JPS63193055A - Method and apparatus for detecting impurity gas - Google Patents

Method and apparatus for detecting impurity gas

Info

Publication number
JPS63193055A
JPS63193055A JP62024763A JP2476387A JPS63193055A JP S63193055 A JPS63193055 A JP S63193055A JP 62024763 A JP62024763 A JP 62024763A JP 2476387 A JP2476387 A JP 2476387A JP S63193055 A JPS63193055 A JP S63193055A
Authority
JP
Japan
Prior art keywords
gas
catalyst
adsorption
hydrogen gas
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62024763A
Other languages
Japanese (ja)
Other versions
JPH0833364B2 (en
Inventor
Fushinobu Asano
浅野 節信
Kenji Otsuka
健二 大塚
Shigeo Yahara
箭原 繁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP62024763A priority Critical patent/JPH0833364B2/en
Publication of JPS63193055A publication Critical patent/JPS63193055A/en
Publication of JPH0833364B2 publication Critical patent/JPH0833364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To certainly detect impurity gas, by a method wherein purified hydrogen gas and specimen gas containing impurities are respectively brought into contact with a transition metal catalyst and, thereafter, the heat conductivity difference between both of them is detected. CONSTITUTION:In a chilling adsorptive gas purifying apparatus B, an adsorbing cylinder 10 is immersed in a cooling medium tank 1. Raw material hydrogen is introduced from a supply pipe 14 and impurity gas is adsorbed and removed to purify hydrogen gas, while the purified hydrogen gas is taken out from a withdrawing pipe 15. An impurity gas detection apparatus A is provided and catalyst pipes 7, 8 filled with a transition metal catalyst are provided. Specimen gas is take out from the measuring point 8 of the adsorbing cylinder 10 to be sent to the catalyst pipe 8 through a pipe 20 and brought into contact with the catalyst to be guided to the specimen side 3 of a heat conductivity detector 1. The purified hydrogen gas is taken out from the withdrawing pipe 15 to be guided to the reference side 2 of the detector 1 through the catalyst pipe 7; the heat conductivity difference between the specimen side 3 and the reference side 2 is detected and the impurity gas is measured. Since the hydrogen gas is brought into contact with the catalyst before detection, the impure gas can be accurately measured.

Description

【発明の詳細な説明】 〔窒業上の利用分野〕 本発明は不純ガスの検知方法および装置に関し、さらに
詳細には深冷吸着法によって精製中の水素ガスに含有さ
れる不純ガスの検知方法および装置に関する。
[Detailed Description of the Invention] [Field of Application in the Nitrogen Industry] The present invention relates to a method and apparatus for detecting impure gas, and more particularly to a method for detecting impure gas contained in hydrogen gas being purified by cryogenic adsorption. and regarding equipment.

半導体産業、原子力産業などの発展に伴い、水素、ヘリ
ウムなど各種のガスの需要が増大しているがこれらの分
野で使用されるガスは極めて高純度であることが、!!
求される。しかしながら通常市販されているこ九らのガ
ス中には窒素、−酸化炭素、メタンなどの不純ガスが含
有されているため、これらの不純ガスを除去する必要が
あり、種々のガス精製装置が紹介されている。
With the development of the semiconductor industry, nuclear power industry, etc., the demand for various gases such as hydrogen and helium is increasing, but the gases used in these fields are of extremely high purity! !
required. However, these gases that are usually commercially available contain impurity gases such as nitrogen, carbon oxide, and methane, so it is necessary to remove these impurity gases, and various gas purification devices have been introduced. has been done.

これらの代表的なものの一つとして、吸着剤が充填され
た吸着筒を用い極低温下に不純ガスを吸着除去する深冷
吸着ガ、ス精製装置が知られており、例えば特開昭5s
−7565号および特開昭61−38616号公報など
がある。
One of the most representative of these is a cryogenic adsorption gas purification device that adsorbs and removes impurity gas at extremely low temperatures using an adsorption column filled with an adsorbent.
-7565 and Japanese Unexamined Patent Publication No. 61-38616.

これらの装置は一基本的には吸着筒、冷媒1、熱交換器
および加熱装置などで構成され、冷媒として液体窒素を
用いての極低温下におけるガスの吸着精製と、加熱によ
る吸着剤の再生とが交互におこなわれるものである。こ
のような深冷吸着ガス精製装置においては、ガスの精製
時に、不純ガスの吸着が進むにつれて不純ガスの吸着帯
は吸着筒の上流側から下流側へと順次移動して行き、遂
には吸着層が破過され吸着筒出口から排出される精製ガ
ス中に不純ガスが混入する。このため、吸着層の破過を
予知し、破過が生ずる前に別の吸着筒に切替えるなどの
措置を講する必要があり、従って不純ガスの増加を検知
することは極めて重要である。
These devices basically consist of an adsorption cylinder, a refrigerant 1, a heat exchanger, a heating device, etc., and perform adsorption purification of gas at extremely low temperatures using liquid nitrogen as a refrigerant, and regeneration of the adsorbent by heating. This is done alternately. In such cryogenic adsorption gas purification equipment, during gas purification, as the adsorption of impure gas progresses, the adsorption zone of impure gas sequentially moves from the upstream side to the downstream side of the adsorption column, and finally the adsorption layer impure gas is mixed into the purified gas discharged from the outlet of the adsorption column. Therefore, it is necessary to take measures such as predicting the breakthrough of the adsorption layer and switching to another adsorption cylinder before the breakthrough occurs. Therefore, it is extremely important to detect an increase in impure gas.

〔従来の技術〕[Conventional technology]

従来、水素、ヘリウムなどのガス中に含有される不純ガ
スの検知方法としては吸着筒から所定の時間毎に抜き出
した測定ガスを質量分析計、赤外線分析計、ガスクロマ
トグラフなどで分析するのが一般的であった。しかしな
がらこれらの分析計による分析は間欠的な方法であるた
めことができないという欠点があった、 これに対し、本発明者らは、先に、熱伝導度検出器を用
い、これに精製ガスおよび測定ガスを流し、両者間の熱
伝導度差を検出することによって不純ガスを検知する方
法を提案するとkもにさらに検討を加え熱伝導度検出器
の対照側に測定ガスまたは精製ガスを流し、試料側には
測定ガスと精製ガスとをそれぞれ交互に切替えて流すこ
とにより対照側と試料側の0点のずれを補正しながら不
純ガスの混入を監視し、これによって微量の不純ガスを
より高感度でしかも迅速に検知する方法を開示した(特
開昭61−130864号公報)。
Conventionally, the conventional method for detecting impurity gases contained in gases such as hydrogen and helium is to analyze the sample gas extracted from an adsorption cylinder at predetermined intervals using a mass spectrometer, infrared analyzer, gas chromatograph, etc. It was a target. However, analysis using these analyzers is an intermittent method and has the disadvantage that analysis cannot be performed.In response, the present inventors first used a thermal conductivity detector and used a purified gas and We proposed a method for detecting impure gases by flowing a measuring gas and detecting the difference in thermal conductivity between the two.We conducted further studies and found that by flowing a measuring gas or a purified gas on the opposite side of a thermal conductivity detector, By alternately switching the measurement gas and the purified gas to the sample side, we can monitor the incorporation of impure gas while correcting the zero point deviation between the control side and the sample side. A method for sensitive and rapid detection has been disclosed (Japanese Patent Application Laid-open No. 130864/1986).

[解決しようとする問題点〕 この熱伝導度検出器を用いた方法は水素ガス、ヘリウム
などに含有される不純ガスの検知に巾広く適用すること
ができる。しかしながら前記の深冷吸着ガス精製法によ
る水素ガスの精製において、精製系から導かれたサンプ
ル水素ガスについてはこれを直接熱伝導度検出器に流し
た場合にはこれらの水素ガス中に不純ガスが含有されて
いないときにも通常の水素ガスの熱伝導度と異る値を示
すばかりでなく、精製系におけるガスの流量変動やサン
プルガスの抜出位置などによって熱伝導度が変化すると
いう現象が発生する。このため、水素ガス中に不純ガス
が混入することによって熱伝導度が変化してもそれが不
純ガスによるものか否かの識別が困難であり、特に不純
ガスの濃度が低いときには全く検知できないという問題
点があった。
[Problems to be Solved] This method using a thermal conductivity detector can be widely applied to the detection of impure gases contained in hydrogen gas, helium, and the like. However, in the purification of hydrogen gas using the cryogenic adsorption gas purification method described above, if the sample hydrogen gas derived from the purification system is directly passed through the thermal conductivity detector, impurity gas may be present in the hydrogen gas. Not only does it show a value different from the thermal conductivity of normal hydrogen gas even when it is not contained, but there is also a phenomenon in which the thermal conductivity changes depending on the gas flow rate fluctuation in the purification system, the extraction position of the sample gas, etc. Occur. For this reason, even if the thermal conductivity changes due to the mixing of impure gas into hydrogen gas, it is difficult to distinguish whether the change is due to the impure gas or not, and especially when the concentration of impure gas is low, it cannot be detected at all. There was a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、これらの問題点を解決し、深冷吸着ガス
精製における水素ガスについても他のガスの場合と同様
に不純ガスを確実に検知するべく、鋭意研究を重ねた結
果、精製系から導かれたサンプル水素ガスを遷移金属元
素を含有する水素化触媒と接触させることにより、前記
した熱伝導度の変化を防止しうろことを見出し本発明に
到達した。
The inventors of the present invention have conducted extensive research in order to solve these problems and reliably detect impurity gas in hydrogen gas in cryogenic adsorption gas purification in the same manner as in the case of other gases. The present inventors have discovered that the above-mentioned change in thermal conductivity can be prevented by contacting a sample hydrogen gas derived from a hydrogen gas with a hydrogenation catalyst containing a transition metal element.

すなわち本発明は、深冷吸着ガス精製装置で精製中の水
素ガスに含有される不納ガスの検知方法において、精製
水素ガスおよび当該装置内の吸着筒の測定点から導かれ
た測定ガスをそれぞれ遷移金属元素を含有する水素化触
媒と接触させた後、両者間の熱伝導度差を検出すること
によって測定ガス中の不純ガスを検知することを特徴と
する不純ガスの検知方法および深冷吸着ガス精製装置で
精製中の水素ガスに含有される不純ガスの検知装置であ
って、該深冷吸着ガス精製装置に配設され、対照側およ
び試料側のガス流路を有する熱伝導度検出器と、該対照
側および試料側のガス入口のそれぞれに1端が接続され
、かつ、内部に遷移金属元素を含有する水素化触媒が充
填された触媒管とを備えてなり、該触媒管の他端のそれ
ぞれは精製水素ガスおよび精製装置内の吸着筒の測定点
から導かれた測定ガスのサンプル管に接続されたことを
特徴とする不純ガスの検知装置である。
That is, the present invention provides a method for detecting nonconducting gas contained in hydrogen gas being purified in a cryogenic adsorption gas purification device, in which the purified hydrogen gas and the measurement gas derived from the measurement point of the adsorption column in the device are respectively transitioned. Impure gas detection method and cryogenic adsorption gas characterized by detecting impure gas in a measurement gas by bringing it into contact with a hydrogenation catalyst containing a metal element and then detecting a difference in thermal conductivity between the two. A device for detecting impurity gas contained in hydrogen gas being purified in a purification device, the thermal conductivity detector being disposed in the cryogenic adsorption gas purification device and having a gas flow path on a control side and a sample side. , one end of which is connected to each of the gas inlets on the control side and the sample side, and the other end of the catalyst tube is filled with a hydrogenation catalyst containing a transition metal element. Each of these is an impure gas detection device characterized in that it is connected to a sample tube for purified hydrogen gas and a measurement gas led from a measurement point of an adsorption column in a purification device.

本発明は深冷吸着ガス精製装置で精製中の水素ガスに含
有される窒素、酸素、−酸化炭素、二酸化炭素およびメ
タンなどの不純ガスの検知に適用され、本発明において
は熱伝導度検出器および水素化触媒が使用される。
The present invention is applied to the detection of impurity gases such as nitrogen, oxygen, carbon oxide, carbon dioxide, and methane contained in hydrogen gas being purified by a cryogenic adsorption gas purification device. and hydrogenation catalysts are used.

本発明が適用される深冷吸着ガス精製装置は吸着筒、冷
媒槽、熱交換器および加熱装置などを備えたものであり
、通常は2系列の吸着筒を有し、一方で吸着精製がおこ
なわれている間に他方では吸着剤の加熱による再生がお
こなわれる。吸着筒は1乃至複数本の筒によって構成さ
れ、内部には活性炭、モレキュラーシーブなどの吸着剤
が充填されている。水素ガスの精製時には液体窒素によ
って冷却され、約−196℃の極低温下で原料水素ガス
を流すことにより不純ガスが吸着除去され精製ガスが得
られるが、不純ガスの吸着が進むにつれて吸着帯は吸着
筒の上流側から下流側へと屓次移動し、遂には吸着層が
破過し、精製ガス中に不純ガスが混入する。このため、
破過前に吸着剤の再生が終った他り吸着筒に切替えるな
どの操作が必要である。
The cryogenic adsorption gas purification device to which the present invention is applied is equipped with an adsorption cylinder, a refrigerant tank, a heat exchanger, a heating device, etc., and usually has two series of adsorption cylinders, one in which adsorption purification is performed. On the other hand, the adsorbent is regenerated by heating. The adsorption cylinder is composed of one or more cylinders, and the inside thereof is filled with an adsorbent such as activated carbon or molecular sieve. When refining hydrogen gas, it is cooled with liquid nitrogen, and impurity gas is adsorbed and removed by flowing the raw hydrogen gas at an extremely low temperature of about -196°C to obtain purified gas, but as the adsorption of impure gas progresses, the adsorption zone The impurity gas gradually moves from the upstream side to the downstream side of the adsorption cylinder, and finally breaks through the adsorption layer, and the impure gas is mixed into the purified gas. For this reason,
Before breakthrough, it is necessary to complete regeneration of the adsorbent and to switch to an adsorption column.

本発明において精製装置内の吸着筒には測定ガスを抜き
出すための測定点が設けられる。通常、測定点は吸着筒
の出口より上流で、不純ガスを検知することによって吸
着層の破過前に他の吸着筒への切替操作などに必要な時
間的余裕を取りうる位置に設けられる。また、多数の筒
が接続管で直列に連結されたような吸着筒の場合には測
定点は最下流側の筒とその上流側の筒とを接続した接続
管などに設けることもできる。
In the present invention, the adsorption column in the purification device is provided with a measurement point for extracting the measurement gas. Usually, the measuring point is located upstream from the outlet of the adsorption cylinder, at a position where impurity gas detection can provide enough time for switching to another adsorption cylinder before the adsorption layer breaks through. Furthermore, in the case of an adsorption cylinder in which a large number of cylinders are connected in series through connecting pipes, the measurement point can be provided at the connecting pipe connecting the most downstream cylinder and its upstream cylinder.

本発明で使用される熱伝導度検出器は基本的には金属線
抵抗でブリッジ回路が構成され2つのガス流路を有し、
その一方が対照側、他方が試料側とされたものであって
、通常は対照側には不純ガスを含有しないガス、試料側
には被検ガスがそれぞれ流され、両者の熱伝導度差を白
金線の電気抵抗の違いによる電位差として取り出すこと
によって被検ガス中の不純ガスを検出するものである。
The thermal conductivity detector used in the present invention basically has a bridge circuit made of metal wire resistance and has two gas flow paths.
One side is the control side, and the other side is the sample side. Usually, a gas containing no impurity gas is flowed into the control side, and a test gas is flowed into the sample side, to calculate the difference in thermal conductivity between the two. The impure gas in the sample gas is detected by extracting the potential difference due to the difference in electrical resistance of the platinum wire.

本発明では通常は精製水素ガスが対照側に、また吸着筒
の測定点から導かれた測定ガスが試料側に流され、両者
間の熱伝導度差の変化によって不純ガスが検知される。
In the present invention, purified hydrogen gas is normally flowed to the control side, and measurement gas led from the measurement point of the adsorption cylinder is flowed to the sample side, and impure gas is detected by a change in the thermal conductivity difference between the two.

なお精製水素ガスは通常は吸着筒の出口から導かれるが
、他の精製装置やボンベなどから導くこともできる。ま
た、測定ガスはガスクロマトグラフのようにキャリヤー
ガスで稀釈されたり、不純ガスが分離されたりすること
がなく、そのまへ不純ガスを合計した濃度で測定される
ので微量の不純ガスも高感度で検知できるが、特開昭6
1−130864号公報におけると同様に試料側に測定
ガスと精製水素ガスを交互に切替えて流し、ドリフトを
補正した電位差を検出する方法を用いた場合にはさらに
高感度でより正確に不純ガスを検知することができる。
Note that purified hydrogen gas is usually introduced from the outlet of the adsorption column, but it can also be introduced from other purification equipment, cylinders, etc. In addition, the measurement gas is not diluted with a carrier gas or the impurity gases are separated unlike in a gas chromatograph, and the total concentration of the impurity gases is measured as is, so even trace amounts of impurity gases can be detected with high sensitivity. Although it can be detected,
Similar to the method in Publication No. 1-130864, if a method is used in which measurement gas and purified hydrogen gas are alternately passed through the sample side and the potential difference with drift corrected is detected, impurity gas can be detected with even higher sensitivity and accuracy. Can be detected.

本発明において精製水素ガスおよび測定ガスはそれぞれ
水素化触媒と接触させてから熱伝導度検出器に流される
。これらの水素ガスを触媒との接触工程を経ずに直接熱
伝導度検出器に流した場合には精製工穐における水素ガ
スの吸着剤との相互作用、温度および流量変動などに起
因すると推察される水素ガス自体の熱伝導度盤化が生じ
、不純ガスを正確に検知することはできない。
In the present invention, purified hydrogen gas and measurement gas are each brought into contact with a hydrogenation catalyst and then flowed into a thermal conductivity detector. If these hydrogen gases are passed directly to the thermal conductivity detector without going through the contact process with the catalyst, it is assumed that this is due to interaction of the hydrogen gas with the adsorbent in the refinery, as well as fluctuations in temperature and flow rate. Thermal conductivity of the hydrogen gas itself changes, making it impossible to accurately detect impure gas.

本発明において使用される触媒は遷移金属元素を含有す
るもので、水素を活性化吸着して水素化反応をおこなう
ことができる一般的に公知の水素化触媒である。具体的
には、V 、 CrlMn 。
The catalyst used in the present invention contains a transition metal element and is a generally known hydrogenation catalyst that can activate and adsorb hydrogen to carry out a hydrogenation reaction. Specifically, V, CrlMn.

F e%Cas N rs Cu%Z ns M as
 T cs Ru−Rhs P dsAglW、 Re
、 Os、I r%P tlAu  などの金属単体、
合金、酸化物、硫化物およびこれらの混合物などを主成
分とするものであり、F e −、Co s N r 
sCu s几U%Rh%Ir、Pt  などは主に元素
状部で、その他は酸化物および硫化物の形で用いられる
ことが多い。
F e% Cas N rs Cu% Z ns M as
T cs Ru-Rhs P dsAglW, Re
, Os, Ir%PtlAu, etc.,
The main components are alloys, oxides, sulfides, and mixtures thereof, and include Fe-, CosNr
sCu s几U%Rh%Ir, Pt, etc. are mainly used in elemental parts, and others are often used in the form of oxides and sulfides.

これらの触媒は筒および管状などの触媒管に:充填され
、熱伝導度検出器の対照側および試料側のそれぞれに接
続される。触媒充填量は、触媒の種類およびサンプルガ
スの流量によって異り、−概に特定はできないが、ガス
の触媒に対する接触時間が実用上通常は5秒以上、好ま
しくは10秒以上となるように設計される。触媒管の温
度は常温でもよいが、触媒の活性をさらに高める目的な
どで必要に応じ適宜加熱してもよい。
These catalysts are packed into catalyst tubes such as tubes and tubes and connected to the control and sample sides of the thermal conductivity detector, respectively. The catalyst loading amount varies depending on the type of catalyst and the flow rate of the sample gas, and cannot be generally specified, but it is designed so that the contact time of the gas with the catalyst is usually 5 seconds or more, preferably 10 seconds or more in practice. be done. Although the temperature of the catalyst tube may be room temperature, it may be heated as appropriate for the purpose of further increasing the activity of the catalyst.

本発明の不純ガスの検知装置は深冷吸着ガス精製装置に
配設され、対照側および試料側の触媒管はそれぞれ、精
製水素ガスおよび測定ガスのサンプル管に接続されて用
いられる。
The impure gas detection device of the present invention is installed in a cryogenic adsorption gas purification device, and the catalyst tubes on the control side and the sample side are connected to sample tubes for purified hydrogen gas and measurement gas, respectively.

次に図面によって本発明を具体的に例示して説明する。Next, the present invention will be specifically illustrated and explained with reference to the drawings.

第1図は本発明の不純ガスの検知装置およびこれが深冷
吸着ガス精製装置に配設されたフローシートの一例であ
る。
FIG. 1 is an example of an impure gas detection device of the present invention and a flow sheet in which the same is installed in a cryogenic adsorption gas purification device.

第1図において%Aは本発明の不純ガスの検知装置であ
り、Bはガス精製装置(1系列のみを示した)である。
In FIG. 1, %A is the impure gas detection device of the present invention, and B is the gas purification device (only one system is shown).

Aに関し、熱伝導度検出器1は対照側2および試料側3
02つのガス流路を有する検出部4ならびに記録計5お
よび警報器6からなっている。検出部4のガス入口側に
は水素化触媒が充填され、2本の触媒管7および8がこ
れを収納した加熱炉9とともに設けられている。触媒管
7および8は熱伝導度検出器1の対照側2および試料側
3にそれぞれ定流量弁2′および3′を介して接続され
不純ガスの検知装置Aとされ、ガス精製装置Bに配設さ
れている。一方ガス精製装置Bは吸着剤が充填された吸
着筒10が収納された冷媒槽11が熱交換器12ととも
に真空断熱容器13に収容され、これに原料ガス供給管
14および精製ガス抜出管15が導かれ、熱交換器12
を経由して吸着筒10の入口16および出口17にそれ
ぞれ接続されて精製系の1系列を構成している。吸着筒
10の出口17からガスの上流側に寄った位置に測定点
18が設けられていも。測定点18はサンプル管20に
よって不純ガスの検知装置Aの触媒管8r−接続され、
精製ガス抜出管15から分岐したサンプル管19は触媒
管7に接続されている。サンプル管19から分岐したバ
イパス管21はサンプル管20とともに触媒管8に導か
れている。またサンプル管19および2゜ならびにバイ
パス管21にはそれぞれ弁22aおよび22bならびに
22cが介在している。
Regarding A, the thermal conductivity detector 1 is connected to the control side 2 and the sample side 3.
It consists of a detection section 4 having two gas flow paths, a recorder 5 and an alarm 6. The gas inlet side of the detection section 4 is filled with a hydrogenation catalyst, and two catalyst tubes 7 and 8 are provided together with a heating furnace 9 containing the hydrogenation catalyst. The catalyst tubes 7 and 8 are connected to the control side 2 and sample side 3 of the thermal conductivity detector 1 via constant flow valves 2' and 3', respectively, to form an impure gas detection device A, and are arranged in a gas purification device B. It is set up. On the other hand, in the gas purification apparatus B, a refrigerant tank 11 containing an adsorption cylinder 10 filled with adsorbent is housed together with a heat exchanger 12 in a vacuum insulation container 13, and a raw gas supply pipe 14 and a purified gas extraction pipe 15 are connected to the refrigerant tank 11. is introduced into the heat exchanger 12
are respectively connected to the inlet 16 and outlet 17 of the adsorption cylinder 10 via the above, thereby forming one line of the purification system. Even if the measurement point 18 is provided at a position closer to the gas upstream side from the outlet 17 of the adsorption cylinder 10. The measurement point 18 is connected to the catalyst pipe 8r of the impurity gas detection device A by the sample pipe 20,
A sample tube 19 branched from the purified gas extraction tube 15 is connected to the catalyst tube 7. A bypass pipe 21 branched from the sample pipe 19 is led to the catalyst pipe 8 together with the sample pipe 20. Further, valves 22a, 22b and 22c are interposed in the sample tubes 19 and 2.degree. and the bypass tube 21, respectively.

水素ガスの精製は冷媒槽11に液体窒素が満たされ、吸
着筒10が極低温に冷却された状態で原料ガス供給管1
4から水素ガスが供給される。
To purify hydrogen gas, the refrigerant tank 11 is filled with liquid nitrogen and the adsorption column 10 is cooled to an extremely low temperature, and then the raw material gas supply pipe 1 is
Hydrogen gas is supplied from 4.

この水素ガスは熱交換器12で予冷され、冷媒槽11内
の入口16から吸着筒10に入り、ここで不純ガスが吸
着除去されて精製されろう精製された水素ガスは出口1
7および熱交換器12を経由し、精製ガス抜出管15か
ら抜き出される。
This hydrogen gas is pre-cooled in the heat exchanger 12 and enters the adsorption column 10 from the inlet 16 in the refrigerant tank 11, where impurity gas is removed by adsorption and purified.The purified hydrogen gas is then purified at the outlet 16.
7 and the heat exchanger 12, and is extracted from the purified gas extraction pipe 15.

一方、不純ガスの検知装置Aには精製水素ガスおよび測
定ガスがそれぞれサンプル管19および20を経由して
流され、吸着筒10の測定点18における水素ガス(測
定ガス)中の不純ガスが精製水素ガスとの比較において
監視される。すなわち測定ガス中の不純ガスの検知は次
の操作によっておこなわれる。
On the other hand, purified hydrogen gas and measurement gas are passed through sample tubes 19 and 20, respectively, to the impure gas detection device A, and the impurity gas in the hydrogen gas (measurement gas) at the measurement point 18 of the adsorption column 10 is purified. Monitored in comparison to hydrogen gas. That is, detection of impure gas in the measurement gas is performed by the following operation.

最初にサンプル管19およびバイパス管21の弁22a
および22cを開き、所望により加熱炉9で触媒管7お
よび8を加熱しながら熱伝導度検出器1の対照側2およ
び試料側ろのそれぞれに精製水素ガスを流し、安定した
ときの電位差を基準にしてOmVとする。次にバイパス
管21の弁22cを閉じ、サンプル管20の弁22bを
開として試料@3を測定ガスに切替えこの状態で電位差
の監視を続ける。時間経過と共に不純ガスの咳着が進み
吸着帯が測定点18に達し測定ガス中に不純ガスが混入
するとこの時点で電位差の顕著な変化を生じ、不純ガス
が検知される。また、原料ガス中の不純ガス濃度が特に
低いときには、この電位差の変化が小さいので感度をあ
げる必要があるがそのときには検出器のドリフトによる
僅かな電位差変化が妨害して識別が困難となる。このた
め試料側乙に測定ガスと精製水素ガスとを交互に切替え
て流し、ドリフトを補正しながら切替前後の僅かな電位
差の変化を検出することによって微量の不純ガスの混入
を検知することができる。電位差の変化は記録計5、警
報器6などによって監視されるが、例えば警報器6の信
号で切替バルブなどを動作させることによってガス精製
装置の切替操作を自動的におこなうこともできる。
First, valve 22a of sample tube 19 and bypass tube 21
and 22c, and flow purified hydrogen gas through the control side 2 and sample side of the thermal conductivity detector 1, respectively, while heating the catalyst tubes 7 and 8 in the heating furnace 9 as required.The potential difference when stabilized is used as the reference. and OmV. Next, the valve 22c of the bypass pipe 21 is closed and the valve 22b of the sample pipe 20 is opened to switch the sample @3 to the measurement gas and continue monitoring the potential difference in this state. As time passes, the impure gas accumulates and the adsorption band reaches the measurement point 18, and when the impurity gas is mixed into the measurement gas, a significant change in potential difference occurs at this point, and the impure gas is detected. Furthermore, when the impurity gas concentration in the raw material gas is particularly low, the change in this potential difference is small, so it is necessary to increase the sensitivity, but in that case, the slight change in potential difference due to the drift of the detector interferes, making identification difficult. For this reason, by alternately switching the measurement gas and purified hydrogen gas to the sample side and detecting the slight change in potential difference before and after switching while correcting the drift, it is possible to detect the presence of a trace amount of impure gas. . Changes in the potential difference are monitored by a recorder 5, an alarm 6, etc., but the switching operation of the gas purification apparatus can also be performed automatically by operating a switching valve or the like using a signal from the alarm 6, for example.

〔発明の効果〕〔Effect of the invention〕

本発明によって深冷吸着ガス精製工程における水素ガス
の熱伝導度変化の影響を受けることなく、不純ガスの混
入を正確に検知することができる。また検知装置は小型
で比較的安価であり、精製装置に容易に配設することが
できるので、水素ガスの精製時の不純ガスの迅速な検知
に使用でき、吸着筒の破過が確実に予知できる。
According to the present invention, contamination of impure gas can be accurately detected without being affected by changes in thermal conductivity of hydrogen gas during the cryogenic adsorption gas purification process. In addition, the detection device is small and relatively inexpensive, and can be easily installed in purification equipment, so it can be used to quickly detect impurity gas during hydrogen gas purification, and it can reliably predict adsorption cylinder breakthrough. can.

さらに警報器よりの検知信号によって吸着筒の切替バル
ブなどを動作させることにより、精製 −装置の運転の
自動化も可能である。
Furthermore, the operation of the refining equipment can be automated by operating the switching valve of the adsorption cylinder based on the detection signal from the alarm.

〔実施例〕〔Example〕

実施例 1 第1図で示されたと同様な構成であるが、1簡の代りに
吸着剤として活性炭 2.5KFがそれぞれ充填された
筒(89,1〆X84.9〆X10X100(1本が接
続管によって直列に連結された吸着筒を有する深冷吸着
ガス精製装置により、約−196℃の極低温下、ガス流
量36 t 2 NrrL”/h rで精製中の水素ガ
スについて不純ガスの検知をおこなった。この原料水素
ガスおよび精製水素ガスの不純物をガスクロマトグラフ
で分析した結果は第1表の如くである。
Example 1 The structure is similar to that shown in Fig. 1, but instead of one tube, a cylinder (89,1〆X84.9〆X10X100) filled with activated carbon 2.5KF as an adsorbent (one tube is connected Impurity gas is detected in hydrogen gas being purified at a gas flow rate of 36 t 2 NrrL"/hr at an extremely low temperature of approximately -196°C using a cryogenic adsorption gas purification device having adsorption cylinders connected in series through tubes. The impurities in the raw hydrogen gas and purified hydrogen gas were analyzed by gas chromatography, and the results are shown in Table 1.

第1表 N2      25       0.01  以下
Q2    4     Q、[]2++Co    
10    0.03 ttCO220,02# CH490,03s 測定ガスを抜出すための測定点は吸着筒の上流側から6
筒目と7筒目(最下流側)とを接続した接続管部に設け
た。
Table 1 N2 25 0.01 Below Q2 4 Q, []2++Co
10 0.03 ttCO220,02# CH490,03s The measurement points for extracting the measurement gas are 6 from the upstream side of the adsorption cylinder.
It was provided in the connecting pipe section that connected the first tube and the seventh tube (the most downstream side).

最初に予備実験として、触媒管を使用せずす7プ2.管
を検出部〔■島津製作所製、TCD−7〕、記録計、警
報器を有する熱伝導度検出器に直接接続した場合につい
て熱伝導度を測定した。
First, as a preliminary experiment, we performed 7 pups without using a catalyst tube.2. Thermal conductivity was measured when the tube was directly connected to a thermal conductivity detector having a detection unit (TCD-7 manufactured by Shimadzu Corporation), a recorder, and an alarm.

先ず熱伝導度検出器の対照側および試料側のそれぞれに
精製水素ガスのみを30 声l/ minで流し、両者
間の電位差を0.OOmVに調節した。
First, purified hydrogen gas was flowed through each of the control side and the sample side of the thermal conductivity detector at a rate of 30 l/min, and the potential difference between the two was set to 0. Adjusted to OOmV.

次に試料側を測定ガスに切替えたところ測定ガス中に不
純ガスが混入していないにもか〜わらず約0.24mV
の電位差が現れ、この電位差はto 、04mVli度
の巾で振れを生ずるという現象が観察された。この結果
を第2図に示す。また吸着筒への原料ガス供給速度を増
加させたり(第2図a点)、減少させたり(第2図す点
)すると、これに応じて電位差も大巾に変化し測定ガス
中に不純ガスが混入して来ても識別が困難であることを
示した。
Next, when I switched the sample side to the measurement gas, it was about 0.24 mV even though there was no impurity gas mixed in the measurement gas.
A phenomenon was observed in which a potential difference appeared and this potential difference caused fluctuations in a width of 04 mVli degrees. The results are shown in FIG. In addition, when the raw material gas supply rate to the adsorption cylinder is increased (point a in Figure 2) or decreased (point in Figure 2), the potential difference changes drastically, causing impurity gas to be present in the measurement gas. It has been shown that it is difficult to identify even if it is mixed in.

次にフィル状のステンレスチューブ(3$X2000m
)に水素化触媒をそれぞれ1411!7充填した触媒管
2本を加熱炉に収納した状態で前記の熱伝導度検出器の
対照側および試料側にそれぞれ接続し、本発明の不純ガ
スの測定装置とし、これを深冷吸着ガス精製装置に配設
し、触媒管をそれぞれサンプル管に接続した。水素化触
媒としては第2表に示したものを用い、それぞれの触媒
について予備実験でおこなったと同様な条件で、触媒管
の加熱はおこなわず、常温(25℃)で熱伝導度差を監
視した。
Next, fill stainless steel tube (3$ x 2000m
), each filled with hydrogenation catalyst (1411!7), is housed in a heating furnace and connected to the control side and the sample side of the thermal conductivity detector, respectively, to produce an impurity gas measuring device of the present invention. This was placed in a cryogenic adsorption gas purification device, and the catalyst tubes were connected to each sample tube. The hydrogenation catalysts shown in Table 2 were used, and the difference in thermal conductivity was monitored at room temperature (25°C) without heating the catalyst tube under the same conditions as in the preliminary experiment for each catalyst. .

すなわち、対照側および試料側に精製水素ガスを流して
両者間の電位差をO,OOmVに0点調整した後、試料
側を測定ガスに切替えた。
That is, after flowing purified hydrogen gas into the control side and the sample side to zero-adjust the potential difference between the two to O, OOmV, the sample side was switched to the measurement gas.

その結果は第2図の如くであり、触媒管にいずれの水素
化触媒を充填した場合についても測定ガス中に不純ガス
がない限り、電位差は0.00mN’であり、また、予
備実験と同様に原料ガス供給速度を増加させたり(第2
図牟点)減少させたり(第2図す点)しても電位差は生
じなかった。さらに触媒管にニッケル触媒を充填した場
合について監視を続けたところ、水素ガスの精製を開始
してから842時間後にそれまで0゜00mVであった
電位差が0.06mVまで上昇した(第2図C点)。こ
の時点で測定ガスをガスクロマトグラフで分析した結果
12 ppmの窒素が検出され、吸着筒の吸着帯が測定
点に達したことが確認された。またこの不純ガスが混入
する状部で異る種類の水素化触媒を充填した触媒管に取
替えて電位差を測定したところ、いずれもO,[]66
mの電位差を示し、不純ガスの混入を検知しうろことが
確認された。その結果は第2表の如くである。
The results are shown in Figure 2, and no matter which hydrogenation catalyst is filled in the catalyst tube, as long as there is no impurity gas in the measurement gas, the potential difference is 0.00 mN', which is the same as in the preliminary experiment. increase the raw material gas supply rate (second
Even if the voltage was decreased (point in Figure 2), no potential difference was generated. Furthermore, when we continued to monitor the case in which the catalyst tube was filled with nickel catalyst, we found that the potential difference, which had been 0°00 mV, rose to 0.06 mV 842 hours after the start of hydrogen gas purification (Fig. 2C). point). At this point, the gas to be measured was analyzed using a gas chromatograph, and 12 ppm of nitrogen was detected, confirming that the adsorption zone of the adsorption column had reached the measurement point. In addition, when we replaced the catalyst tube filled with a different type of hydrogenation catalyst in the area where this impure gas was mixed and measured the potential difference, the results showed that the potential difference was O, []66
It was confirmed that there was a potential difference of m, indicating that the incorporation of impure gas could be detected. The results are shown in Table 2.

精製装置。Purification equipment.

第2表 不純ガスのないとき 測定点の破鍋後 ニッケル触媒      o、oo        o
、o6コバルトn         o、00    
   0.06鋼−亜鉛・クロム触媒  o、oo  
     o、o6クロム・活性炭触媒   o、oo
       o、o6クロミナ・アルミナ触媒 o、
oo        o、o6白金・アルミナ触媒  
 0.(100,06
Table 2 When there is no impure gas Nickel catalyst after the pot breaks at the measuring point o, oo o
, o6 cobalt no, 00
0.06 steel-zinc/chromium catalyst o, oo
o, o6 chromium/activated carbon catalyst o, oo
o, o6 chromina/alumina catalyst o,
oo o, o6 platinum/alumina catalyst
0. (100,06

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の不純ガスの検知装置およびこれが深冷
吸着ガス精製装置に配設されたフローシートであり、第
2図は熱伝導度検出器に現れる電位差曲線を示した図で
ある。図の各番号は以下の通りである。 1 熱伝導度検出器  2 対照側  3 試料側  
7および8 触媒管  1o 吸着筒18 測定点  
19.20および21 サンプル管  A 不純ガス検
知装置  B ガス特許出願人 日本バイオニクス株式
会社代表者高崎文夫
FIG. 1 shows the impure gas detection device of the present invention and a flow sheet in which the same is installed in a cryogenic adsorption gas purification device, and FIG. 2 shows a potential difference curve appearing in a thermal conductivity detector. The numbers in the figure are as follows. 1 Thermal conductivity detector 2 Control side 3 Sample side
7 and 8 Catalyst tube 1o Adsorption column 18 Measurement point
19.20 and 21 Sample tube A Impure gas detection device B Gas patent applicant Fumio Takasaki, representative of Nippon Bionics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)深冷吸着ガス精製装置で精製中の水素ガスに含有
される不純ガスの検知方法において、精製水素ガスおよ
び当該装置内の吸着筒の測定点から導かれた測定ガスを
それぞれ遷移金属元素を含有する水素化触媒と接触させ
た後、両者間の熱伝導度差を検出することによつて測定
ガス中の不純ガスを検知することを特徴とする不純ガス
の検知方法。
(1) In a method for detecting impurity gases contained in hydrogen gas being purified in a cryogenic adsorption gas purification device, the purified hydrogen gas and the measurement gas derived from the measurement point of the adsorption column in the device are each detected as a transition metal element. 1. A method for detecting an impure gas, which comprises: detecting an impure gas in a measurement gas by bringing it into contact with a hydrogenation catalyst containing a hydrogenation catalyst, and then detecting a difference in thermal conductivity between the two.
(2)深冷吸着ガス精製装置で精製中の水素ガスに含有
される不純ガスの検知装置であつて、該深冷吸着ガス精
製装置に配設され、対照側および試料側のガス流路を有
する熱伝導度検出器と、該対照側および試料側のガス入
口のそれぞれに1端が接続され、かつ、内部に遷移金属
元素を含有する水素化触媒が充填された触媒管とを備え
てなり、該触媒管の他端のそれぞれは精製水素ガスおよ
び精製装置内の吸着筒の測定点から導かれた測定ガスの
サンプル管に接続されたことを特徴とする不純ガスの検
知装置。
(2) A detection device for impurity gas contained in hydrogen gas being purified in a cryogenic adsorption gas purification device, which is installed in the cryogenic adsorption gas purification device and connects the gas flow path on the control side and the sample side. and a catalyst tube, one end of which is connected to each of the gas inlets on the control side and the sample side, and the inside of which is filled with a hydrogenation catalyst containing a transition metal element. . An impure gas detection device, wherein the other ends of the catalyst tubes are connected to sample tubes for purified hydrogen gas and a measurement gas led from a measurement point of an adsorption column in a purification device.
JP62024763A 1987-02-06 1987-02-06 Impurity gas detection method and device Expired - Fee Related JPH0833364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62024763A JPH0833364B2 (en) 1987-02-06 1987-02-06 Impurity gas detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62024763A JPH0833364B2 (en) 1987-02-06 1987-02-06 Impurity gas detection method and device

Publications (2)

Publication Number Publication Date
JPS63193055A true JPS63193055A (en) 1988-08-10
JPH0833364B2 JPH0833364B2 (en) 1996-03-29

Family

ID=12147189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62024763A Expired - Fee Related JPH0833364B2 (en) 1987-02-06 1987-02-06 Impurity gas detection method and device

Country Status (1)

Country Link
JP (1) JPH0833364B2 (en)

Also Published As

Publication number Publication date
JPH0833364B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US8017405B2 (en) Gas analysis method
US20090291028A1 (en) Catalytic Alloy Hydrogen Sensor Apparatus and Process
US5055260A (en) Reactor analysis system
KR19990023535A (en) Ultra High Purity Gas Analysis Method and Apparatus Using Atmospheric Pressure Ionization Mass Spectroscopy
US3120749A (en) Gas chromatography
JPS63193055A (en) Method and apparatus for detecting impurity gas
US20090238753A1 (en) Catalytic Alloy Hydrogen Sensor Apparatus and Process
CN101251517B (en) Method and equipment for chromatographic analysis minim argon, nitrogen impurity in oxygen
JPH0311805B2 (en)
JPS63193056A (en) Method and apparatus for detecting impure gas
JPS63228052A (en) Detecting method for impure gas
US20080153174A1 (en) Catalytic alloy hydrogen sensor apparatus and process
US3167947A (en) Gas detector and analyzer
JP2010512995A (en) Catalyst alloy hydrogen sensor apparatus and method
JPS61130864A (en) Detection of impure gas
JP2741778B2 (en) Gas purity measuring method and apparatus
KR100228749B1 (en) Method for analysing catalyst using multi-functional temperature programmed apparatus and its method
JP2007263678A (en) Method and device for analyzing trace impurity in hydride gas
JPH04291151A (en) Analysis method of carbon monoxide and/or carbon dioxide
SU1755179A1 (en) Inert gas microblend analysis chromatograph
US20080154433A1 (en) Catalytic Alloy Hydrogen Sensor Apparatus and Process
SU1068804A1 (en) Chromatograph for analysing micro impurities in gases
SU1327937A1 (en) Apparatus for concentrating and separating gaseous admixtures from oxygen
SU1761231A1 (en) Method and device for micro-impurities of permanent and rare gases detecting in oxygen
SU171660A1 (en) METHOD FOR DETERMINING MICROPRIMES IN HYDROGEN

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees