JPS63192811A - Method for reducing iron ore - Google Patents

Method for reducing iron ore

Info

Publication number
JPS63192811A
JPS63192811A JP2411787A JP2411787A JPS63192811A JP S63192811 A JPS63192811 A JP S63192811A JP 2411787 A JP2411787 A JP 2411787A JP 2411787 A JP2411787 A JP 2411787A JP S63192811 A JPS63192811 A JP S63192811A
Authority
JP
Japan
Prior art keywords
gas
coal
reduction furnace
ore
ore reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2411787A
Other languages
Japanese (ja)
Inventor
Hiroshi Itaya
板谷 宏
Hisao Hamada
浜田 尚夫
Katsutoshi Igawa
井川 勝利
Shinobu Takeuchi
忍 竹内
Takashi Ushijima
牛島 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2411787A priority Critical patent/JPS63192811A/en
Publication of JPS63192811A publication Critical patent/JPS63192811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To drastically reduce fluctuation of product reduction rate by heat-exchanging waste gas of an ore reduction furnace into reduced iron through a gas holder after cooling, dewatering and decarboxylation and blowing into the ore reduction furnace by mixing it with high temp. gas of coal gasifying furnace. CONSTITUTION:The waste gas from the ore reduction furnace 11 is in order introduced to a hot cyclone 17, cooling dehumidifier 20 and decarboxylation equipment 22, to execute dust removal, cooling dewatering and decarboxylation and to make it high reducing gas having rich CO and H2 and it is introduced to the gas holder 27 for preventing pressure variation. The circulated waste gas in the gas holder 27 is sent to the heat-exchanger 13 by a blower 24 and heat-exchanged to the reduced iron discharged from the ore reduction furnace 11 and sent to a piping 10. On the other hand, in the coal gasifying furnace 1, oxygen-contained gas is blown through packing zone part 4 of coal ash at the lower part, and the high temp. gas generated by gasifying the coal is sent to the piping 10 after removing the dust by the hot cyclone 8 and mixed with the circular waste gas from the heat exchanger 13 and used for reduction of ore by blowing into the ore reduction furnace 11. In this way, fluctuation of the gas blowing into the ore reduction furnace 11 is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、石炭ガス化炉によって生成した還元ガスを用
いて鉱石還元炉で鉄鉱石を還元する還元鉄の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing reduced iron in which iron ore is reduced in an ore reduction furnace using reducing gas produced by a coal gasification furnace.

〔従来の技術〕[Conventional technology]

石炭流動床ガス化炉のガスを改質し、これを用いて鉱石
還元炉で鉄鉱石を還元する方法は特公昭60−2316
2号により開示されている。この方法は鉱石還元炉の排
ガスを冷却し、水分およびC02を除去した後、このガ
スを3系統に分岐し、第1の系統では昇圧して石炭の流
動床に吹込み、第2の系統では還元炉排ガスの一部を燃
焼させて加熱し、これを第3の系統と混合して石炭流動
床ガス化炉からの発生ガスに混合して石炭流動床ガス化
炉からの発生ガスの組成と温度を調整して鉱石還元炉に
吹込み鉄鉱石を還元している。
A method of reforming gas in a coal fluidized bed gasifier and using it to reduce iron ore in an ore reduction furnace was published in Japanese Patent Publication No. 60-2316.
It is disclosed by No. 2. This method cools the exhaust gas from the ore reduction furnace, removes moisture and CO2, and then branches this gas into three systems. The first system boosts the pressure and blows it into a fluidized bed of coal, and the second system A part of the reducing furnace exhaust gas is combusted and heated, and this is mixed with the third system and mixed with the generated gas from the coal fluidized bed gasifier to determine the composition of the generated gas from the coal fluidized bed gasifier. Iron ore is reduced by adjusting the temperature and injecting it into an ore reduction furnace.

この方法では鉱石還元炉の排ガスを冷却、脱水、脱炭酸
した後3系統にも分岐しているため、ガス経路が複雑で
その制御設備も高度なものが必要となり、排ガスの循環
系に多大な設備費が必要となる欠陥があった。
In this method, the exhaust gas from the ore reduction furnace is cooled, dehydrated, and decarboxylated and then branched into three systems, so the gas path is complex and requires sophisticated control equipment, which requires a large amount of work in the exhaust gas circulation system. There was a defect that required equipment costs.

さらにこの方法では各系統でのガス量の変動がそのまま
鉱石還元炉に吹込まれる還元ガスの温度と組成の変動と
なって現れるため、製品である還元鉄の品質の変動、す
なわち還元率の変動を引起こす重大な欠陥があった。
Furthermore, with this method, fluctuations in the amount of gas in each system directly appear as fluctuations in the temperature and composition of the reducing gas blown into the ore reduction furnace, resulting in fluctuations in the quality of the reduced iron product, that is, fluctuations in the reduction rate. There was a serious defect that caused this.

すなわち、石炭ガス化炉に循環される排ガス量が増大す
ると石炭ガス化炉の温度が低下する結果、発生ガスの温
度は低下し、しかも石炭ガス化が順調に行われず酸化成
分であるH2O,CO2が増大する。さらに発生ガスに
混合されるべき第2、第3の系統のH2とCOに富んだ
ガス量が減少しているため、鉱石還元炉に吹込まれるガ
スは温度、還元力ともに著しく低下する結果、製造され
る還元鉄の還元率が大幅に低下する。
In other words, when the amount of exhaust gas circulated to the coal gasifier increases, the temperature of the coal gasifier decreases, resulting in a decrease in the temperature of the generated gas, and furthermore, coal gasification does not proceed smoothly and the oxidizing components H2O and CO2 increases. Furthermore, since the amount of H2 and CO-rich gas in the second and third systems to be mixed with the generated gas has decreased, the temperature and reducing power of the gas blown into the ore reduction furnace have significantly decreased. The reduction rate of the produced reduced iron is significantly reduced.

また、逆に石炭ガス化炉に循環される排ガス量が低下す
ると上記とは全く逆の結果となり、還元率は目標値以上
となる。
On the other hand, when the amount of exhaust gas circulated to the coal gasifier decreases, the result is completely opposite to the above, and the reduction rate becomes equal to or higher than the target value.

このようにこの方法は本来的に製品の品質制御ができ難
いプロセスである。
As described above, this method is inherently a process in which it is difficult to control the quality of the product.

さらにこの方法の第3の欠陥は、鉱石還元炉から排出さ
れる還元鉄の顕熱ならびに石炭ガス化炉から排出される
石炭灰分の顕熱を有効に利用できず、灰分中に残留する
炭素分をガス化できないため石炭消費量が増大する点で
ある。
Furthermore, the third defect of this method is that the sensible heat of the reduced iron discharged from the ore reduction furnace and the sensible heat of the coal ash discharged from the coal gasification furnace cannot be used effectively, and the carbon remaining in the ash cannot be used effectively. The problem is that coal consumption increases because it cannot be gasified.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題は前述の従来法の欠陥で
あり、その目的は以下の3点である。
The problem to be solved by the present invention is the above-mentioned deficiencies of the conventional method, and its purpose is the following three points.

(1)鉱石還元炉排ガスの循環系の複雑さを排除し、単
純化させることで設備費の削減を図ること。
(1) Eliminate the complexity of the ore reduction furnace exhaust gas circulation system and simplify it to reduce equipment costs.

(2)鉱石還元炉排ガスの循環量変動に由来する製品還
元率の変動を防止すること。
(2) To prevent fluctuations in the product reduction rate due to fluctuations in the circulating amount of ore reduction furnace exhaust gas.

(3)還元鉄ならびに石炭灰分の顕熱を有効に利用し、
さらに石炭灰分中に残留する炭素分をもガス化させるこ
とで石炭消費量を大幅に削減すること。
(3) Effectively utilize the sensible heat of reduced iron and coal ash,
Furthermore, by gasifying the carbon content remaining in coal ash, coal consumption can be significantly reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、流動床石炭ガス化炉で生成させた高温の発生
ガスを用いて鉱石還元炉で鉄鉱石を還元する方法におい
て、次の技術手段を講じたことを特徴とする。
The present invention is characterized in that the following technical measures are taken in a method of reducing iron ore in an ore reduction furnace using high-temperature generated gas generated in a fluidized bed coal gasifier.

(a)流動床石炭ガス化炉で石炭を含酸素気体でガス化
させるに当り、流動床ガス化炉の下部に石炭灰分の充填
層を形成し、この灰分充填層を経由して流動床ガス化炉
内に含酸素気体もしくは酸素を吹込んでガス化する。
(a) When gasifying coal with oxygen-containing gas in a fluidized bed coal gasifier, a bed filled with coal ash is formed in the lower part of the fluidized bed gasifier, and the fluidized bed gas is passed through the bed filled with ash. Gasification is performed by blowing oxygen-containing gas or oxygen into the furnace.

(b)鉱石還元炉排ガスを冷却、脱水、脱炭酸した後圧
力変動防止用のガスホルダを経由して鉱石還元炉から排
出される還元鉄と熱交換させて昇温する。
(b) After the ore reduction furnace exhaust gas is cooled, dehydrated, and decarboxylated, it is heated by exchanging heat with the reduced iron discharged from the ore reduction furnace via a gas holder for preventing pressure fluctuations.

(c)この昇温された排ガスを前記石炭ガス化炉からの
発生ガスと混合して鉱石還元炉に吹込む。
(c) The heated exhaust gas is mixed with the gas generated from the coal gasifier and blown into the ore reduction furnace.

〔作用〕[Effect]

本発明の構成を図面に基づき説明する。第1図は本発明
のプロセスフロー図である。
The configuration of the present invention will be explained based on the drawings. FIG. 1 is a process flow diagram of the present invention.

鉱石還元炉11からの排ガスはダクト16を通ってホッ
トサイクロン17で除塵される。除去されたダストは配
管18を通って鉱石還元炉11に戻される。一方、除塵
された排ガスはダクト19を通って冷却除湿器20に達
し、ここで冷却と除湿が行われる。
Exhaust gas from the ore reduction furnace 11 passes through a duct 16 and is removed by a hot cyclone 17. The removed dust is returned to the ore reduction furnace 11 through the pipe 18. On the other hand, the dust-removed exhaust gas passes through the duct 19 and reaches the cooling dehumidifier 20, where it is cooled and dehumidified.

さらに排ガスは配管21を経由して脱炭酸設備22で脱
炭酸されて還元力の高いCOとH2に富んだガスとなっ
て圧力変動防止用のガスホルダ27に入る。ここで圧力
変動防止用のガスホルダを設けるのは鉱石還元炉や石炭
ガス化炉の変調に起因する圧力変動を吸収させて、循環
ガス量を一定に維持することを容易ならしめると同時に
石炭ガス化炉からの発生ガスの温度やガス組成が変動し
ても循環ガス量を迅速に調整することができるので、容
易に所望の鉱石還元炉への吹込みガスの温度と組成を得
ることができるからである。
Further, the exhaust gas is decarboxylated by a decarboxylation equipment 22 via a pipe 21 to become a gas rich in CO and H2 with high reducing power, and enters a gas holder 27 for preventing pressure fluctuations. The purpose of providing a gas holder to prevent pressure fluctuations is to absorb pressure fluctuations caused by fluctuations in the ore reduction furnace and coal gasification furnace, making it easier to maintain a constant amount of circulating gas and at the same time converting the gas into coal. Even if the temperature and gas composition of the gas generated from the furnace fluctuate, the amount of circulating gas can be quickly adjusted, making it easy to obtain the desired temperature and composition of the gas blown into the ore reduction furnace. It is.

すなわち特公昭60−23162号に開示の方法では鉱
石還元炉排ガスの循環系にガス量の調整ができる緩衝設
備がないため、各系統の循環ガス量の調整が容易でなく
、従って鉱石還元炉に吹込むガス組成と温度とが変動し
やすいという欠陥と対比すれば、本発明で圧力変動防止
用のガスホルダを設ける効果は明確に理解されるもので
ある。
In other words, in the method disclosed in Japanese Patent Publication No. 60-23162, there is no buffer equipment in the ore reduction furnace exhaust gas circulation system that can adjust the gas amount, so it is not easy to adjust the amount of circulating gas in each system. When contrasted with the disadvantage that the composition and temperature of the blown gas tend to fluctuate, the effect of providing the gas holder for preventing pressure fluctuations in the present invention can be clearly understood.

ガスホルダに入った循環排ガスはブロワ24で少し昇圧
した後、鉱石還元炉から抜出管12を通って排出された
還元鉄と熱交換器13で熱交換し還元鉄の顕熱を受け、
次いで配管26を経由して石炭ガス化炉からの発生ガス
と配管10の途中で混合され、鉱石還元炉11に吹込ま
れる。熱交換器13に脱水、脱炭酸した還元ガスに富ん
だ循環排ガスを導入する効果は、還元鉄の顕熱の実効利
用と還元鉄を不活性ガスを使用せずに再酸化させること
なく冷却できる点にあることは論を待たない。
The circulating exhaust gas that has entered the gas holder is pressurized slightly by the blower 24, and then exchanges heat with the reduced iron discharged from the ore reduction furnace through the extraction pipe 12 in the heat exchanger 13, receiving the sensible heat of the reduced iron.
Next, it is mixed with the generated gas from the coal gasifier through the pipe 26 in the middle of the pipe 10, and is blown into the ore reduction furnace 11. The effect of introducing the dehydrated and decarboxylated circulating exhaust gas rich in reducing gas into the heat exchanger 13 is that the sensible heat of the reduced iron can be effectively used and the reduced iron can be cooled without using an inert gas and without reoxidizing it. The point is beyond debate.

なお、石炭ガス化炉1からの発生ガスに混合する循環排
ガスの量は石炭ガス化炉lからの発生ガスの温度とガス
組成をダクト9で測定し、さらに配管26での循環排ガ
スの温度を測定して所望の鉱石還元炉の吹込みガス組成
と温度となるようにブロワ24を調整して決定する。
The amount of circulating exhaust gas to be mixed with the gas generated from the coal gasifier 1 is determined by measuring the temperature and gas composition of the gas generated from the coal gasifier 1 in the duct 9, and further measuring the temperature of the circulating exhaust gas in the pipe 26. The blower 24 is adjusted to determine the desired blowing gas composition and temperature of the ore reduction furnace by measurement.

また、上記の循環排ガスの量を調整することだけでは所
望の鉱石還元炉吹込みガスが得られない場合は1石炭ガ
ス化炉1に供給する含酸素気体もしくは酸素の量を調整
して所望の鉱石還元炉吹込みガスを生成させる。
In addition, if the desired amount of gas blown into the ore reduction furnace cannot be obtained by simply adjusting the amount of the circulating exhaust gas, adjust the amount of oxygen-containing gas or oxygen supplied to the coal gasifier 1 to obtain the desired amount. Generates ore reduction furnace injection gas.

本プロセスでは、鉄鉱石はホッパ14から切出され、装
入管15を経由して鉱石還元炉11に装入されて還元鉄
となり、この高温の還元鉄は排出管12を通って熱交換
器13に導かれ、還元ガスに富んだ循環排ガスにより再
酸化を受けることなく冷却され、次いで排出管29を通
って収納容器30に貯蔵される。
In this process, iron ore is cut out from a hopper 14 and charged into an ore reduction furnace 11 via a charging pipe 15 to become reduced iron, and this high temperature reduced iron passes through a discharge pipe 12 to a heat exchanger. 13 and is cooled without being reoxidized by the circulating exhaust gas rich in reducing gas, and then passed through the discharge pipe 29 and stored in the storage container 30.

一方、流動層石炭ガス化炉1は以下の如く操業される。On the other hand, the fluidized bed coal gasifier 1 is operated as follows.

原料の石炭はホッパ31より切出され導管6を経て石炭
ガス化炉lに供給される。石炭ガス化炉1の下部には石
炭灰分が凝集、部分溶着して粒子径が増大し、塊状化し
た灰分の充填層を形成させる充填層部4が設けられてい
る。この充填層部4の下部から石炭ガス化用含酸素気体
もしくは酸素を、含酸素気体もしくは酸素の供給段@2
から配管3を経由して吹込む、ここで充填層部4を設け
、その下部より含酸素気体を吹込むのは、この充填層部
4で石炭灰分の持つ顕熱をガスに移行させる効果ならび
に流動層部で完全にガス化せずに灰分中に残留した炭素
分を完全にガス化させることができ、供給された石炭を
ほとんど完全にガス化できるという著しい効果を発揮で
きるからである。塊状化した石炭灰分は充填層部4で含
酸素気体で冷却された後、排出機5により排出される。
Raw material coal is cut out from the hopper 31 and supplied to the coal gasifier l through the conduit 6. A packed bed section 4 is provided in the lower part of the coal gasifier 1 in which coal ash is aggregated and partially welded to increase the particle size and form a packed bed of lumped ash. The oxygen-containing gas or oxygen for coal gasification is supplied from the lower part of the packed bed section 4 to the oxygen-containing gas or oxygen supply stage @2.
The reason why the packed bed section 4 is provided here and the oxygen-containing gas is blown in from the lower part of the bed section 4 is to transfer the sensible heat of the coal ash to gas in the packed bed section 4. This is because the carbon content remaining in the ash can be completely gasified without being completely gasified in the fluidized bed section, and the remarkable effect that the supplied coal can be almost completely gasified can be exhibited. The lumped coal ash is cooled with oxygen-containing gas in the packed bed section 4 and then discharged by the discharger 5.

石炭ガス化炉1で生成された高温の発生ガスはダクト9
を経てホットサイクロン8に導かれ除塵された後、ダク
トlOを通って、ダクト26から来る循環排ガスと混合
された後、鉱石還元炉11に吹込まれる。ホットサイク
ロン8で除塵された石炭分を多量に含むダストは再び循
環パイプ7を経てガス化炉1に戻され、石炭を有効にガ
ス化することができる。
The high temperature gas generated in the coal gasifier 1 is transferred to the duct 9
After passing through the hot cyclone 8 and removing dust, the gas passes through the duct 1O and is mixed with the circulating exhaust gas coming from the duct 26, and then blown into the ore reduction furnace 11. The dust containing a large amount of coal removed by the hot cyclone 8 is returned to the gasifier 1 via the circulation pipe 7 again, and the coal can be effectively gasified.

〔実施例〕〔Example〕

第1図に示すプロセスフローを有する10t/d規模の
還元鉄製造能力をもつテストプラントにより灰分14重
量%、揮発分32重量%の石炭、T、Fe67重量%、
平均粒径12mmc7)ブラジル産鉱石、含酸素気体と
して酸素を使用して本発明の方法に基づき鉄鉱石を還元
した。なお、弓の実施例では鉱石還元炉は流動層型式の
ものを採用した。第1表に操業成績を従来法の比較例と
ともに示す。
A test plant with a reduced iron production capacity of 10 t/d and having the process flow shown in Figure 1 was used to produce coal with an ash content of 14% by weight and a volatile content of 32% by weight, T, and Fe of 67% by weight.
Average particle size: 12 mm c7) Brazilian ore, iron ore was reduced based on the method of the present invention using oxygen as the oxygen-containing gas. In the example of the bow, a fluidized bed type ore reduction furnace was adopted. Table 1 shows the operational results along with a comparative example of the conventional method.

本発明の方法によれば石炭原単位、酸素原単位が大幅に
削減され、製品である還元率も安定化できることは明ら
かであり、鉱石還元炉排ガスの循環系統も一つのため設
備面も有利となる。
According to the method of the present invention, it is clear that the coal consumption rate and oxygen consumption rate can be significantly reduced, and the reduction rate of the product can be stabilized.It is also advantageous in terms of equipment because there is only one circulation system for the ore reduction furnace exhaust gas. Become.

第  1  表 〔発明の効果〕 本発明方法によれば鉱石還元炉排ガス系を1系統に単純
化することができるので、設備面で有利となり、さらに
鉱石還元炉に吹込むガスの変動を防止できる結果、製品
還元率の変動幅を大幅に減少させることができる。
Table 1 [Effects of the Invention] According to the method of the present invention, the ore reduction furnace exhaust gas system can be simplified to one system, which is advantageous in terms of equipment, and furthermore, it is possible to prevent fluctuations in the gas blown into the ore reduction furnace. As a result, it is possible to significantly reduce the fluctuation range of the product return rate.

さらに石炭灰分中に残留する炭素分も有効にガス化する
ことができ、灰分の顕熱、製品還元鉄の顕然も有効にプ
ロセス内で利用できるので石炭原単位、酸素原単位を低
減することが可能となる。
Furthermore, the carbon content remaining in the coal ash can be effectively gasified, and the sensible heat of the ash and the apparent reduced iron of the product can also be effectively used in the process, reducing the coal consumption rate and oxygen consumption rate. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する鉄鉱石を還元して還元
鉄を製造するプロセスフロー図である。 ■・・・流動層石炭ガス化炉 ?・・・含酸素気体もしくは酸素の供給機3・・・含酸
素気体もしくは酸素の供給管4・・・充填層部 5・・・排出機 6・・・石炭供給管    7・・・ダストの戻し管8
・・・ホットサイクロン 9.10・・・発生ガスのダクト 11・・・鉱石還元炉   12・・・還元鉄排出管1
3・−・熱交換器    14・・・鉱石ホッパ15・
・・鉱石供給管   16・・・排ガスダクト17・・
・ホットサイクロン 18・・・ダストの戻し管 19.21.23・・・排ガスダクト 20・・・冷却除湿器   22・・・脱炭酸設備24
・・・ブロワ
FIG. 1 is a process flow diagram for producing reduced iron by reducing iron ore, which explains the present invention in detail. ■...Fluidized bed coal gasifier? ... Oxygen-containing gas or oxygen supply device 3 ... Oxygen-containing gas or oxygen supply pipe 4 ... Filled bed section 5 ... Discharge machine 6 ... Coal supply pipe 7 ... Dust return tube 8
... Hot cyclone 9.10 ... Generated gas duct 11 ... Ore reduction furnace 12 ... Reduced iron discharge pipe 1
3.--Heat exchanger 14.. Ore hopper 15.
...Ore supply pipe 16...Exhaust gas duct 17...
・Hot cyclone 18...Dust return pipe 19.21.23...Exhaust gas duct 20...Cooling dehumidifier 22...Decarboxylation equipment 24
...Blower

Claims (1)

【特許請求の範囲】 1 流動床石炭ガス化炉で生成させた高温の発生ガスを
用いて鉱石還元炉で鉄鉱石を還元する方法において、 (a)流動床石炭ガス化炉で石炭を含酸素気体でガス化
させるに当り、流動床ガス化炉の下部に石炭灰分の充填
層を形成し、この灰分充填層を経由して流動床ガス化炉
内に含酸素気体もしくは酸素を吹込んで石炭をガス化 し、 (b)鉱石還元炉排ガスを冷却、脱水、脱炭酸した後圧
力変動防止用のガスホルダを経由して鉱石還元炉から排
出される還元鉄と熱交換させて昇温し、 (c)この昇温された排ガスを前記石炭ガス化炉からの
発生ガスと混合して鉱石還元炉に吹込む ことを特徴とする鉄鉱石の還元方法。
[Scope of Claims] 1. A method for reducing iron ore in an ore reduction furnace using high-temperature gas generated in a fluidized bed coal gasification furnace, including: (a) oxygenating coal in a fluidized bed coal gasification furnace; For gasification, a packed bed of coal ash is formed in the lower part of the fluidized bed gasifier, and an oxygen-containing gas or oxygen is blown into the fluidized bed gasifier through this ash packed bed to convert the coal. (b) After the ore reduction furnace exhaust gas is cooled, dehydrated, and decarboxylated, it is heated by exchanging heat with the reduced iron discharged from the ore reduction furnace via a gas holder to prevent pressure fluctuations; (c) A method for reducing iron ore, characterized in that the heated exhaust gas is mixed with gas generated from the coal gasifier and blown into an ore reduction furnace.
JP2411787A 1987-02-04 1987-02-04 Method for reducing iron ore Pending JPS63192811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2411787A JPS63192811A (en) 1987-02-04 1987-02-04 Method for reducing iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411787A JPS63192811A (en) 1987-02-04 1987-02-04 Method for reducing iron ore

Publications (1)

Publication Number Publication Date
JPS63192811A true JPS63192811A (en) 1988-08-10

Family

ID=12129378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411787A Pending JPS63192811A (en) 1987-02-04 1987-02-04 Method for reducing iron ore

Country Status (1)

Country Link
JP (1) JPS63192811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035779A1 (en) * 2008-09-26 2010-04-01 株式会社神戸製鋼所 Method of coal gasification and direct ironmaking and system therefor
WO2010136378A1 (en) * 2009-05-28 2010-12-02 Siemens Vai Metals Technologies Gmbh & Co Method and device for the reduction of oxidic iron carriers using a reducing gas from a coal gasifier
JP2013505356A (en) * 2009-09-17 2013-02-14 ポスコ Reduced iron manufacturing apparatus and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035779A1 (en) * 2008-09-26 2010-04-01 株式会社神戸製鋼所 Method of coal gasification and direct ironmaking and system therefor
JP2010077312A (en) * 2008-09-26 2010-04-08 Kobe Steel Ltd Coal gasification and method of direct iron manufacture, and system comprising both
CN102137915A (en) * 2008-09-26 2011-07-27 株式会社神户制钢所 Method of coal gasification and direct ironmaking and system therefor
US8551213B2 (en) 2008-09-26 2013-10-08 Kobe Steel, Ltd. Method of coal gasification and direct ironmaking and system therefor
WO2010136378A1 (en) * 2009-05-28 2010-12-02 Siemens Vai Metals Technologies Gmbh & Co Method and device for the reduction of oxidic iron carriers using a reducing gas from a coal gasifier
JP2013505356A (en) * 2009-09-17 2013-02-14 ポスコ Reduced iron manufacturing apparatus and manufacturing method thereof
US9783862B2 (en) 2009-09-17 2017-10-10 Posco Apparatus for manufacturing reduced iron and method for manufacturing the same
US10557179B2 (en) 2009-09-17 2020-02-11 Posco Method for manufacturing reduced iron

Similar Documents

Publication Publication Date Title
KR101612305B1 (en) Method and system for energy-optimized and carbon dioxide emission-optimized iron production
JP2677366B2 (en) Method and apparatus for producing molten pig iron and obtaining electric energy
US5961690A (en) Process for producing molten pig iron of liquid steel preproducts and plant for carrying out the process
US5833734A (en) Process for the direct reduction of particulate iron-containing material and a plant for carrying out the process
US4158552A (en) Entrained flow coal gasifier
US20140042677A1 (en) Process and device for producing pig iron or liquid steel precursors
SE436760B (en) PROCEDURE FOR DIRECT REDUCTION OF IRON OXIDE WITH THE REDUCING GAS
JP3939492B2 (en) Coal gasification direct reduction iron making
JPS6227509A (en) Method for operating blast furnace
CA2193855C (en) Direct reduction process for iron oxide-containing materials
US4202534A (en) Method and apparatus for producing metallized iron ore
US4729786A (en) Process for the direct reduction of iron-oxide-containing materials
AU723568B2 (en) Method for producing liquid pig iron or liquid steel pre-products and plant for carrying out the method
CA2202918C (en) Process for producing liquid raw iron or steel basic products and iron sponge and plant for implementing it
JPS63192811A (en) Method for reducing iron ore
US5997609A (en) Sponge iron production process and plant
US4412858A (en) Method of converting iron ore into molten iron
US4734128A (en) Direct reduction reactor with hot discharge
JP2005105046A (en) Method for desulfurizing reducing gas, method for operating blast furnace and method for using reducing gas
US5846268A (en) Process for producing liquid pig iron or liquid steel preproducts and sponge iron as well as a plant for carrying out the process
US4316741A (en) Blast furnace process employing exchange fuel gas
CA2207416A1 (en) Process for the direct reduction of particulate iron-oxide-containing material and plant for carrying out the process
CA2248231A1 (en) Plant and process for the production of spongy metal
RU2255117C1 (en) Method of production of sponge iron in shaft furnaces
US2631934A (en) Method of manufacturing a gas rich in carbon monoxide