JPS63193267A - Output feedback type multiplier - Google Patents

Output feedback type multiplier

Info

Publication number
JPS63193267A
JPS63193267A JP2667487A JP2667487A JPS63193267A JP S63193267 A JPS63193267 A JP S63193267A JP 2667487 A JP2667487 A JP 2667487A JP 2667487 A JP2667487 A JP 2667487A JP S63193267 A JPS63193267 A JP S63193267A
Authority
JP
Japan
Prior art keywords
output
sum
ffs
circuit
multiplication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2667487A
Other languages
Japanese (ja)
Inventor
Takeyuki Takayama
強之 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2667487A priority Critical patent/JPS63193267A/en
Publication of JPS63193267A publication Critical patent/JPS63193267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

PURPOSE:To decrease the number of one-bit sum-of-products circuit elements and to reduce the size of a circuit scale by feeding back some of the arithmetic outputs of parallel type multipliers and dividing multiplication processing into plural. CONSTITUTION:A sum-of-products circuit group 1 multiplies inputs (x5, x4...x0), and y1 and y0 with 1st one clock and multiplication results are latched in D type FFs 4. The latch contents of the FFs 4 are fed back with a next clock to sum up the multiplication results of the (x) inputs and y2 and y2, and then while the addition result is latched in the FFs 4, a selector 6 switches FFs 4 where the low-order bits are latched. Then the latch contents of the FFs 4 with a next clock to sum up the multiplication results of the (x) inputs, and y5 and y4, and the result is latched in the FFs 4. The output obtained by passing said latch output through all adder 3 and the output of the FF 4 becomes final multiplication results, and the multiplication processing is performed in three separated parts, so the number of one-bit sum-of-products circuit element is reduced greatly as compared with a processing circuit which requires sum-of- products circuit proportionally as many as input bits and the size of a circuit scale when the number of bits is large is reducible.

Description

【発明の詳細な説明】 産業上の利用分野 本−J西明はディジタル信号処理回路における乗算器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This book J Nishimei relates to multipliers in digital signal processing circuits.

従来の技術 第3図に並列型乗算器の回路例を示す。第3図に示すの
は、6ビットのX入力(15m X4 r ”3 # 
X2 m”11”O)と6ビットのY入力(75、74
、73,72、yl 。
BACKGROUND OF THE INVENTION FIG. 3 shows an example of a parallel multiplier circuit. Figure 3 shows a 6-bit X input (15m
X2 m”11”O) and 6-bit Y input (75, 74
, 73, 72, yl.

yo)の乗算を行ない、12ビットの乗算結果M(ml
 1.11110 +m9. ’・・”” + 11n
2 T n11 * In□ ) ’jf得る並列型乗
算器である。
yo), and the 12-bit multiplication result M(ml
1.11110 +m9. '...”” + 11n
2 T n11 * In□ )' This is a parallel multiplier that obtains jf.

まず、1は1ビット積和回路であり、キャリー人力14
.加算人力111乗算入力12,13、キャリー出力1
5、加算出力16を有する。1ビット積和回路1は乗算
入力12.13を乗算した後、加算人力11.キャリー
人力14との加算を行ない、その結果をキャリー出力1
6.加算出力16より出力する。次に2は1ビット乗算
器であり、乗算入力21.22及び乗算出力23を有す
る。そして3は全加算器であシ、加算入力31゜32キ
ヤリ一人力34.キャリー出力33、及び加算出力35
を有する。
First, 1 is a 1-bit product-sum circuit, and the carry power is 14
.. Addition power 111 Multiplication inputs 12, 13, Carry output 1
5, has an addition output of 16. The 1-bit product-sum circuit 1 multiplies the multiplication inputs 12.13 and then outputs the addition inputs 11. Performs addition with carry human power 14 and outputs the result as carry output 1
6. Output from addition output 16. Next, 2 is a 1-bit multiplier having multiplication inputs 21, 22 and multiplication outputs 23. 3 is a full adder, and the addition input is 31°, 32°, and 34°. Carry output 33 and addition output 35
has.

上記の様に構成された並列型乗算器に関し、第3図を用
いて以下その動作全説明する。
The entire operation of the parallel multiplier configured as described above will be explained below with reference to FIG.

まず最上段右端の1ビット乗算器2において、”o s
 yoの乗算を行ない、その結果をm。とじて出力する
。次に右から2列目の1ビット乗算器2及び1ビット積
和回路1によってxl・y o +x。当の演算を行な
いキャリー出力16及び加算出力m1を得る。さらに右
から3列目の1ビット乗算器2及び1ビット積和回路群
1によってX。−”O”1・yl”O’72に上記キャ
リー出力を加えた加算を行ない、個々の1ビット積和回
路1のキャリー出力群15及び加算出力m2を得る。そ
して同様に右からi列目の1ビット乗算器2及び1ビッ
ト積和回路群1においても個々の列におけるキャリー出
力群15及び加算出力を得る。
First, in the 1-bit multiplier 2 at the right end of the top stage, "o s
Multiply by yo and use the result as m. Bind and output. Next, the 1-bit multiplier 2 and the 1-bit product-sum circuit 1 in the second column from the right produce xl·y o +x. The corresponding calculation is performed to obtain a carry output 16 and an addition output m1. Further, the 1-bit multiplier 2 and the 1-bit product-sum circuit group 1 in the third column from the right generate X. - "O"1・yl"O'72 is added with the above carry output to obtain the carry output group 15 and addition output m2 of each 1-bit product-sum circuit 1. Similarly, the i-th column from the right is The 1-bit multiplier 2 and the 1-bit product-sum circuit group 1 also obtain a carry output group 15 and an addition output in each column.

上記の様に個々の列において加算、乗算を行ない、最終
的に最下段の1ビット乗算器2及び1ビット槓和回路群
1により得られた乗算出力36及び加算出力32とキャ
リー出力31との加算を全加昇器3で行ない、加算出力
m1゜〜m6及びキャリー出力”11を得る。
Addition and multiplication are performed in each column as described above, and finally the multiplication output 36, addition output 32, and carry output 31 obtained by the 1-bit multiplier 2 and the 1-bit summation circuit group 1 at the bottom stage are Addition is performed by the full adder 3 to obtain addition outputs m1° to m6 and a carry output "11".

この様にしてX入力とY入力の乗算を行ない、乗算結果
M(m11〜mo )を得る。
In this way, the X input and the Y input are multiplied to obtain the multiplication result M (m11 to mo).

発明が解決しようとする問題点 しかしながら、上記の様な構成では入力のビット数の積
に比例した積和回路が必要であるため、入力のビット数
が多い時は、その回路規模が非常に大きくなってしまう
という問題点を有していた。
Problems to be Solved by the Invention However, the above configuration requires a product-sum circuit proportional to the product of the number of input bits, so when the number of input bits is large, the circuit scale becomes extremely large. This has the problem that it becomes

上記問題点に鑑み、本発明は回路規模の小型化を実現で
きる出力帰還型乗算器を提供するものである。
In view of the above problems, the present invention provides an output feedback multiplier that can realize miniaturization of the circuit scale.

問題点を解決するための手段 上記問題点を解決するため、本発明は並列型乗算器の演
算出力の一部を帰還し、従来の並列型乗算器で1クロツ
クで行なっていた乗算を複数回に分割して行なう。これ
により、1ビット積和回路の素子数を従来に比べ半分以
下にする事が可能になり、回路規模を大幅に小型化する
単音可能にする。
Means for Solving the Problems In order to solve the above problems, the present invention feeds back a part of the calculation output of the parallel multiplier, so that the multiplication that was performed in one clock in the conventional parallel multiplier can be performed multiple times. Divide it into two parts. This makes it possible to reduce the number of elements in a 1-bit product-sum circuit to less than half that of the conventional circuit, making it possible to significantly reduce the circuit scale for a single sound.

作  用 本発明は上記した賛成によシ、乗算器の菓子数全大幅に
削減する事が可能になる。また上記の分割数音、素子の
演算速度に応じ、自由に設定する事により、回路削減の
最適化全図る事ができるものである。
Function: In accordance with the above-mentioned advantages, the present invention makes it possible to significantly reduce the total number of multipliers. Further, by freely setting the above-mentioned division number according to the calculation speed of the element, it is possible to completely optimize the circuit reduction.

実施例 ytS1図は本発明の一実施例を示す回路図である。Example Figure ytS1 is a circuit diagram showing an embodiment of the present invention.

第1図において、1および3は従来例と同様な積和回路
及び、全加算器である。そして、4はD入力42.クロ
ック人力43.出力44を有するDフリップ70ツブ、
6はセレクターであり、コントロール入力信号61を有
する。さらに5はANDゲートである。
In FIG. 1, numerals 1 and 3 are a product-sum circuit and a full adder similar to the conventional example. And 4 is D input 42. Clock human power 43. D-flip 70 tube with output 44,
6 is a selector and has a control input signal 61. Furthermore, 5 is an AND gate.

以上の様に構成された並列帰還型乗算器について、その
動作を説明する。まず最初の1クロツクで入力(”5”
41”31”21”1#”O)と71*700乗算を積
和回路群1によって行ない、その結果iDフリップフロ
ップ4にラッチする。そして次のクロックでDフリップ
フロップ4の出力を帰還し、X入力と73−72の乗算
結果と加算し、その結果を再度Dフリップ70ノブ4に
ラッチする。
The operation of the parallel feedback multiplier configured as described above will be explained. First, input at the first clock (“5”
41"31"21"1#"O) and 71*700 multiplication is performed by the product-sum circuit group 1, and the result is latched in the iD flip-flop 4. Then, at the next clock, the output of the D flip-flop 4 is fed back, added to the X input and the multiplication result of 73-72, and the result is latched into the D flip-flop 70 knob 4 again.

この時セレクタ6により、下位ビットをラッチするD7
リソプフロツプ4を切シ換える。そしてさらに次のクロ
ックで、再度Dフリップフロップ4の出力を帰還し、X
入力とy5.74の乗算結果と加Ill、Dクリップフ
ロップ4にラッチする。そして、最終的にDフリップフ
ロップ4の出力を全加算器3で加算した出力33.35
と下位ビット出力PA及び下位ビット用のDフリップフ
ロップ4の出力PBがX入力(X s + X 4. 
X s 、 X 2 * X 1゜x o )とY入力
(75+74*5’372*71 、y□)の乗算結果
となる。そして次の乗算を行なう前に、クリアー信号に
より帰還信号を全てrLJにリセットする。
At this time, D7 latches the lower bit by selector 6.
Switch the printer flop 4. Then, at the next clock, the output of D flip-flop 4 is fed back again, and
The result of multiplying the input by y5.74 is added and latched into the D clip-flop 4. Finally, the output of the D flip-flop 4 is added by the full adder 3, and the output is 33.35.
The lower bit output PA and the output PB of the D flip-flop 4 for lower bits are X input (X s + X 4.
This is the multiplication result of X s , X 2 * X 1°x o ) and Y input (75+74*5'372*71, y□). Then, before performing the next multiplication, all feedback signals are reset to rLJ by a clear signal.

上記の動作を連続的に行なう事により、第3図に示す並
列型乗算器と同一の乗算を3クロツクで行なう。
By performing the above operations continuously, the same multiplication as the parallel multiplier shown in FIG. 3 is performed in three clocks.

本発明の他の実施例を第2図に示す。第2図は第1図と
比較し、帰還用のレジスタの位置が異なっているだけで
あり、動作に関しては第1図と全く同様である。この様
な回路構成にする事により、第1図よシもさらに回路素
子を削減する事が可能となる。。しかし1クロツク内の
演算時間が第1図に比べ長くなるため、演算速度的には
不利となる。
Another embodiment of the invention is shown in FIG. Compared with FIG. 1, FIG. 2 differs only in the position of the feedback register, and the operation is exactly the same as FIG. 1. By adopting such a circuit configuration, it is possible to further reduce the number of circuit elements as shown in FIG. . However, since the calculation time within one clock is longer than that in FIG. 1, this is disadvantageous in terms of calculation speed.

以上の様に帰還用のレジスタを設け、複数回に分割して
乗算を行なう事により、従来の並列型乗算器に比べ、非
常に少ない素子数で乗算を行なう事を可能にする。
As described above, by providing a feedback register and performing multiplication by dividing it into multiple times, it is possible to perform multiplication with a significantly smaller number of elements compared to conventional parallel multipliers.

うき明の効果 以上の様に本発明は帰還用のレジスタ′ff:設け、1
回の乗算を複数回に分割して行なう事により1、回路素
子を大幅に削減し、演算速度に応じたハードウェアの最
適設計を実現するものである。
As described above, the present invention provides a feedback register 'ff: 1.
By dividing the multiplication process into a plurality of times, the number of circuit elements can be significantly reduced, and an optimal design of hardware can be achieved depending on the calculation speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における出力帰還乗算器
の回路図、り(2図は本発明の第2の実施1・・・・・
・1ビット積和回路、2・・・・・・1ピツ14に器、
3・・・・・・全加算器、4・・・・・・Dフリップフ
ロラフ−5・・・・・・ANDゲート、6・・・・・・
セレクター。
Fig. 1 is a circuit diagram of an output feedback multiplier according to a first embodiment of the present invention;
・1-bit product-sum circuit, 2...1 bit 14 circuit,
3...Full adder, 4...D flip flow rough-5...AND gate, 6...
Selector.

Claims (1)

【特許請求の範囲】[Claims] 二つの1ビットデータの乗算を行なう1ビット乗算器と
、二つの1ビットデータの乗算を行なった後、他の入力
との乗算を行なう1ビット積和回路と、1ビット積和回
路同志の出力を加算する全加算器と、この全加算器の出
力をラッチし、帰還するレジスタを備えた事を特徴とす
る出力帰還型乗算器。
A 1-bit multiplier that multiplies two 1-bit data, a 1-bit product-sum circuit that multiplies two 1-bit data and then multiplies it with other inputs, and the output of the 1-bit product-sum circuits. An output feedback multiplier characterized by comprising a full adder that adds up and a register that latches and feeds back the output of the full adder.
JP2667487A 1987-02-06 1987-02-06 Output feedback type multiplier Pending JPS63193267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2667487A JPS63193267A (en) 1987-02-06 1987-02-06 Output feedback type multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2667487A JPS63193267A (en) 1987-02-06 1987-02-06 Output feedback type multiplier

Publications (1)

Publication Number Publication Date
JPS63193267A true JPS63193267A (en) 1988-08-10

Family

ID=12199941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2667487A Pending JPS63193267A (en) 1987-02-06 1987-02-06 Output feedback type multiplier

Country Status (1)

Country Link
JP (1) JPS63193267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444990B1 (en) * 2001-12-29 2004-08-21 삼성전자주식회사 System for processing signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444990B1 (en) * 2001-12-29 2004-08-21 삼성전자주식회사 System for processing signal

Similar Documents

Publication Publication Date Title
Mohan et al. RNS-to-Binary Converters for Two Four-Moduli Sets $\{2^{n}-1, 2^{n}, 2^{n}+ 1, 2^{{n}+ 1}-1\} $ and $\{2^{n}-1, 2^{n}, 2^{n}+ 1, 2^{{n}+ 1}+ 1\} $
US7372297B1 (en) Hybrid interconnect/logic circuits enabling efficient replication of a function in several sub-cycles to save logic and routing resources
EP1049025B1 (en) Method and apparatus for arithmetic operations
US9372665B2 (en) Method and apparatus for multiplying binary operands
JPS595349A (en) Adder
US8463836B1 (en) Performing mathematical and logical operations in multiple sub-cycles
US7818361B1 (en) Method and apparatus for performing two's complement multiplication
US20040010536A1 (en) Apparatus for multiplication of data in two's complement and unsigned magnitude formats
JPS63193267A (en) Output feedback type multiplier
US7765249B1 (en) Use of hybrid interconnect/logic circuits for multiplication
Aggoun et al. Area-time efficient serial-serial multipliers
JPS63219066A (en) Orthogonal transforming device
Emami et al. An optimized reconfigurable architecture for hardware implementation of decimal arithmetic
JPH05173761A (en) Binary integer multiplier
JPS58181143A (en) Digital multiplier
Teja et al. Implementation of vedic multiplier using modified architecture by routing rearrangement for high-optimization
JP3201231B2 (en) Unit adder
JP2622861B2 (en) Galois extended field arithmetic unit
JPH0784762A (en) Multiplication circuit
JP3417172B2 (en) Arithmetic circuit
Gardiner et al. Cellular-array arithmetic unit with multiplication and division
JP3433487B2 (en) Binary to decimal converter
JP3130797B2 (en) Product-sum operation processing method and apparatus
JPH04250527A (en) Arithmetic circuit
JPH0683852A (en) Alpha synthesization computing element