JPS63192873A - Method for coating carbon material with metal - Google Patents

Method for coating carbon material with metal

Info

Publication number
JPS63192873A
JPS63192873A JP2435487A JP2435487A JPS63192873A JP S63192873 A JPS63192873 A JP S63192873A JP 2435487 A JP2435487 A JP 2435487A JP 2435487 A JP2435487 A JP 2435487A JP S63192873 A JPS63192873 A JP S63192873A
Authority
JP
Japan
Prior art keywords
metal
complex
carbon material
carbon
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2435487A
Other languages
Japanese (ja)
Inventor
Yasuzo Uchida
内田 安三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Original Assignee
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd filed Critical Koa Oil Co Ltd
Priority to JP2435487A priority Critical patent/JPS63192873A/en
Publication of JPS63192873A publication Critical patent/JPS63192873A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material

Abstract

PURPOSE:To uniformly coat a carbon material with a metal at a high sticking rate in a simple and safe manner by bringing the carbon material into contact with a soln. of a complex contg. the metal as the central atom and by depositing the constituent metal of the complex on the surface of the carbon material by heating. CONSTITUTION:A carbon material such as a carbon fiber or carbon powder is immersed in a soln. of a complex contg. a metal for coating such as Fe, Co or Ni as the central atom and brought into contact with the soln. A ligand which is easily released by decomposition at a relatively low temp., e.g., carbonyl or olefin is preferably used as the ligand of the complex. Diphenylmethane, alkylbenzene or the like is suitable for use as the solvent of the complex soln. The metal is then deposited on the surface of the carbon material by heating the material to a relatively low temp. of about 100-200 deg.C while in contact with the complex soln. to form a metallic film. The surface of the carbon material is preferably activated by oxidation treatment and treatment with a metallic salt soln. before immersion in the complex soln. so as to accelerate the decomposition reaction of the complex.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素−金属複合材料に関し、特に炭素材料の
表面に安定な金属被膜を形成させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to carbon-metal composite materials, and particularly to a method for forming a stable metal film on the surface of a carbon material.

〔発明の背景〕[Background of the invention]

炭素材料は軽量でしかも機械的特性にもすぐれているこ
とから各種構造部材に利用されており、さらに近年にお
いては、炭素材料と他の素材との複合材料の研究も種々
進められている。たとえば、粒状、繊維状もしくは布状
に加工された炭素材料は、そのすぐれた性状から、金属
その他の材料との複合化用素材として注目されている。
Since carbon materials are lightweight and have excellent mechanical properties, they are used in various structural members, and in recent years, various studies have been conducted on composite materials of carbon materials and other materials. For example, carbon materials processed into particles, fibers, or cloth are attracting attention as materials for composites with metals and other materials due to their excellent properties.

ところで、このような炭素材料と母材金属とを組合わせ
て複合材料を構成する場合に特に問題となるのは、両者
のぬれ性ないし表面親和性である。
By the way, when forming a composite material by combining such a carbon material and a base metal, a particular problem is the wettability or surface affinity of the two.

たとえば従来、FRM(繊維強化金属)の製造法として
、拡散接合法、粉末冶金法、溶融金属浸透法など様々の
方法が提案されいるが、これらの方法においては、炭素
繊維と金属との間の界面で生ずる問題に起因して機械的
特性を劣化させる場合があることに十分留意する必要が
ある。具体的には、(イ)物理的に炭素繊維と金属との
ぬれ性が悪いため界面における強い接着力が得られない
、(ロ)製造段階における界面での反応によって炭化物
が生じ、これが炭素材料の強度を劣化させる、といった
問題点がある。
For example, various methods such as diffusion bonding, powder metallurgy, and molten metal infiltration have been proposed as methods for manufacturing FRM (fiber reinforced metal). Careful attention must be paid to the fact that mechanical properties may deteriorate due to problems occurring at the interface. Specifically, (a) physical wettability between carbon fiber and metal is poor, making it impossible to obtain strong adhesion at the interface, and (b) carbide is generated due to reactions at the interface during the manufacturing stage, and this is the carbon material. There are problems such as deterioration of strength.

従来、このような炭素−金属間のぬれ性の向上、炭化物
生成反応の抑制を目的として、炭素材料表面を、予め無
電解メッキ、蒸着法あるいはスパッタリング法などの方
法によって特定の金属で被覆する方法が提案されている
。しかしながら、上記のたとえば無電解メッキ法では、
水溶液中の金属イオンをホルマリンなどで還元すること
により炭素材料表面に金属を析出させる方法がとられる
が、一般にこの方法による金属付着率はきわめて低いも
のである。一方、CVDなどの蒸着法、スパッタリング
法においては、操作工程が繁雑でしかも複雑な装置類が
必要となり工・業的用途においては様々な不利を伴うば
かりか、金属付着量を増大するためには長時間を要し、
さらに炭素材料が布状などの構造性を有する場合にあっ
ては、材料の内部側への金属被覆は困難であり被覆状態
が不均一になりやすいという問題点がある。
Conventionally, in order to improve the wettability between carbon and metal and suppress carbide formation reactions, there has been a method in which the surface of a carbon material is coated with a specific metal in advance by methods such as electroless plating, vapor deposition, or sputtering. is proposed. However, in the above-mentioned electroless plating method, for example,
A method is used in which metals are deposited on the surface of carbon materials by reducing metal ions in an aqueous solution with formalin or the like, but generally the metal deposition rate by this method is extremely low. On the other hand, vapor deposition methods such as CVD and sputtering methods require complicated operating steps and complicated equipment, which not only brings various disadvantages in industrial and industrial applications, but also It takes a long time,
Furthermore, when the carbon material has a structure such as a cloth-like structure, it is difficult to coat the inside of the material with metal, and there is a problem that the coating state tends to be non-uniform.

〔発明の概要〕[Summary of the invention]

本願発明は、上記のような従来技術に伴う問題点に鑑み
てなされたものであり、以下の点を目的とするものであ
る。
The present invention has been made in view of the problems associated with the prior art as described above, and aims at the following points.

(イ)簡易な手段により炭素材料の表面に金属被覆を行
うことができる方法を提供すること。
(a) To provide a method that can coat the surface of a carbon material with a metal using simple means.

(ロ)金属被膜形成の際における炭化物の生成を極力防
止すること。
(b) To prevent the formation of carbides as much as possible during the formation of a metal film.

(ハ)炭素材料が微細粒子、粉体、繊維あるいは布状、
編織物などの微細もしくは複雑な構造を何する場合であ
っても、高付着率でしかも安定かつ均一な金属被膜を形
成する方法を提供すること。
(c) The carbon material is in the form of fine particles, powder, fibers or cloth;
To provide a method for forming a stable and uniform metal coating with a high adhesion rate, even when forming a fine or complicated structure such as a knitted fabric.

上記の目的を達成するため、本発明に係る炭素材料の金
属被覆方法は、炭素材料と、該炭素材料に被覆すべき金
属を中心原子とする錯体の溶液とを接触させて加熱する
ことにより、炭素材料表面に前記錯体の構成金属を析出
させることを特徴としている。
In order to achieve the above object, the method for coating a carbon material with a metal according to the present invention includes heating a carbon material and a solution of a complex having a central atom of the metal to be coated on the carbon material by bringing them into contact with each other. It is characterized in that the constituent metals of the complex are deposited on the surface of the carbon material.

また、本発明の方法においては、上記錯体溶液との接触
に先だって、あらかじめ炭素材料表面に活性化処理を施
すことが好ましい。
Furthermore, in the method of the present invention, it is preferable that the surface of the carbon material is previously subjected to activation treatment prior to contact with the complex solution.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明をさらに詳細に説明する。 The present invention will be explained in more detail below.

本発明における金属被覆の対象となる炭素材料の形態は
特に制限されるものではないが、本発明の方法において
は、炭素繊維あるいはその編織物、炭素粉末などの比表
面積が大きく微細構造を有する炭素材料を被覆対象とし
た場合においてもすぐれた被覆効果を得ることができる
The form of the carbon material to be coated with metal in the present invention is not particularly limited, but in the method of the present invention, carbon having a large specific surface area and a fine structure, such as carbon fiber or its knitted fabric, carbon powder, etc. Excellent coating effects can be obtained even when coating materials.

本発明においては、後述する錯体溶液による処理に先だ
って、錯体の分解反応を促進するために、あらかじめ炭
素材料表面に活性化処理を施しておくことが特に好まし
い。この活性化処理は、酸化処理と金属塩溶液による処
理とを組合わせることにより行われ得る。
In the present invention, it is particularly preferable to previously perform activation treatment on the surface of the carbon material in order to promote the decomposition reaction of the complex prior to treatment with a complex solution to be described later. This activation treatment can be performed by combining an oxidation treatment and a treatment with a metal salt solution.

すなわち、活性化処理方法としては、まず炭素材料を、
たとえば硫酸酸性の重クロム酸カリ溶液などの従来公知
の酸化剤で酸化処理を行った後、錯体溶液に対する分解
活性を有する重金属またはその塩を還元することができ
る金属塩、たとえば塩化第一スズの酸性水溶液に浸漬処
理し、次いで、錯体溶液に対する分解活性を有する重金
属またはその塩の酸性水溶液に浸漬処理して、この活性
金属を炭素材料表面に固定させることにより行なわれ得
る。
That is, as an activation treatment method, first, the carbon material is
For example, after performing oxidation treatment with a conventionally known oxidizing agent such as a sulfuric acid acidic potassium dichromate solution, a metal salt capable of reducing heavy metals or their salts having decomposition activity against the complex solution, such as stannous chloride, is used. This can be carried out by immersion treatment in an acidic aqueous solution, and then immersion treatment in an acidic aqueous solution of a heavy metal or its salt having decomposition activity against the complex solution to fix the active metal on the surface of the carbon material.

上記錯体溶液に対する分解活性を有する重金属またはそ
の塩としては、パラジウム金属や塩化パラジウムが好ま
しく用いられ得る。
As the heavy metal or its salt having decomposition activity for the complex solution, palladium metal or palladium chloride can be preferably used.

このようにして活性化処理を行うことにより、該処理に
よって炭素材料表面に固定された金属たとえばパラジウ
ム金属が、後続の錯体溶液処理において、炭素材料表面
で優先的に錯体を分解する促進剤となるとともに、分解
された錯体由来の金属を、その分解点を核として炭素材
料表面に均一に析出させるという重要な働きが一層促進
される。
By performing the activation treatment in this manner, the metal, such as palladium metal, fixed on the surface of the carbon material by the treatment becomes a promoter for preferentially decomposing the complex on the surface of the carbon material in the subsequent complex solution treatment. At the same time, the important function of uniformly depositing the metal derived from the decomposed complex on the surface of the carbon material using the decomposition point as a nucleus is further promoted.

上記各処理溶液の濃度は、特に限定された範囲である必
要はなく、触媒作用として働き得るpb等の活性金属が
炭素材料表面に十分固定し得る範囲で適宜選択し得る。
The concentration of each treatment solution described above does not need to be in a particularly limited range, and can be appropriately selected within a range that allows active metals such as PB that can act as a catalyst to be sufficiently fixed on the surface of the carbon material.

上記活性化処理を施したのち、錯体溶液による処理を行
う。
After performing the above activation treatment, treatment with a complex solution is performed.

この処理で用いる錯体としては、炭素材料に被覆すべき
金属を中心原子とする錯化合物から選択されるが、この
内でも比較的に低原子価(0価を含む)の金属を中心原
子とする錯体が好ましい。
The complex used in this treatment is selected from complex compounds that have a central atom of the metal to be coated on the carbon material, and among these, those that have a relatively low valence (including zero valence) metal as a central atom. Complexes are preferred.

中心金属としては、通常、鉄、コバルト、ニッケルなど
の金属種が一般的であるが、勿論これらに限られるもの
ではなく、他の遷移金属を中心原子とするものであって
もよい。なお、炭素材料に被覆する金属は、FRM化の
際に用いる金属とのぬれ性を向上させさらに金属−炭素
相互反応による材料の劣化を防止するために、FRMと
して複合化する金属よりも融点の高い金属種を選択する
ことが肝要である。
The central metal is generally a metal such as iron, cobalt, or nickel, but is of course not limited to these, and other transition metals may be used as the central atom. Note that the metal coated on the carbon material has a melting point lower than that of the metal to be composited into the FRM in order to improve wettability with the metal used for FRM and to prevent material deterioration due to metal-carbon interaction. It is important to select a high metal species.

錯体を構成する配位子としては、カルボニル、オレフィ
ン、ポリエン、ジピリジンなどが例示されるが、比較的
低温度で容易に分解脱離ししかも炭素材料表面での金属
の凝集成長を阻害しないようなものであることが必要で
ある。
Examples of ligands constituting the complex include carbonyl, olefin, polyene, dipyridine, etc., but those that can be easily decomposed and released at relatively low temperatures and do not inhibit the cohesive growth of the metal on the surface of the carbon material. It is necessary that

錯体の具体例としては、F e 2 (CO) 5、F
e  (Co)4 、N i (Co)4、Co (C
O) sなどのカルボニル錯体、ビスジピリジルニッケ
ルなどのジピリジル錯体、ビスシリロオクタジエンニッ
ケルなどのジエン錯体、などが好ましく用いられる。
Specific examples of complexes include F e 2 (CO) 5, F
e (Co)4, N i (Co)4, Co (C
Preferably used are carbonyl complexes such as O)s, dipyridyl complexes such as bisdipyridylnickel, and diene complexes such as bissilylooctadienenickel.

上記錯体を溶解する溶媒系としては、錯体の分解温度ま
では安定、不活性でありしかも錯体に対する充分な溶解
度を有するものである限りとくに限定されるものではな
いが、ジフェニルメタン、アルキルベンゼンなどは、比
較的使用しやすい溶媒である。
The solvent system for dissolving the above complex is not particularly limited as long as it is stable and inert up to the decomposition temperature of the complex and has sufficient solubility for the complex, but diphenylmethane, alkylbenzene, etc. It is a solvent that is easy to use.

上記錯体溶液の濃度は、使用する錯体、溶媒系の種類、
析出量、炭素材料の性状および構造、比表面積に応じて
最適の値が選択されるが、通常、飽和溶液以下の濃度範
囲で適宜選択され、特に限定されるものではない。
The concentration of the above complex solution depends on the complex used, the type of solvent system,
The optimum value is selected depending on the amount of precipitation, the properties and structure of the carbon material, and the specific surface area, but it is usually appropriately selected within the concentration range of a saturated solution or less, and is not particularly limited.

本発明においては、上記錯体溶液中に、付加的成分とし
て、パラジウム、塩化パラジウムなどの特定の金属もし
くはその塩を微量共存させておくことが好ましい。この
ような成分は、錯体溶液による処理に際して錯体の分解
を促進し、炭素材料表面での析出金属の凝集成長に繰込
まれて被覆速度を一層増大し更に被覆金属の被覆状態を
良好なものにする上で有効である。
In the present invention, it is preferable that a small amount of a specific metal such as palladium or palladium chloride or a salt thereof be coexisting in the complex solution as an additional component. Such components promote the decomposition of the complex during treatment with the complex solution, are included in the cohesive growth of the precipitated metal on the surface of the carbon material, further increase the coating speed, and further improve the coating state of the coated metal. It is effective in doing so.

上記錯体溶液と炭素材料との接触は、通常、炭素材料を
錯体溶液中に浸漬することにより行われ得る。接触した
状態で加熱することにより、溶液中の錯体は分解して炭
素材料表面に該錯体の構成金属が析出し金属被覆膜が形
成される。この場合の加熱温度は、錯体の種類によって
も異なるが、通常、100〜200℃程度で足りる。こ
のように、本発明においては、比較的低温度で金属被膜
が形成できる点でもすぐれている。
The above-mentioned complex solution and the carbon material can be brought into contact by usually immersing the carbon material in the complex solution. By heating in a state of contact, the complex in the solution is decomposed, and the constituent metals of the complex are deposited on the surface of the carbon material, forming a metal coating film. The heating temperature in this case varies depending on the type of complex, but usually about 100 to 200°C is sufficient. As described above, the present invention is also excellent in that a metal coating can be formed at a relatively low temperature.

」−2のようにして、炭素材料表面に金属被膜を形成し
たのち、必要に応じて洗浄、乾燥などの後処理を行って
被覆工程が終了する。
After forming a metal film on the surface of the carbon material as in step 2-2, post-treatments such as washing and drying are performed as necessary to complete the coating process.

なお、上記錯体溶液による処理を、たとえば150℃程
度の比較的低温度領域で行う場合、炭素材料表面で析出
する金属はコロイド状粒子の集合体になりやすいという
傾向があり、とくにニッケルなどの場合にあってはこれ
が空気中で容易に酸素と反応を起こしやすくなる。した
がって、このような問題を防止するためには、錯体溶液
処理により金属波膜が形成されたのち、速やかに窒素な
どの不活性ガス中で乾燥するとともに200℃前後にこ
れを加熱することにより、析出金属の晶形を変化させて
金属波膜を安定化(不活性化)することが好ましい。
In addition, when the treatment with the above-mentioned complex solution is carried out at a relatively low temperature range of about 150°C, for example, the metal precipitated on the surface of the carbon material tends to become an aggregate of colloidal particles, especially in the case of nickel and the like. This easily causes a reaction with oxygen in the air. Therefore, in order to prevent such problems, after a metal wave film is formed by complex solution treatment, it should be immediately dried in an inert gas such as nitrogen and heated to around 200°C. It is preferable to stabilize (inactivate) the metal wave film by changing the crystal form of the deposited metal.

上記のように、本発明によれば、簡易な方法によって、
しかも比較的低温条件下で炭素材料表面に金属被膜を形
成することができるので、操作工程上有利であり、また
従来法のような金属被膜形成時における炭化物の生成を
極力防止することができる点でもすぐれている。
As described above, according to the present invention, by a simple method,
Moreover, it is possible to form a metal film on the surface of the carbon material under relatively low temperature conditions, which is advantageous in terms of operation process, and also prevents as much as possible the formation of carbides during the formation of the metal film, which is the case with conventional methods. But it's excellent.

また、本発明の方法によれば、被覆対象物である炭素材
料の形状、構造に制約を受けることなく、粒状、繊維状
あるいは布状など微細かつ複雑な構造を有するものであ
っても、均一でむらのない金属波膜を形成することがで
きる。
Furthermore, according to the method of the present invention, there is no restriction on the shape or structure of the carbon material to be coated, and even if the carbon material has a fine and complicated structure such as granules, fibers, or cloth, it can be coated uniformly. It is possible to form an even metal wave film.

〔実施例〕〔Example〕

以下、本発明を、実施例に基いて更に具体的に説明する
が、本発明はこれら実施例の記載に制限されるものでは
ない。
Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to the description of these Examples.

実施例1 炭素繊維またはこれより作成した炭素繊維布100gを
、あらかじめ重クロム酸カリ15g。
Example 1 100 g of carbon fiber or a carbon fiber cloth made from carbon fiber was mixed with 15 g of potassium dichromate in advance.

硫酸100m1.水150m1の組成からなる酸化液に
、室温下で3分間浸漬し、その表面を酸化し、更に10
%の水酸化ナトリウム水溶液と水で洗浄した。これを更
に塩化第−スズ5g、濃塩酸20m1.水500m1の
組成の溶液、次いで塩化パラジウム0.1g、濃塩酸1
ml、水400m1の組成の溶液に順次、いずれも室温
で3分間浸漬し、パラジウム金属を炭素繊維表面に析出
させた。
100ml of sulfuric acid. It was immersed in an oxidizing solution consisting of 150 ml of water at room temperature for 3 minutes to oxidize its surface, and then
% aqueous sodium hydroxide solution and water. This was further mixed with 5 g of stannous chloride and 20 ml of concentrated hydrochloric acid. A solution of the composition of 500 ml of water, then 0.1 g of palladium chloride and 1 ml of concentrated hydrochloric acid.
ml and 400 ml of water, respectively, for 3 minutes at room temperature to precipitate palladium metal on the carbon fiber surface.

この様にして処理した炭素繊維を、鉄ペンタカルボニル
のジフェニルメタン約3%溶液に浸漬し、約180℃に
加熱すると溶液中の鉄ペンタカルボニルは炭素繊維表面
上で分解して鉄金属が析出し、炭素繊維表面を均一に鉄
金属でコーティングすることができた。反応後は口過し
、ヘキサン500m1で3回洗浄し乾燥した。この熱分
解反応においては一酸化炭素が定量的に発生し、回収す
ることができた。炭素繊維表面上に析出する鉄金属粒子
の粒径は2〜4μmであった。析出する鉄金属の量は添
加する鉄ペンタカルボニルの量にもよるが、約60%の
鉄ペンタカルボニルが炭素繊維表面で分解し、鉄金属被
膜として析出した。
The carbon fibers treated in this way are immersed in an approximately 3% solution of iron pentacarbonyl in diphenylmethane and heated to approximately 180°C. The iron pentacarbonyl in the solution decomposes on the carbon fiber surface, and iron metal precipitates. The carbon fiber surface could be uniformly coated with iron metal. After the reaction, the mixture was passed through the mouth, washed three times with 500 ml of hexane, and dried. In this thermal decomposition reaction, carbon monoxide was generated quantitatively and could be recovered. The particle size of the iron metal particles deposited on the carbon fiber surface was 2 to 4 μm. The amount of iron metal precipitated depends on the amount of iron pentacarbonyl added, but about 60% of iron pentacarbonyl decomposed on the carbon fiber surface and precipitated as an iron metal film.

実施例2 実施例1の熱分解反応の際にパラジウム金属を加えてお
くと鉄ペンタカルボニルの熱分解反応を促進することが
でき、実施例1と同様に均一な鉄金属被膜を形成するこ
とができた。分解の速度は添加するパラジウム金属の量
に依存するが、6モル%のパラジウム金属を加えると加
えない場合に比べて約4倍速くなった。
Example 2 If palladium metal is added during the thermal decomposition reaction of Example 1, the thermal decomposition reaction of iron pentacarbonyl can be promoted, and a uniform iron metal coating can be formed as in Example 1. did it. The rate of decomposition depends on the amount of palladium metal added, but when 6 mol % palladium metal was added, it was about four times faster than when it was not added.

実施例3 実施例2と同様にしてパラジウム金属の代わりにニッケ
ル金属を用いても分解反応を促進し、鉄被膜を同様に形
成することができた。
Example 3 Even when nickel metal was used instead of palladium metal in the same manner as in Example 2, the decomposition reaction was promoted and an iron coating could be formed in the same manner.

実施例4 実施例2と同様にして、パラジウム金属の代わりに塩化
パラジウムを用いても分解は促進され、炭素繊維を鉄金
属でコーティングすることができた。
Example 4 In the same manner as in Example 2, decomposition was promoted even when palladium chloride was used instead of palladium metal, and carbon fibers could be coated with iron metal.

実施例5 実施例2と同様にして、パラジウム金属の代わりに銀金
属を用いても分解は促進され均一な鉄被膜を形成するこ
とができた。
Example 5 In the same manner as in Example 2, even when silver metal was used instead of palladium metal, decomposition was promoted and a uniform iron coating could be formed.

実施例6 鉄ペンタカルボニルの代わりに二鉄ノナカルボニルを用
いても、実施例1および2と同様な処理により鉄金属で
被膜を形成しつるが、この場合、二鉄ノナカルボニルの
溶解性が低いため、解けずに残った二鉄ノナカルボニル
は単独に分解して鉄金属粒子となった。
Example 6 Even if diiron nonacarbonyl is used instead of iron pentacarbonyl, a film can be formed with iron metal by the same treatment as in Examples 1 and 2, but in this case, the solubility of diiron nonacarbonyl is low. Therefore, the diiron nonacarbonyl that remained undissolved decomposed independently and became iron metal particles.

実施例7 実施例1で行ったような炭素繊維の前処理を全くしない
場合であっても炭素繊維を鉄金属でコーティングするこ
とができたが、多くの鉄金属は約、Lμmの粒子となっ
て繊維表面以外で単独に析出した。
Example 7 Although carbon fibers could be coated with ferrous metal even without any pretreatment of the carbon fibers as in Example 1, many ferrous metals were reduced to particles of approximately Lμm. It precipitated independently on areas other than the fiber surface.

実施例8 実施例1と同様に処理した炭素繊維をコバルトオクタカ
ルボニルのジフェニルメタン約3%溶液に浸漬し、約1
50℃に加熱すると溶液中のコバルトオクタカルボニル
は炭素繊維表面上で分解し、炭素繊維を均一にコバルト
金属でコーティングすることができた。反応は約6時間
で終了した。繊維表面に析出するコバルト金属の量は用
いるコバルトオクタカルボニルの量にもよるが約60〜
70%のコバルト金属が析出した。析出したコバルト金
属は立方系である。コバルト金属でコーティングした炭
素繊維は分離後へキサンで洗浄し乾燥した。
Example 8 Carbon fibers treated in the same manner as in Example 1 were immersed in an approximately 3% solution of cobalt octacarbonyl in diphenylmethane.
When heated to 50° C., the cobalt octacarbonyl in the solution decomposed on the surface of the carbon fibers, making it possible to uniformly coat the carbon fibers with cobalt metal. The reaction was completed in about 6 hours. The amount of cobalt metal precipitated on the fiber surface varies depending on the amount of cobalt octacarbonyl used, but is about 60~
70% of cobalt metal was deposited. The deposited cobalt metal has a cubic system. After separation, the cobalt metal coated carbon fibers were washed with hexane and dried.

実施例9 実施例1と同様の方法で処理した炭素繊維を、ニッケル
テトラカルボニルのジフェニルメタン約3%溶液に浸漬
し、約150℃に加熱すると溶液中のニッケルテトラカ
ルボニルは炭素繊維上で分鯨し、炭素繊維をニッケルコ
ーティングすることができた。反応は約6時間を要した
が析出ニッケル量はニッケルテトラカルボニルの約60
%であった。コバルト金属の場合と同様に反応液と分離
したのちヘキサンで洗浄し、乾燥した。なお、本操作は
ニッケルテトラカルボニルの毒性上の理由から完全シー
ル中で行なう必要がある。ニッケルの析出状態により空
気活性の場合は不活性ガス下で約200℃でアニーリン
グ処理を行なった。
Example 9 Carbon fibers treated in the same manner as in Example 1 were immersed in an approximately 3% solution of nickel tetracarbonyl in diphenylmethane and heated to approximately 150°C. The nickel tetracarbonyl in the solution was separated onto the carbon fibers. , carbon fiber could be coated with nickel. The reaction took about 6 hours, but the amount of nickel precipitated was about 60% of nickel tetracarbonyl.
%Met. As in the case of cobalt metal, it was separated from the reaction solution, washed with hexane, and dried. Note that this operation must be performed under complete sealing due to the toxicity of nickel tetracarbonyl. In the case of air activation, depending on the state of nickel precipitation, annealing treatment was performed at about 200° C. under an inert gas.

実施例10 実施例1と同様の方法で処理した炭素繊維を、ビスシク
ロオクタジエンニッケルのジフェニルメタン約3%溶液
に浸漬し、約180℃に加熱するとビスシクロオクタジ
エンニッケルは炭素繊維表面上で分解してニッケル金属
が析出し炭素繊維表面を均一にニッケル金属でコーティ
ングすることができた。反応は約1時間で終了した。析
出するニッケル金属の量は、ビスシクロオクタジエンニ
ッケルの量にもよるが、約50〜60%のニッケル金属
が炭素繊維表面に析出した。析出したニッケル金属は立
方系と六方系結晶である。炭素繊維は液から分離後、ヘ
キサンで洗浄し乾燥した。
Example 10 Carbon fibers treated in the same manner as in Example 1 were immersed in an approximately 3% diphenylmethane solution of biscyclooctadiene nickel and heated to approximately 180°C, and the biscyclooctadiene nickel decomposed on the surface of the carbon fiber. As a result, nickel metal precipitated and the carbon fiber surface was able to be coated uniformly with nickel metal. The reaction was completed in about 1 hour. Although the amount of nickel metal precipitated depends on the amount of biscyclooctadiene nickel, about 50 to 60% of nickel metal was precipitated on the carbon fiber surface. The deposited nickel metal has cubic and hexagonal crystals. After separating the carbon fibers from the liquid, they were washed with hexane and dried.

実施例11 実施例1と同様にして、ビスシクロオクタジエンニッケ
ルの代わりにビス−2,2′ −ジピリジンニッケルを
用いても同様に炭素繊維をニッケル金属でコーティング
できた。析出するニッケル金属の量は20〜30%であ
った。
Example 11 In the same manner as in Example 1, carbon fibers could be similarly coated with nickel metal by using bis-2,2'-dipyridine nickel instead of biscyclooctadiene nickel. The amount of nickel metal precipitated was 20-30%.

実施例12 実施例1と同様の方法で前処理を施したカーボンブラッ
ク(平均粒径100μm)を対象とし、実施例1,8.
9と同様の方法で鉄、コバルト。
Example 12 Carbon black (average particle size 100 μm) pretreated in the same manner as in Example 1 was used, and Examples 1, 8.
Iron and cobalt in the same manner as 9.

またはニッケルのカルボニル錯体を用いてコーティング
処理を行ったところ、炭素繊維の場合と同等の結果が得
られた。
Alternatively, when coating was performed using a nickel carbonyl complex, results similar to those obtained with carbon fiber were obtained.

Claims (1)

【特許請求の範囲】 1、炭素材料と、該炭素材料に被覆すべき金属を中心原
子とする錯体の溶液とを接触させて加熱することにより
、炭素材料表面に前記錯体の構成金属を析出させること
を特徴とする、炭素材料の金属被覆方法。 2、前記錯体溶液との接触に先だって、あらかじめ炭素
材料表面に活性化処理を施す、特許請求の範囲第1に記
載の方法。
[Claims] 1. By bringing a carbon material into contact with a solution of a complex having a central atom of a metal to be coated on the carbon material and heating it, the constituent metals of the complex are precipitated on the surface of the carbon material. A method for coating a carbon material with metal, characterized by: 2. The method according to claim 1, wherein the surface of the carbon material is subjected to activation treatment before contacting with the complex solution.
JP2435487A 1987-02-04 1987-02-04 Method for coating carbon material with metal Pending JPS63192873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2435487A JPS63192873A (en) 1987-02-04 1987-02-04 Method for coating carbon material with metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2435487A JPS63192873A (en) 1987-02-04 1987-02-04 Method for coating carbon material with metal

Publications (1)

Publication Number Publication Date
JPS63192873A true JPS63192873A (en) 1988-08-10

Family

ID=12135859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2435487A Pending JPS63192873A (en) 1987-02-04 1987-02-04 Method for coating carbon material with metal

Country Status (1)

Country Link
JP (1) JPS63192873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010770A1 (en) * 1998-12-16 2000-06-21 Bayerische Motoren Werke Aktiengesellschaft Method of making carbon fibre reinforced metal-matrix composites
WO2001006034A1 (en) * 1999-07-14 2001-01-25 Osaka Municipal Government Spectacle frame surface treatment method
JP2015127452A (en) * 2013-12-27 2015-07-09 小林 博 Production and production method of fiber, fabric or nonwoven fabric having metal or alloy characteristic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086278A (en) * 1983-10-17 1985-05-15 Koa Sekiyu Kk Encapsulation of carbon material with aluminum
JPS624845A (en) * 1985-06-28 1987-01-10 Nippon Oil Co Ltd Production of metallic aluminum-coated carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086278A (en) * 1983-10-17 1985-05-15 Koa Sekiyu Kk Encapsulation of carbon material with aluminum
JPS624845A (en) * 1985-06-28 1987-01-10 Nippon Oil Co Ltd Production of metallic aluminum-coated carbon fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010770A1 (en) * 1998-12-16 2000-06-21 Bayerische Motoren Werke Aktiengesellschaft Method of making carbon fibre reinforced metal-matrix composites
WO2001006034A1 (en) * 1999-07-14 2001-01-25 Osaka Municipal Government Spectacle frame surface treatment method
US6638573B1 (en) 1999-07-14 2003-10-28 Osaka Municipal Government Spectacles frame surface treatment method
KR100749072B1 (en) * 1999-07-14 2007-08-13 오사카시 Spectacle frame surface treatment method
JP2015127452A (en) * 2013-12-27 2015-07-09 小林 博 Production and production method of fiber, fabric or nonwoven fabric having metal or alloy characteristic

Similar Documents

Publication Publication Date Title
CN109706438B (en) Preparation method of surface-modified ZTA ceramic particle reinforced steel-based composite material
Shu et al. Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating
Charbonnier et al. Plasma treatment process for palladium chemisorption onto polymers before electroless deposition
Ang et al. Decoration of activated carbon nanotubes with copper and nickel
US2853398A (en) Method of producing composite nonmetallic metal powders
JPH0560981B2 (en)
JPS62155937A (en) Production of catalytic body carrying gold and gold composite oxide
JP2019523831A (en) Coating process and coated material
JPS63192873A (en) Method for coating carbon material with metal
US4339476A (en) Dispersions for activating non-conductors for electroless plating
US4220678A (en) Dispersions for activating non-conductors for electroless plating
US3846344A (en) Method for producing nickel catalyst
Krulik Electroless plating of plastics
JP6415540B2 (en) Carbon nanomaterial coating method
JPH11241170A (en) Catalytic composition for electroless plating
JPH067679A (en) Production of platinum alloy catalyst for phosphoric acid type fuel cell
US3248787A (en) Process for the production of a gas-diffusion electrode
CA1063445A (en) Electroless plating of peroxide forming metals
US2829059A (en) Electroless chromium plating
Liu et al. 1, 10-Phenanthroline as an accelerator for Ag nanoparticle-catalysed electroless copper deposition
US4132832A (en) Method of applying dispersions for activating non-conductors for electroless plating and article
JPS59102444A (en) Production of catalyst
JP2500936B2 (en) Powder plating method
US4318940A (en) Dispersions for activating non-conductors for electroless plating
JPS6237301A (en) Production of metal holding particle