JPS631929B2 - - Google Patents

Info

Publication number
JPS631929B2
JPS631929B2 JP14409479A JP14409479A JPS631929B2 JP S631929 B2 JPS631929 B2 JP S631929B2 JP 14409479 A JP14409479 A JP 14409479A JP 14409479 A JP14409479 A JP 14409479A JP S631929 B2 JPS631929 B2 JP S631929B2
Authority
JP
Japan
Prior art keywords
crude
biphenol
exchange resin
biphenols
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14409479A
Other languages
Japanese (ja)
Other versions
JPS5668634A (en
Inventor
Teruo Matsuda
Yasuyuki Kato
Tetsuo Murata
Hiroaki Sugimoto
Makoto Hanabatake
Masatoshi Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP14409479A priority Critical patent/JPS5668634A/en
Publication of JPS5668634A publication Critical patent/JPS5668634A/en
Publication of JPS631929B2 publication Critical patent/JPS631929B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は各種金属化合物またはイオウ酸化物を
不純物として含む粗製P・P′−ビフエノール類
(以下単にビフエノールと略示する。)の精製法に
関する。 ビフエノールは近年エンジニアリングプラスチ
ツクの出発原料として注目され、特に優れた耐熱
性を有する樹脂であることから各方面で開発が進
められつつある。 しかしながらポリマーの物性が十分に生かせる
だけの純度の高いビフエノールの精製品を得る技
術は未だ開発されていない。 ビフエノールは一般に高融点、高沸点物質であ
るため、蒸留操作による精製は不可能である。必
然的に再結晶法による精製が期待されるところで
あるが、ビフエノールは溶剤に比較的溶け難いた
めに、溶剤の選択が難しい。またビフエノールは
単に多量の溶媒に溶解し、冷却して結晶を取り出
す通常の再結晶方法では、重合級の精製品は得が
たい。 多量の溶媒を用いて再結晶をくり返し実施する
方法はある程度有効かもしれないが、かかる方法
は大きな設備と多大の労力を要し、経済的精製法
ではない。 一方、ビフエノールの製法としてこれまでいく
つかの方法が提案されてきた。 例えば、ビフエニルをスルホン化した後、中
和してビフエニルのジスルホン酸ソーダ塩とし、
次いでアルカリフユージヨン下に反応してビフエ
ノールのナトリウム塩とし、これを中和してビフ
エノールとする方法(以下A法と略示する)、
2・6−ジターシヤリーブチルフエノールとの反
応により、テトラターシヤリーブチルジフエノー
ルとし、最後にアルミニウムアルコキシド触媒の
存在下に脱アルキルしてビフエノールとする方法
(以下B法と略示する)、ジハロゲン化ビフエニ
ルをアルカリにより処理してビフエノールのナト
リウム塩とし、これを中和してビフエノールを得
る方法(以下C法と略示する)、パラクロルフ
エノールとフエノールのフリーデルクラフト反応
によりビフエノールを得る方法(以下D法と略示
する)等があげられる。 これら各種製法から得られるいずれの製法のジ
フエノール中にも、アルカリ金属化合物、アルカ
リ土類金属化合物、アルミニウム族化合物または
イオウ酸化物の一つまたは二つ以上が不純物とし
て含まれており、これらの不純物は通常の再結晶
方法では、分離除去が著しく困難であることが明
らかとなつた。 本発明者らは、ビフエノールに含まれるこれら
不純物を除去し、重合級の精製ビフエノールを得
る方法につき鋭意検討を進めた結果、沸点100℃
以下の有機溶剤、中でもケトン類、アルコール類
またはエーテル類がジフエノールを比較的よく溶
解することを見い出し、更に該溶媒の使用によ
り、溶解し難いアルカリ金属化合物、アルカリ土
類金属化合物、アルミニウム族化合物またはイオ
ウ酸化物等の不純物の大部分がビフエノール溶液
から沈殿分離し、これら沈殿物を含み且つビフエ
ノールを溶解した溶液を活性炭処理し、次いで該
液をイオン交換樹脂と接触させることにより、重
合級の精製ビフエノールが得られることを見い出
した。 即ち、本発明は一般式 〔式中、Rは水素またはアルキル基を示す。〕 で表わされる粗製P・P′−ビフエノール類を沸点
100℃以下の有機溶剤に溶解し、得られる溶液を
イオン交換樹脂により処理し、次いで晶析するこ
とからなる粗製P・P′−ビフエノールの精製方法
である。 本発明に用いられる原料の粗製ビフエノール
は、特に限定されるものではないが、例えば前述
したA〜D法等で得られるアルカリ金属化合物、
アルカリ土類金属化合物、アルミニウム族化合物
またはイオウ酸化物等の不純物を含有する粗製ビ
フエノールである。 ここで示しているアルカリ金属化合物、アルカ
リ土類金属化合物またはアルミニウム族化合物と
は、例えばこれら金属の水酸化物、酸化物、無機
酸塩、有機酸塩であり、またイオウ酸化物とは、
硫酸、スルホン酸またはこれらの塩である。 本発明において用いる有機溶剤は、沸点100℃
以下を有し、且つビフエノールを十分に溶解する
と共に、アルカリ金属化合物、アルカリ土類金属
化合物、アルミニウム族化合物またはイオウ酸化
物等の不純物が該溶剤に溶解しにくいこと、また
晶析する際に結晶の成長を促進し、該不純物を吸
蔵し難いことが必要である。かかる条件を具備す
る有機溶剤としては、具体的にはケトン類、アル
コール類およびエーテル類をあげることができ、
ケトン類としては、例えばメチルエチルケトン、
アセトン等があげられ、アルコール類としては、
例えばメタノール、エタノール、イソプロパノー
ルがあげられ、エーテル類としては、例えばテト
ラヒドロフランがあげられる。 これら溶剤の使用量は、ビフエノールが溶解す
る量以上を用いれば十分である。 本発明において用いる活性炭は粒状、粉状の別
を問わない。 活性炭処理の目的は着色性不純物の除去と有機
溶剤に溶解し難い不純物を効率よく分離除去する
ことにある。 本発明における活性炭の使用量は、ビフエノー
ルに対し0.01〜50重量%が好ましい。 活性炭処理の温度は室温以上、溶媒の沸点以下
が好ましい。 活性炭処理の方法としては、粗製ビフエノール
を有機溶剤に溶解すると同時に活性炭を投入する
方法を採つてもよい。また粒状活性炭を充填した
吸着塔を用いてもよく、本発明はその処理方法を
限定するものでない。 もちろん粗製ビフエノールの着色分が少ない場
合には、活性炭を使用せずに次の操作に移つても
よい。 次に不溶性の不純物を含有する粗製ビフエノー
ル溶液またはこれらの活性炭処理溶液は通常の方
法により、過抵抗の小さい状態で固液分離がで
きる。 本発明において粗製ビフエノールの有機溶剤溶
液または該溶液の活性炭処理後の液にイオン交
換樹脂を加え、撹拌処理し、その後該樹脂を過
する操作を行うが、勿論イオン交換樹脂の充填層
を設け、この充填層に液を流通してもよい。 イオン交換樹脂は強酸性カチオン交換樹脂、弱
酸性カチオン交換樹脂、弱塩基性アニオン交換樹
脂、弱塩基性アニオン交換樹脂等の市販品を用い
ることができる。 イオン交換樹脂処理により不純物が除去される
機構は、一般には溶液中にカチオンまたはアニオ
ンがイオン交換される作用機構が考えられるが、
本発明においては、弱塩基性のアニオン交換樹脂
でも十分効果を発揮していることからすると、作
用機構は複雑であり簡単に論ずることができな
い。 本発明において使用するイオン交換樹脂量は多
い程良い効果をもたらすが、少量でも十分に効果
を発揮しており、一般に使用量はビフエノールに
対して0.001重量%以上が好ましく、特に0.1%以
上が好ましい。 この使用量はイオン交換樹脂を充填層として使
用する場合にも適用される。 また、本発明においてはイオン交換性の樹脂を
用いるが、その予想される複雑な作用機構と効果
から明らかなようにイオン交換液でも良い。 イオン交換液を用いる場合には、該交換液が十
分に溶解し、且つビフエノールも十分に溶解する
ことを確認のうえで使用することが好ましい。 以下に実施例をあげて本発明を具体的に説明す
るが、本発明はこれら実施例により限定されるも
のではない。 なお、実施例中に示した%は特記しない限り重
量%である。 実施例 1 ジフエニルのアルカリフユージヨン法により得
た粗4・4′−ジハイドロオキシジフエニル170g
を1500gのメタノールに溶解し、これに活性炭15
gを加え、50〜60℃で3時間撹拌した。この溶液
を吸引過し、得られた液にアンバーリスト15
およびアンバーリストA−21のイオン交換樹脂
(米国、ローム・アンド・ハース社製)を各々10
gずつ加え、50〜60℃で1時間撹拌し、その後イ
オン交換樹脂を吸引過により分離した。得られ
液を濃縮、晶析分離することにより、4・4′−
ジハイドロオキシジフエニル150gを得た。 この結果、収率は80.6モル%であり、生成物の
純度は96%であり、Naは24ppmであつた。 このビフエノールを原料にして得たポリエステ
ルは、着色は殆んど認められず、また極めて高い
熱安定性を示した。 実施例 2 実施例1と同様の条件で得られた粗4・4′−ジ
ハイドロオキシビフエニル2KgをSUS304製40
撹拌機付反応器に仕込み、このうえに17Kgのメタ
ノールを入れ、4・4′−ジハイドロオキシビフエ
ニルを溶解させた。この溶液に活性炭170gを加
え、50〜60℃で3時間撹拌した。 その後、この溶液を吸引過し、活性炭を分離
した後、液にアンバーリスト15およびアンバー
リスト21を各々37g加え、50〜60℃で1時間撹拌
した。 その後、この溶液を吸引過し、イオン交換樹
脂を分離し、液を約7Kg迄濃縮し、この濃縮液
を40℃まで冷却し、結晶を析出させた。 得られた結晶を吸引過で分離した後、60〜70
℃で20時間乾燥し、4・4′−ジハイドロオキシビ
フエニル1.3Kgを得た。生成物の純度は99.0%で
あり、Naは6ppmであつた。 このビフエノールを原料にして得たポリエステ
ルは、着色が認められず、また極めて高い熱安定
性を示した。 実施例 3〜5 実施例1においてメタノールのかわりにアセト
ン、メチルエチルケトン、テトラヒドロフラン等
を溶媒として用いた以外は実施例1と全く同様の
操作を行つて第1表に示す結果を得た。
The present invention relates to a method for purifying crude P·P'-biphenols (hereinafter simply referred to as biphenols) containing various metal compounds or sulfur oxides as impurities. Biphenol has recently attracted attention as a starting material for engineering plastics, and as it is a resin with particularly excellent heat resistance, its development is progressing in various fields. However, a technique for obtaining a purified product of biphenol with a high enough purity to fully utilize the physical properties of the polymer has not yet been developed. Since biphenol is generally a high melting point and high boiling point substance, it is impossible to purify it by distillation. Purification by recrystallization is naturally expected, but since biphenol is relatively insoluble in solvents, it is difficult to select a solvent. Moreover, it is difficult to obtain a purified product of polymeric grade by the usual recrystallization method in which biphenol is simply dissolved in a large amount of solvent and cooled to take out the crystals. Although a method of repeatedly carrying out recrystallization using a large amount of solvent may be effective to some extent, such a method requires large equipment and a great deal of labor, and is not an economical purification method. On the other hand, several methods have been proposed so far for producing biphenol. For example, after biphenyl is sulfonated, it is neutralized to form biphenyl disulfonic acid sodium salt,
Next, a method of reacting under alkaline fusion to form a sodium salt of biphenol and neutralizing it to form biphenol (hereinafter abbreviated as method A),
A method in which tetratert-butyl diphenol is produced by reaction with 2,6-ditertiary butylphenol, and finally dealkylated to produce biphenol in the presence of an aluminum alkoxide catalyst (hereinafter abbreviated as method B), dihalogen A method for obtaining biphenol by treating biphenyl with an alkali to obtain a sodium salt of biphenol and neutralizing this (hereinafter abbreviated as method C), a method for obtaining biphenol by Friedel-Crafts reaction of parachlorophenol and phenol ( (hereinafter abbreviated as method D), etc. Diphenols obtained from these various manufacturing methods contain one or more of alkali metal compounds, alkaline earth metal compounds, aluminum group compounds, or sulfur oxides as impurities, and these impurities It has become clear that it is extremely difficult to separate and remove it using normal recrystallization methods. The present inventors have conducted intensive studies on a method to remove these impurities contained in biphenol and obtain purified biphenol of polymerization grade.
It has been found that the following organic solvents, especially ketones, alcohols, or ethers, dissolve diphenol relatively well, and furthermore, by using these solvents, it is possible to dissolve diphenols that are difficult to dissolve, such as alkali metal compounds, alkaline earth metal compounds, aluminum group compounds, or Most impurities such as sulfur oxides are precipitated and separated from the biphenol solution, and the solution containing these precipitates and in which biphenol is dissolved is treated with activated carbon, and then the solution is brought into contact with an ion exchange resin to purify the polymer grade. It was discovered that biphenol can be obtained. That is, the present invention is based on the general formula [In the formula, R represents hydrogen or an alkyl group. ] The boiling point of crude P・P'-biphenols expressed as
This is a method for purifying crude P·P'-biphenol, which consists of dissolving it in an organic solvent at 100°C or lower, treating the resulting solution with an ion exchange resin, and then crystallizing it. The raw material crude biphenol used in the present invention is not particularly limited, but includes, for example, alkali metal compounds obtained by the above-mentioned methods A to D, etc.
It is a crude biphenol containing impurities such as alkaline earth metal compounds, aluminum group compounds, or sulfur oxides. The alkali metal compounds, alkaline earth metal compounds, or aluminum group compounds shown here are, for example, hydroxides, oxides, inorganic acid salts, and organic acid salts of these metals, and the sulfur oxides are:
Sulfuric acid, sulfonic acid or salts thereof. The organic solvent used in the present invention has a boiling point of 100°C.
It has the following and sufficiently dissolves biphenol, and impurities such as alkali metal compounds, alkaline earth metal compounds, aluminum group compounds or sulfur oxides are difficult to dissolve in the solvent, and when crystallizing, It is necessary to promote the growth of impurities and to be difficult to occlude the impurities. Examples of organic solvents that meet these conditions include ketones, alcohols, and ethers.
Examples of ketones include methyl ethyl ketone,
Examples of alcohols include acetone, etc.
Examples include methanol, ethanol, and isopropanol, and examples of ethers include tetrahydrofuran. It is sufficient that the amount of these solvents used is at least the amount that dissolves the biphenol. The activated carbon used in the present invention may be in the form of granules or powder. The purpose of activated carbon treatment is to remove colored impurities and to efficiently separate and remove impurities that are difficult to dissolve in organic solvents. The amount of activated carbon used in the present invention is preferably 0.01 to 50% by weight based on biphenol. The temperature of the activated carbon treatment is preferably above room temperature and below the boiling point of the solvent. As a method of activated carbon treatment, a method may be adopted in which crude biphenol is dissolved in an organic solvent and activated carbon is added at the same time. Further, an adsorption tower filled with granular activated carbon may be used, and the present invention does not limit the treatment method. Of course, if the colored content of the crude biphenol is small, the next operation may be carried out without using activated carbon. Next, the crude biphenol solution containing insoluble impurities or the activated carbon-treated solution thereof can be subjected to solid-liquid separation with a small excess resistance by a conventional method. In the present invention, an ion exchange resin is added to a solution of crude biphenol in an organic solvent or a solution of the solution treated with activated carbon, stirred, and then the resin is filtered.Of course, a packed bed of ion exchange resin is provided, A liquid may be passed through this packed bed. As the ion exchange resin, commercially available products such as strongly acidic cation exchange resins, weakly acidic cation exchange resins, weakly basic anion exchange resins, and weakly basic anion exchange resins can be used. The mechanism by which impurities are removed by ion-exchange resin treatment is generally considered to be the mechanism in which cations or anions are ion-exchanged in a solution.
In the present invention, since even a weakly basic anion exchange resin is sufficiently effective, the mechanism of action is complex and cannot be easily discussed. The larger the amount of ion exchange resin used in the present invention, the better the effect, but even a small amount is sufficient. Generally, the amount used is preferably 0.001% by weight or more based on biphenol, and particularly preferably 0.1% or more. . This usage amount also applies when using an ion exchange resin as a packed bed. Further, although an ion exchange resin is used in the present invention, an ion exchange liquid may also be used, as is clear from its expected complicated mechanism of action and effects. When using an ion exchange solution, it is preferable to use it after confirming that the exchange solution is sufficiently dissolved and that biphenol is also sufficiently dissolved. EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples. Note that the percentages shown in the examples are percentages by weight unless otherwise specified. Example 1 170 g of crude 4,4'-dihydroxydiphenyl obtained by diphenyl alkaline fusion method
Dissolved in 1500g of methanol and added 15g of activated carbon to this.
g was added thereto, and the mixture was stirred at 50 to 60°C for 3 hours. Aspirate this solution and add Amberlyst 15 to the resulting solution.
and Amberlyst A-21 ion exchange resin (manufactured by Rohm and Haas, USA), 10 each.
The ion exchange resin was separated by suction filtration. By concentrating and crystallizing the obtained liquid, 4・4'-
150 g of dihydroxydiphenyl was obtained. As a result, the yield was 80.6 mol%, the purity of the product was 96%, and the Na content was 24 ppm. The polyester obtained using this biphenol as a raw material exhibited almost no coloration and exhibited extremely high thermal stability. Example 2 2 kg of crude 4,4'-dihydroxybiphenyl obtained under the same conditions as Example 1 was added to a
The mixture was placed in a reactor equipped with a stirrer, and 17 kg of methanol was added thereto to dissolve 4,4'-dihydroxybiphenyl. 170 g of activated carbon was added to this solution and stirred at 50 to 60°C for 3 hours. Thereafter, this solution was filtered under suction to separate the activated carbon, and then 37 g each of Amberlyst 15 and Amberlyst 21 were added to the liquid, and the mixture was stirred at 50 to 60°C for 1 hour. Thereafter, this solution was filtered under suction to separate the ion exchange resin, the liquid was concentrated to about 7 kg, and the concentrated liquid was cooled to 40°C to precipitate crystals. After separating the obtained crystals by suction filtration, 60-70
After drying at ℃ for 20 hours, 1.3 kg of 4,4'-dihydroxybiphenyl was obtained. The purity of the product was 99.0%, with 6 ppm Na. The polyester obtained using this biphenol as a raw material exhibited no coloration and exhibited extremely high thermal stability. Examples 3 to 5 The results shown in Table 1 were obtained by carrying out the same operations as in Example 1, except that acetone, methyl ethyl ketone, tetrahydrofuran, etc. were used as the solvent instead of methanol.

【表】 これらのビフエノールを原料にして得たポリエ
ステルはいずれも着色が殆んど認められず、また
極めて高い熱安定性を示した。 実施例 6〜8 実施例1においてジフエニルのアルカリフユー
ジヨン法により得た粗4・4′−ジハイドロキシジ
フエニルのかわりに、2・6−ジ−tert−ブチル
フエノールから得た4・4′−ジハイドロキシジフ
エニル(B法)、ジブロムビフエニルから得た
4・4′−ジハイドロキシジフエニル(C法)、p
−クロルフエノールから得た4・4′−ジハイドロ
キシジフエニル(D法)を用いた以外は実施例1
と全く同様にして精製を行つて、第2表に示す結
果を得た。
[Table] All of the polyesters obtained using these biphenols showed almost no coloration and exhibited extremely high thermal stability. Examples 6 to 8 Instead of the crude 4,4'-dihydroxydiphenyl obtained by the alkaline fusion method of diphenyl in Example 1, 4,4' obtained from 2,6-di-tert-butylphenol was used. -dihydroxydiphenyl (method B), 4,4'-dihydroxydiphenyl obtained from dibromubiphenyl (method C), p
- Example 1 except that 4,4'-dihydroxydiphenyl obtained from chlorphenol (method D) was used.
Purification was carried out in exactly the same manner as above, and the results shown in Table 2 were obtained.

【表】 これらのジフエノールを原料にして得たポリエ
ステルはいずれも着色が殆んど認められず、また
極めて高い熱安定性を示した。 実施例 9 実施例1において粗4・4′−ジハイドロキシジ
フエニルのかわりに3・5・3′・5′−テトラ−
tert−ブチル−4・4′−ジハイドロキシジフエニ
ルを用いた以外は、実施例1と全く同様に精製を
行うことにより、収率84.1%で精3・5・3′・
5′−テトラ−tert−ブチル−4・4′−ジハイドロ
キシジフエニルを得た。生成物の純度は96%であ
り、Alは16ppmであつた。 実施例 10、11 実施例1においてイオン交換樹脂としてアンバ
ーリスト15およびアンバーリストA−21をそれぞ
れ単独に用いた場合の結果を第3表に示す。
[Table] All of the polyesters obtained using these diphenols showed almost no coloration and exhibited extremely high thermal stability. Example 9 In Example 1, 3,5,3',5'-tetra- was used instead of crude 4,4'-dihydroxydiphenyl.
Purification was carried out in exactly the same manner as in Example 1, except for using tert-butyl-4,4'-dihydroxydiphenyl, to obtain purified 3,5,3', with a yield of 84.1%.
5'-tetra-tert-butyl-4,4'-dihydroxydiphenyl was obtained. The purity of the product was 96% with 16 ppm Al. Examples 10 and 11 Table 3 shows the results when Amberlyst 15 and Amberlyst A-21 were used alone as the ion exchange resins in Example 1.

【表】 これらのジフエノールを原料にして得たポリエ
ステルはいずれも着色が殆んど認められず、極め
て高い熱安定性を示した。
[Table] The polyesters obtained using these diphenols as raw materials showed almost no coloration and exhibited extremely high thermal stability.

Claims (1)

【特許請求の範囲】 1 一般式 〔式中、Rは水素またはアルキル基を示す。〕 で表わされる粗製P・P′−ビフエノール類を沸点
100℃以下の有機溶剤に溶解し、得られる溶液を
イオン交換樹脂により処理し、次いで晶析するこ
とを特徴とする粗製P・P′−ビフエノール類の精
製方法。 2 粗製P・P′−ビフエノール類の有機溶剤溶液
を活性炭で処理する特許請求の範囲第1項記載の
方法。 3 粗製P・P′−ビフエノール類がアルカリ金属
化合物、アルカリ土類金属化合物、アルミニウム
族化合物またはイオウ酸化物の一種または二種以
上を不純物として含む粗製P・P−ビフエノール
類である特許請求の範囲第1項記載の方法。 4 有機溶媒がケトン類、アルコール類、エーテ
ル類から選ばれる少なくとも一種である特許請求
の範囲第1項記載の方法。 5 イオウ酸化物がスルホン酸、硫酸またはこれ
らの塩である特許請求の範囲第3項記載の方法。 6 イオン交換樹脂がカチオン交換樹脂、アニオ
ン交換樹脂またはその混合系からなる特許請求の
範囲第1項記載の方法。
[Claims] 1. General formula [In the formula, R represents hydrogen or an alkyl group. ] The boiling point of crude P・P'-biphenols expressed as
A method for purifying crude P·P'-biphenols, which comprises dissolving them in an organic solvent at 100°C or lower, treating the resulting solution with an ion exchange resin, and then crystallizing them. 2. The method according to claim 1, wherein a solution of crude P·P'-biphenols in an organic solvent is treated with activated carbon. 3 Claims in which the crude P/P'-biphenols are crude P/P'-biphenols containing as impurities one or more of alkali metal compounds, alkaline earth metal compounds, aluminum group compounds, or sulfur oxides. The method described in paragraph 1. 4. The method according to claim 1, wherein the organic solvent is at least one selected from ketones, alcohols, and ethers. 5. The method according to claim 3, wherein the sulfur oxide is sulfonic acid, sulfuric acid, or a salt thereof. 6. The method according to claim 1, wherein the ion exchange resin is a cation exchange resin, an anion exchange resin, or a mixture thereof.
JP14409479A 1979-11-06 1979-11-06 Purification of p,p'-biphenols Granted JPS5668634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14409479A JPS5668634A (en) 1979-11-06 1979-11-06 Purification of p,p'-biphenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14409479A JPS5668634A (en) 1979-11-06 1979-11-06 Purification of p,p'-biphenols

Publications (2)

Publication Number Publication Date
JPS5668634A JPS5668634A (en) 1981-06-09
JPS631929B2 true JPS631929B2 (en) 1988-01-14

Family

ID=15354064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14409479A Granted JPS5668634A (en) 1979-11-06 1979-11-06 Purification of p,p'-biphenols

Country Status (1)

Country Link
JP (1) JPS5668634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247432U (en) * 1988-09-28 1990-03-30

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2374784A1 (en) * 2010-04-07 2011-10-12 Bayer MaterialScience AG Purification of tris-hydroxyaryl connections
WO2017038964A1 (en) * 2015-09-04 2017-03-09 三菱瓦斯化学株式会社 Compound purification method
WO2022045270A1 (en) * 2020-08-27 2022-03-03 三菱瓦斯化学株式会社 Method for purifying compound or polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247432U (en) * 1988-09-28 1990-03-30

Also Published As

Publication number Publication date
JPS5668634A (en) 1981-06-09

Similar Documents

Publication Publication Date Title
TW515789B (en) Process for producing bisphenol A
US3242219A (en) Preparation of bisphenols
KR20060130169A (en) Production of bisphenol a with a reduced isomer formation
JPH0616584A (en) Preparation of bisphenol a
JP2628705B2 (en) Ion exchanger modified with thiazolidine-2-thione
EP0016077A4 (en) Process for recovering 2,2-bis(4-hydroxyphenyl) propane from an adduct of 2,2-bis(4-hydroxyphenyl) propane and phenol.
EP0109033A2 (en) Purification of bisphenol-A
JPS631929B2 (en)
JP2022103564A (en) Method for producing bisphenol a, and method for producing polycarbonate resin
JPS631928B2 (en)
EP3558916B1 (en) Method for manufacturing of bisphenol a
JP4012322B2 (en) Method for producing bisphenol A
JP4472923B2 (en) Process for producing 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
WO2022145366A1 (en) Method for producing bisphenol a and method for producing polycarbonate resin
EP3643696B1 (en) Method for washing ion exchange resin
JPS6136A (en) Production of 2,6-di-tert.-butylphenol
JP4262977B2 (en) Process for producing 1,1-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
JPS62242644A (en) Method for oxidizing alkylphenol or such
KR102349519B1 (en) Method for preparing bisphenol-a
JP3957127B2 (en) Method for producing bisphenol A
JP2874281B2 (en) Method for separating and purifying biphenyl-4,4'-diol
JPH0513137B2 (en)
JPS6112640A (en) Preparation of bisphenol
JPH1045649A (en) Production of stilbenediols
JP4338966B2 (en) Method for producing bisphenol A