、凝縮部1cよりなる本体1内に、外径が本体1
の内径に近接した内管6を設けたものである。この実施
例においては内管6内が蒸気の上昇通路、本体1と内管
6の間が凝縮液の流下路であり、凝縮部ICで生成した
凝縮液は凝縮部ICの管内壁をつたわって流下し凝縮液
の流下路に入るので、第1図の実施例の如き凝縮液捕集
器は不要である。
FIG. 3 is a cross-sectional view of another embodiment.
An inner tube 6 is provided close to the inner diameter of the tube. In this embodiment, the inside of the inner pipe 6 is a rising path for steam, and the space between the main body 1 and the inner pipe 6 is a flow path for condensate, and the condensate generated in the condensing part IC flows through the inner wall of the pipe of the condensing part IC. Since the condensate flows down and enters the condensate flow path, a condensate collector as in the embodiment of FIG. 1 is not required.

また内管6の形状は上記のように円筒形に限定されるも
のではなく、四角形や六角診等の多角形であってもよい
Further, the shape of the inner tube 6 is not limited to the cylindrical shape as described above, but may be a polygonal shape such as a quadrangular shape or a hexagonal shape.

[発明の効果] この発明は蒸気の上昇通路と凝縮液の流下路を分離する
ことにより、従来の単管式のサーモサイホンのようにフ
ラッディング現象が起らず、熱輸送量限界値は従来の単
管式のサーモサイホンに較べ、数倍から10数倍の値が
得られ、能力向上による設備の小型化が図れる等の優れ
た効果をもたらすものである。
[Effects of the Invention] By separating the steam ascending path and the condensate flow path, this invention eliminates the flooding phenomenon that occurs in conventional single-tube thermosiphons, and the heat transport limit value is lower than that of the conventional one. Compared to a single-tube type thermosiphon, a value several to ten times higher can be obtained, and it brings about excellent effects such as miniaturization of equipment due to improved capacity.

次にこの発明と従来の技術とを比較した実験結果につい
て説明する。
Next, experimental results comparing the present invention and the conventional technology will be explained.

従来の単管式の場合、本体が全長77′I′L1呼び径
2OAで、作動流体としてフロン113を封入したサー
モサイホンを使用し実験した結果、熱輸送量は約IKW
で限界に達した。
In the case of the conventional single-tube type, the main body has a total length of 77'I'L1 and a nominal diameter of 2OA, and as a result of experiments using a thermosiphon containing Freon 113 as the working fluid, the heat transport amount is approximately IKW.
reached its limit.

これに対し、この発明の第1図に示す構造によるもので
、上記サーモサイホンに呼び径8Aの内管6を挿着して
実験した結果では熱輸送量が7.8KWになっても安定
した作動をすることが確認された。
On the other hand, according to the structure shown in FIG. 1 of the present invention, an experiment was conducted by inserting the inner tube 6 with a nominal diameter of 8A into the thermosiphon, and the results showed that it was stable even when the heat transport amount was 7.8KW. It was confirmed that it works.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す断面図、第2図と第
3図はそれぞれ異なる実施例を示す断面図、第4図は従
来の単管式サーモサイホンを示す断面図である。 1・・・本体、2・・・作動流体、6・・・内管、1a
・・・蒸発部、1b・・・断熱部、IC・・・凝縮部。 出願人代理人 弁理士 鈴江武彦 第1図   1に2図 第3図    第4図
FIG. 1 is a sectional view showing one embodiment of the present invention, FIGS. 2 and 3 are sectional views showing different embodiments, and FIG. 4 is a sectional view showing a conventional single-tube thermosiphon. DESCRIPTION OF SYMBOLS 1... Main body, 2... Working fluid, 6... Inner pipe, 1a
... Evaporation section, 1b... Heat insulation section, IC... Condensation section. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 1 and 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  作動流体を貯留する下部蒸発部と蒸発した蒸気を凝縮
する上部凝縮部とこれを連結している管状の断熱部より
なるサーモサイホンにおいて、断熱部内に両端部が下部
蒸発部と上部凝縮部とにそれぞれ開口し、蒸気の上昇通
路と隔離され、蒸気の上昇通路の断面積より断面積が小
さい凝縮液の流下路を形成する内管を設けたことを特徴
とするサーモサイホン。
In a thermosyphon, which is composed of a lower evaporator section for storing working fluid, an upper condensing section for condensing evaporated vapor, and a tubular heat insulating section connecting these, both ends are connected to the lower evaporator section and the upper condensing section within the heat insulating section. 1. A thermosiphon characterized by having inner pipes each of which is open, separated from a steam rising passage, and forming a condensate flow passage having a cross-sectional area smaller than the cross-sectional area of the steam rising passage.
JP2347987A 1987-02-05 1987-02-05 Thermosyphon Pending JPS63194189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2347987A JPS63194189A (en) 1987-02-05 1987-02-05 Thermosyphon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2347987A JPS63194189A (en) 1987-02-05 1987-02-05 Thermosyphon

Publications (1)

Publication Number Publication Date
JPS63194189A true JPS63194189A (en) 1988-08-11

Family

ID=12111664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2347987A Pending JPS63194189A (en) 1987-02-05 1987-02-05 Thermosyphon

Country Status (1)

Country Link
JP (1) JPS63194189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098338A1 (en) * 2009-02-24 2010-09-02 株式会社Cku Heat pipe
KR20180110506A (en) * 2017-03-29 2018-10-10 티엠에스테크 주식회사 Device for heat conduction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098338A1 (en) * 2009-02-24 2010-09-02 株式会社Cku Heat pipe
CN102334004A (en) * 2009-02-24 2012-01-25 株式会社Cku Heat pipe
KR20180110506A (en) * 2017-03-29 2018-10-10 티엠에스테크 주식회사 Device for heat conduction

Similar Documents

Publication Publication Date Title
US4217765A (en) Heat exchanger-accumulator
US4020898A (en) Heat pipe and method and apparatus for fabricating same
US4640347A (en) Heat pipe
US4036291A (en) Cooling device for electric device
US20070227703A1 (en) Evaporatively cooled thermosiphon
US3170512A (en) Heat exchanger
US5275232A (en) Dual manifold heat pipe evaporator
Azad et al. A design procedure for gravity-assisted heat pipe heat exchanger
Terpstra et al. Heat pipes: construction and application: a study of patents and patent applications
US4501123A (en) Cooling apparatus for machinery
JPS63194189A (en) Thermosyphon
JPS5816187A (en) Heat transfer device
US20020134427A1 (en) Thermosyphon radiators
CA2013975A1 (en) Heat pipe for reclaiming vaporized metal
JP2743022B2 (en) heat pipe
JP2682584B2 (en) Heat exchange equipment
JPH076751B2 (en) heat pipe
JPH03283454A (en) Semiconductor cooling device
US4547130A (en) Capillary input for pumps
JPS59183254A (en) Solar water heater of heat pipe type
JPS632786Y2 (en)
JPH0674957B2 (en) Heat exchanger
JPS6224720B2 (en)
GB2113375A (en) Improvements in heat exchangers
JP2001027487A (en) Gravity type heat pipe