JPS6319241B2 - - Google Patents

Info

Publication number
JPS6319241B2
JPS6319241B2 JP55014421A JP1442180A JPS6319241B2 JP S6319241 B2 JPS6319241 B2 JP S6319241B2 JP 55014421 A JP55014421 A JP 55014421A JP 1442180 A JP1442180 A JP 1442180A JP S6319241 B2 JPS6319241 B2 JP S6319241B2
Authority
JP
Japan
Prior art keywords
rolling
strip
stand
change
rolling stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55014421A
Other languages
Japanese (ja)
Other versions
JPS56111515A (en
Inventor
Yoshikazu Kodera
Fumio Watanabe
Hideharu Togano
Okinori Nakajima
Seiji Konishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP1442180A priority Critical patent/JPS56111515A/en
Publication of JPS56111515A publication Critical patent/JPS56111515A/en
Publication of JPS6319241B2 publication Critical patent/JPS6319241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • B21B37/26Automatic variation of thickness according to a predetermined programme for obtaining one strip having successive lengths of different constant thickness

Description

【発明の詳細な説明】 本発明はストリツプを圧延する連続圧延機にお
いて走間板厚変更圧延を行う場合、各圧延スタン
ドの圧下率変動量配分の決定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the distribution of the rolling reduction variation amount of each rolling stand when performing strip thickness changing rolling in a continuous rolling mill for rolling strip.

近年、熱間タンデム圧延機において圧延速度を
全く落とすことなく成品板厚を自動的に精度良く
1本の圧延されるストリツプから連続した二種類
以上の成品を自動的に圧延し歩留向上、燃料原単
位の向上、ロツト余剰材の減少などが計るストリ
ツプの走間板厚変更圧延のニーズが急速に高まり
つつある。
In recent years, hot tandem rolling mills have been used to automatically roll two or more consecutive products from one rolled strip with high accuracy without reducing the rolling speed at all, improving yields and improving fuel efficiency. There is a rapidly increasing need for rolling strips with varying running thicknesses to improve production efficiency and reduce lot surplus material.

従来より、連続タンデム圧延機における各圧延
スタンドの板厚と圧下率配分の比は、各圧延スタ
ンドの駆動電動機の出力と最高圧延速度、ストリ
ツプの通板性、ストリツプ形状等への配慮を含
め、最も適したスケジユールにより圧下位置、圧
延ロール速度設定等を決定していることは周知の
事実である。すなわち、板厚変更の実施とは関係
なく、各圧延スタンドの圧下率を圧延されるスト
リツプの上流側では大きく下流側では小さく設定
する操業が行なわれている。これは主として、圧
延機を駆動している電動機の出力制約とストリツ
プの形状、ルーパ角の振れおよびその他の実操業
上の経験に基づくものである。例えば通常圧延に
おける各圧延スタンドの従来法における圧下率配
分パターンは、板厚変更圧延後においても各圧延
スタンドへの圧下率配分の比を板厚変更前と同じ
配分比に保つたまま一定パーセントづつ変化させ
ている。もしこの従来法によつて板厚変更圧延を
実施すると、圧延速度の速い下流側圧延機間での
マスフローの乱れが大きくなり、上流側では圧延
スタンド間の張力値変動が小さいにもかかわらず
下流側に張力変動が集中することになり、オフゲ
ージ長の増加、ストリツプの板破断、ストリツプ
幅狭、しぼり込み等に至り安定かつ精度良く板厚
変更圧延ができない欠点を生じていた。
Conventionally, the ratio of plate thickness and rolling reduction distribution for each rolling stand in a continuous tandem rolling mill has been determined by taking into consideration the output of the drive motor of each rolling stand, the maximum rolling speed, strip threadability, strip shape, etc. It is a well-known fact that the rolling position, rolling roll speed setting, etc. are determined based on the most suitable schedule. That is, irrespective of the change in plate thickness, operations are carried out in which the rolling reduction ratio of each rolling stand is set to be large on the upstream side of the strip to be rolled and small on the downstream side. This is mainly based on the output constraints of the electric motor driving the rolling mill, the shape of the strip, the runout of the looper angle, and other operational experiences. For example, in conventional rolling, the rolling reduction distribution pattern for each rolling stand in normal rolling is such that even after thickness change rolling, the rolling reduction distribution ratio to each rolling stand is maintained at the same distribution ratio as before the thickness change, and is distributed at a constant percentage. It's changing. If thickness change rolling is carried out using this conventional method, the disturbance in mass flow between the rolling mills on the downstream side where the rolling speed is high will become large, and even though the tension value variation between the rolling stands on the upstream side is small, the Tension fluctuations are concentrated on the side, resulting in an increase in off-gauge length, strip breakage, narrow strip width, and squeezing, resulting in the drawback that stable and accurate strip thickness change rolling cannot be performed.

本発明は、連続圧延において圧延されているス
トリツプの走間板厚変更圧延を安定かつ精度よ
く、能率的におこなうことを第1の目的とし、圧
延スタンド間のマスフロー変動が少なくなるよう
また特定の圧延スタンドに圧延負荷が集中するこ
とがないように各圧延スタンドの最適圧下率変化
量を配分する圧下率配分方法に関する。
The primary purpose of the present invention is to stably, accurately, and efficiently change the thickness of a strip during continuous rolling, and to reduce mass flow fluctuations between rolling stands. The present invention relates to a rolling reduction distribution method for distributing the optimum rolling reduction change amount of each rolling stand so that the rolling load is not concentrated on the rolling stands.

上記目的を達成するために本発明においては、
複数台の圧延スタンドを配置した連続圧延機にお
いて1本の圧延されるストリツプのある特定点以
降をその特定点以前とは全く異なる成品板厚とな
るよう圧延速度を落とすことなく走間にて板厚を
変更するいわゆる走間板厚変更圧延を行う場合、
走間板厚変更後の成品板厚(以下第二の成品板厚
と呼ぶ)に対する各圧延スタンドの圧下位置を走
間板厚変更前の成品板厚(以下第一の成品板厚と
呼ぶ)に対する圧下位置より変更する際に、各圧
延スタンドにおける第一成品から第二成品への圧
下率の変化量を各圧延スタンド間のマスフロー乱
れおよびストリツプ張力値変動量に着目し、板厚
変更前後においてどの圧延スタンド間でも同じ量
のマスフロー乱れを発生させるように調整する。
すなわちこの圧下率の変化量を各圧延速度の関数
としてストリツプの上流側圧延スタンドで圧下率
変化量を大きく選び、下流側ではその変化量を小
さく選ぶことにより、特定の圧延スタンドでの板
厚変更に伴うマスフロー乱れを集中させることな
くまた圧延されるストリツプの幅精度、形状、通
板性および操業性を全く害することなく安定かつ
精度よく走間板厚変更圧延を行う。
In order to achieve the above object, in the present invention,
In a continuous rolling mill equipped with multiple rolling stands, a strip is rolled in between runs without reducing the rolling speed so that the thickness of the finished product after a certain point is completely different from that before that point. When performing so-called running plate thickness change rolling to change the thickness,
The rolling position of each rolling stand with respect to the product thickness after changing the running plate thickness (hereinafter referred to as the second product plate thickness) is calculated as the product plate thickness before changing the running plate thickness (hereinafter referred to as the first finished product plate thickness). When changing the rolling position from the strip thickness, the amount of change in the rolling reduction from the first product to the second product at each rolling stand is determined by focusing on the mass flow disturbance between each rolling stand and the strip tension value fluctuation before and after changing the plate thickness. Adjustments are made so that the same amount of mass flow disturbance occurs between all rolling stands.
In other words, by selecting a large amount of change in the reduction rate as a function of each rolling speed at the upstream rolling stand of the strip and a small change in the downstream side, it is possible to change the strip thickness at a specific rolling stand. To stably and accurately perform strip thickness changing rolling while running without concentrating the mass flow disturbance accompanying the rolling, and without impairing the width accuracy, shape, threadability and operability of the strip to be rolled.

以下本発明について詳細に説明する。二台以上
並べられた連続タンデム圧延機において圧延速度
を全く落すことなく圧延されているストリツプを
走間にて板厚変更圧延する場合、問題点としては
次の二つがある。第1には板厚変更部分のストリ
ツプのオフゲージ長の短縮であり、第2にはスタ
ンド間マスフロー量変化に伴うストリツプ張力の
急激な変化によりストリツプの破断、幅狭、しぼ
り込み等の解消である。本発明では次の事実に注
目して板厚変更に必要な圧下率変化量の各圧延ス
タンドへの配分比を最適化する。いまあるi圧延
スタンドでのストリツプの入側板厚をH(i)、出
力板厚をh(i)、圧下率をr(i)、ロール周速す
なわち中立点速度をVR(i)、入側板速度をvi
(i)、出側板速度をvp(i)とし添字iを圧延ス
タンド番号とする時、圧延理論の知るところによ
り次式が成立する。
The present invention will be explained in detail below. There are two problems when rolling a strip to change its thickness between runs in two or more continuous tandem rolling mills without reducing the rolling speed at all. The first is to shorten the off-gauge length of the strip where the plate thickness is changed, and the second is to eliminate problems such as strip breakage, narrowing, and squeezing due to rapid changes in strip tension due to changes in mass flow between stands. . In the present invention, the distribution ratio of the rolling reduction change necessary for changing the plate thickness to each rolling stand is optimized by paying attention to the following fact. In the current i rolling stand, the input thickness of the strip is H(i), the output thickness is h(i), the rolling reduction is r(i), the roll circumferential speed, that is, the neutral point speed is V R (i), and the input side thickness is H(i). The side plate speed is v i
(i) When the outlet plate speed is v p (i) and the subscript i is the rolling stand number, the following equation holds true according to the knowledge of rolling theory.

r(i)=H(i)−h(i)/H(i) ……(1) vi(i)=VR(i)〔1−r(i)〕・〔1+f(i)

……(2) vp(i)=VR(i)・〔1+f(i)〕 ……(3) ここでf(i)はi圧延スタンドにおける先進
率であり、上記圧下率r(i)を用いて次の近似
式でも表わされる。
r(i)=H(i)-h(i)/H(i)...(1) v i (i)=V R (i) [1-r(i)]・[1+f(i)
]
...(2) v p (i)=V R (i)・[1+f(i)] ...(3) Here, f(i) is the advance rate at rolling stand i, and the above rolling reduction rate r(i ) can also be expressed by the following approximate formula.

f(i)=α・r(i) ……(4) 但しαは比例定数であり圧延理論の知るところ
により一般に0.25の値をとるものとされている。
上記(2)、(3)および(4)式よりi圧延スタンドのスト
リツプ入側速度および出側速度は vi(i)≒VR(i)〔1−(1−α)・r(i)〕
……(5) vp(i)≒VR(i)〔1+α・r(i)〕 ……(6) となり、定常圧延状態における第(i−1)圧延
スタンドと第i圧延スタンド間のストリツプのル
ープ量(ストリツプの長さ)L(i−1、i)の
関係より次式が成立する。
f(i)=α·r(i) (4) However, α is a proportionality constant, and according to the knowledge of rolling theory, it generally takes a value of 0.25.
From the above equations (2), (3) and (4), the strip entry speed and exit speed of the i rolling stand are v i (i)≒V R (i) [1-(1-α)・r(i )〕
...(5) v p (i)≒V R (i) [1+α・r(i)] ...(6), and the distance between the (i-1)th rolling stand and the i-th rolling stand in the steady rolling state is The following equation holds true from the relationship between the loop amount of the strip (the length of the strip) L(i-1, i).

vp(i−1)=vi(i) ……(7) ところで各圧延スタンドでのロール周速〔VR
(i)、i=1……N〕ようにすでに圧延スケジユ
ールにより決められている。圧延中のストリツプ
を走間板厚変更する場合、各圧延スタンドでの圧
下率を変化させる時、各圧延スタンド間における
圧延されるストリツプのループ量の変化ΔLは次
式で表わされる。
v p (i-1)=v i (i) ...(7) By the way, the roll circumferential speed at each rolling stand [V R
(i), i=1...N] is already determined by the rolling schedule. When changing the running plate thickness of a strip during rolling, when changing the rolling reduction ratio at each rolling stand, the change ΔL in the loop amount of the rolled strip between each rolling stand is expressed by the following equation.

ΔL(i−1、i)=VR(i−1)・αΔr−(i−1) +VR(i)・(1−α)Δr(i) ……(8) ここでΔL(i−1、i)は第(i−1)圧延ス
タンドと第i圧延スタンド間でのストリツプのル
ープ量の変化量を示し、ΔL(i−1、i)は、i
−1スタンドでの板厚変更に伴う出側板速度の変
化によるループ量L(i−1、i)の変化量と、
iスタンドでの板厚変更に伴う入側板速度の変化
に伴うループ量変化量との和である。ΔL(i−
1、i)が増加するとi−1スタンドとiスタン
ドの間のストリツプの張力が低下してたるみを生
じ、減少すると張力が上昇する。過大な張力にな
るとストリツプが幅狭、板切れを生ずる。Δr(i
−1)、Δr(i)はそれぞれ第(i−1)圧延ス
タンド第i圧延スタンドにおける圧下率の変化量
を示す。この導びかれた(8)式において第一項は圧
延されるストリツプの上流側圧延スタンドの先進
率変化によるものであり、第二項は圧延されるス
トリツプの下流側圧延スタンドの後進率変化によ
るものである。なお、先に述べたようにα=0.25
で、α<(1−α)である。又、連続圧延機にお
いては、VR(i−1)<VR(i)であるから、前記
(8)式の右辺の第一項より第二項の方が大きいの
で、この第二項がストリツプのループ量の変化を
ほとんど決定づけることになる。この他に第(i
−1)および第i圧延スタンドのロール周速の変
化ΔVR(i−1)、ΔVR(i)による圧延されてい
るストリツプのマスフロー量の変化があるが、通
常はサクセツシブ制御と呼ばれる補償が施されて
おりかつまたここでは圧延されているストリツプ
の板厚変更に伴うマスフロー乱れ(ループ量の変
化)そのものを論じるものであるため考慮しない
ものとする。この(8)式の意味することは、各圧延
スタンド間におけるストリツプのループ量の変化
が当該圧延スタンドの圧延速度と圧下率変化量と
の積として一意的に決定づけられ、通常は第一項
と第二項が同時点で発生するものではなく発生の
タイミングがずれていることも特徴的なことであ
る。すなわち圧下率変化量が各圧延スタンドで同
一であればロール周速の速い下流側スタンドにマ
スフロー量の乱れが集中することは明白である。
ΔL (i-1, i) = V R (i-1)・αΔr-(i-1) +V R (i)・(1-α)Δr(i) ...(8) Here, ΔL(i- 1, i) indicates the amount of change in the loop amount of the strip between the (i-1)th rolling stand and the i-th rolling stand, and ΔL(i-1, i) is the i
- The amount of change in the loop amount L (i-1, i) due to the change in the exit side plate speed due to the change in plate thickness at the -1 stand,
This is the sum of the loop amount change due to the change in the entrance plate speed due to the change in plate thickness at the i-stand. ΔL(i-
As 1, i) increases, the tension in the strip between the i-1 and i stands decreases, causing sag, and as it decreases, the tension increases. Excessive tension will cause the strip to become narrow and break. Δr(i
-1) and Δr(i) each represent the amount of change in the rolling reduction in the (i-1)th rolling stand and the i-th rolling stand. In the derived equation (8), the first term is due to the change in the advance rate of the upstream rolling stand of the strip being rolled, and the second term is due to the change in the backward rate of the rolling stand downstream of the strip being rolled. It is something. Furthermore, as mentioned earlier, α=0.25
And α<(1-α). In addition, in a continuous rolling mill, since V R (i-1)<V R (i), the above
Since the second term on the right side of equation (8) is larger than the first term, this second term almost determines the change in the loop amount of the strip. In addition to this,
-1) and changes in the roll circumferential speed of the i-th rolling stand ΔV R (i-1), ΔV R (i) There are changes in the mass flow amount of the strip being rolled, but compensation called successive control is usually used. This discussion does not take into account the mass flow disturbances (changes in loop amount) that occur due to changes in the thickness of the strip being rolled. What this equation (8) means is that the change in the loop amount of the strip between each rolling stand is uniquely determined as the product of the rolling speed of the relevant rolling stand and the amount of change in rolling reduction, and usually the first term It is also characteristic that the second term does not occur at the same time, but rather at different timings. That is, if the rolling reduction rate change is the same in each rolling stand, it is clear that disturbances in the mass flow amount will be concentrated on the downstream stand where the roll circumferential speed is high.

本発明では前記(8)式によつて導びかれた上記の
結果に基づき、ロール周速の遅いストリツプ上流
側圧延スタンドで圧下率変化量を大きく選びロー
ル周速の速いストリツプの下流側では圧下率変化
量を小さく選ぶことにより特定圧延スタンドでの
ストリツプのマスフロー量の乱れを集中させるこ
となく、またストリツプのマスフロー制御をする
上においても圧延スタンド間のストリツプ張力値
を良好に保ちストリツプの幅精度、形状、通板性
および操業性を全く害することなく走間板厚変更
圧延を圧延速度を落すことなく実現できる。
In the present invention, based on the above results derived from equation (8), the amount of change in rolling reduction is set large at the rolling stand upstream of the strip where the roll circumferential speed is slow, and the rolling reduction is increased at the downstream side of the strip where the roll circumferential speed is fast. By selecting a small rate change amount, disturbances in the mass flow of the strip at a particular rolling stand are not concentrated, and when controlling the mass flow of the strip, the strip tension value between the rolling stands can be maintained at a good value to improve strip width accuracy. , it is possible to realize rolling with a change in plate thickness during running without reducing the rolling speed, without impairing the shape, threadability or operability at all.

また本発明により、各圧延スタンドでの圧下率
変化量はほぼロール周速の逆比となるような選択
となるが、各圧延スタンドの駆動電動機の出力、
最高圧延速度、その他の条件により許容される範
囲でこれを実施する場合もその効果は大きい。
Furthermore, according to the present invention, the amount of change in rolling reduction at each rolling stand is selected to be approximately the inverse ratio of the roll circumferential speed, but the output of the drive motor of each rolling stand,
The effect is also great when this is carried out within the range permitted by the maximum rolling speed and other conditions.

次に本発明を適用した連続圧延のシユミレーシ
ヨン結果について第1図、第2図を参照しながら
述べる。
Next, simulation results of continuous rolling to which the present invention is applied will be described with reference to FIGS. 1 and 2.

従来の圧延法では各圧延スタンドでの圧下率は
一般にストリツプの通板性、形状、圧延スタンド
駆動電動機の出力制約およびその他の条件により
上流側圧延スタンドで大きく下流側で小さくなる
様圧延スケジユールにより計算されている。いま
走間板厚変更圧延する場合、各圧延スタンドでの
圧下率を板厚変更以前にくらべて各圧延スタンド
ともに一定パーセントだけ変化させて走間板厚変
更する従来法をケース1とし同一の走間板厚変更
を本発明による方法すなわち各圧延スタンドの圧
下率の変化量を最適化して各圧延スタンドの圧下
率を決定する場合をケース2とする。従来法(ケ
ース1)と本発明による方法(ケース2)につい
て圧延現象を記述する論理式およびモデルと圧延
スタンド間ループ量制御機能を含めた計算機によ
るシユミレーシヨン結果を第1図および第2図に
示す。第1図は板厚変更圧延前後の各圧延スタン
ドにおける圧下率値を示し従来法を代表するケー
ス1では板厚変更前とほぼ同じ圧下率配分にて一
定パーセントだけ変化した板厚変更後の各圧延ス
タンドの圧下率配分を示し、本発明を適用した方
法であるケース2では各圧延スタンドの圧下率変
化量を前記(8)式に従いどの圧延スタンド間におい
ても板厚変更前後で同じ量のマスフロー乱れを発
生するよう平均して分散させることによつて、板
厚変更後の各圧延スタンドへの圧下率配分を板厚
変更前よりストリツプの上流側においては大きく
離し下流側においては近づけた値としていること
が特徴である。
In conventional rolling methods, the rolling reduction rate at each rolling stand is generally calculated based on a rolling schedule in which the rolling reduction rate at each rolling stand is larger at the upstream rolling stand and smaller at the downstream side, depending on the strip threadability, shape, output constraints of the rolling stand drive motor, and other conditions. has been done. When rolling to change the running plate thickness, case 1 is the conventional method in which the rolling plate thickness is changed by changing the rolling reduction ratio at each rolling stand by a certain percentage compared to before the plate thickness change. Case 2 is a case in which the plate thickness is changed using the method according to the present invention, that is, the rolling reduction ratio of each rolling stand is determined by optimizing the amount of change in the rolling reduction ratio of each rolling stand. Figures 1 and 2 show the logical formulas and models that describe the rolling phenomena for the conventional method (Case 1) and the method according to the present invention (Case 2), as well as computer simulation results including the inter-rolling stand loop amount control function. . Figure 1 shows the rolling reduction values at each rolling stand before and after the plate thickness change rolling. In Case 1, which represents the conventional method, each plate thickness after the plate thickness change is changed by a certain percentage with almost the same reduction rate distribution as before the plate thickness change. In case 2, which is a method to which the present invention is applied, the rolling reduction ratio distribution of the rolling stands is shown, and in case 2, the amount of change in the rolling reduction ratio of each rolling stand is calculated according to the equation (8) above, so that the mass flow is the same between all rolling stands before and after changing the plate thickness. By averaging and distributing the turbulence, the distribution of rolling reductions to each rolling stand after the thickness change is set to a value that is much wider on the upstream side of the strip and closer to the value on the downstream side than before the thickness change. It is characterized by the presence of

このように各圧延スタンドの圧下率配分を本発
明を適用した方法により最適化した場合と従来法
による方式の場合についてシユミレーシヨンした
結果、ストリツプの板厚変更時点でのスタンド間
張力値の変動例を第2図に示す。このシユミレー
シヨン例では板厚変更率を30%ストリツプのスキ
ツドマークによる外乱を−30℃三角波としてい
る。第2図より明らかな様に従来法によるケース
1では下流側圧延スタンド間でのストリツプの張
力値変動が著しく大きいのにくらべ、本発明を適
用したケース2では各圧延スタンド間におけるス
トリツプ張力変動の集中を避け各圧延スタンド間
張力変動量を平均化かつ分散した効果が良く表わ
されており、従来法にくらべて下流側圧延スタン
ド間でのストリツプ張力値変動が一段と小さい。
As a result of simulating the case where the rolling reduction ratio distribution of each rolling stand is optimized by the method applying the present invention and the case using the conventional method, an example of the variation of the inter-stand tension value at the time of changing the strip thickness is shown. Shown in Figure 2. In this simulation example, the disturbance due to the skid mark of the strip with a plate thickness change rate of 30% is a -30°C triangular wave. As is clear from Fig. 2, in Case 1 using the conventional method, the strip tension value fluctuations between the downstream rolling stands are extremely large, whereas in Case 2 where the present invention is applied, the strip tension fluctuations between each rolling stand are extremely large. The effect of averaging and dispersing the tension fluctuations between each rolling stand while avoiding concentration is clearly demonstrated, and the fluctuation of the strip tension value between the downstream rolling stands is much smaller than in the conventional method.

上述のようにシユミレーシヨンの結果からも一
層明らかなように本発明ではストリツプの走間板
厚変更圧延においてストリツプの板幅精度、形
状、操業性、通板性の大幅な向上はもちろんのこ
とストリツプのオフゲージ長を更に短縮できる効
果を奏する。
As is clear from the above-mentioned simulation results, the present invention not only greatly improves the width accuracy, shape, operability, and threadability of the strip in strip thickness changing rolling, but also improves the strip thickness. This has the effect of further shortening the off-gauge length.

さらに本発明の適用範囲の拡大はこの発明の主
旨を何ら変更することなく各圧延スタンド間にス
トリツプの張力値制御機構を設けた冷間タンデム
連続圧延機とルーパ機構を設けた熱間タンデム連
続圧延機更にはルーパ制御機構を備えない連続タ
ンデム圧延機にもすべて有効である。また各圧延
スタンド間ルーパ制御張力制御に固有の応答差が
ある場合それらの応答性の良否をも加味して各圧
延スタンドでの圧下率の変化量の配分を決定する
本発明による方法は再に実圧延にも即した操業効
率が大幅に期待できることは言うまでもない。
Furthermore, the scope of application of the present invention can be expanded to include a cold tandem continuous rolling mill equipped with a strip tension value control mechanism between each rolling stand and a hot tandem continuous rolling mill equipped with a looper mechanism, without changing the gist of the present invention in any way. It is also effective for continuous tandem rolling mills that do not have a looper control mechanism. In addition, if there is a response difference inherent in the looper control tension control between each rolling stand, the method according to the present invention which takes into account the quality of the response and determines the distribution of the amount of change in rolling reduction at each rolling stand can be applied again. Needless to say, it can be expected to significantly improve operational efficiency in line with actual rolling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法における板厚変更前後の各圧延
スタンドの圧下率配分の一例と、本発明を適用し
て最適化された各圧延スタンドの板厚変更前後の
圧下率配分の一例のシユミレーシヨン結果を示す
グラフ、第2図は従来法と本発明を適用した場合
における各圧延スタンド間ストリツプの張力値変
動量とそのピーク値をシユミレーシヨンした結果
を示すグラフである。
FIG. 1 shows an example of the distribution of the rolling reduction ratio of each rolling stand before and after changing the plate thickness in the conventional method, and a simulation result of an example of the rolling reduction ratio distribution of each rolling stand before and after changing the plate thickness optimized by applying the present invention. FIG. 2 is a graph showing the simulation results of the amount of variation in tension value of the strip between each rolling stand and its peak value when the conventional method and the present invention are applied.

Claims (1)

【特許請求の範囲】[Claims] 1 連続圧延において同一ストリツプの板厚を変
更するに伴ない、各圧延スタンドの圧下率変更比
率をそれぞれ個別に定め、上流側圧延スタンドの
圧下率変更比率を下流側圧延スタンドの圧下率変
更比率よりも大とし、板厚変更前後で、各圧延ス
タンドにおいて同じ量のマスフロー乱れを発生す
る圧下率変更比率とする、連続圧延における圧下
率配分方法。
1. When changing the thickness of the same strip during continuous rolling, the rolling reduction ratio for each rolling stand is determined individually, and the rolling ratio for the upstream rolling stand is determined from the rolling ratio for the downstream rolling stand. A rolling reduction distribution method in continuous rolling, in which the rolling reduction ratio is set to be large, and the rolling reduction ratio is set so that the same amount of mass flow disturbance occurs in each rolling stand before and after the plate thickness is changed.
JP1442180A 1980-02-08 1980-02-08 Distributing method for draft percentage in continuous rolling work Granted JPS56111515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1442180A JPS56111515A (en) 1980-02-08 1980-02-08 Distributing method for draft percentage in continuous rolling work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1442180A JPS56111515A (en) 1980-02-08 1980-02-08 Distributing method for draft percentage in continuous rolling work

Publications (2)

Publication Number Publication Date
JPS56111515A JPS56111515A (en) 1981-09-03
JPS6319241B2 true JPS6319241B2 (en) 1988-04-21

Family

ID=11860550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1442180A Granted JPS56111515A (en) 1980-02-08 1980-02-08 Distributing method for draft percentage in continuous rolling work

Country Status (1)

Country Link
JP (1) JPS56111515A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294499A (en) * 1985-06-21 1986-12-25 ヤマハ株式会社 Musical sound signal generator
CN103785692B (en) * 2012-10-31 2016-01-27 宝山钢铁股份有限公司 Hot tandem produces the method for length direction different target gauge strips steel

Also Published As

Publication number Publication date
JPS56111515A (en) 1981-09-03

Similar Documents

Publication Publication Date Title
US7748247B2 (en) Regulating flatness of a metal strip at the output of a roll housing
JP2000312909A (en) Plate width controller
US3650135A (en) Control for rolling means having successine rolling stands
US5396695A (en) Method of controlling a time period between continuously cast slabs entering a rolling stand
JPS6319241B2 (en)
US5809817A (en) Optimum strip tension control system for rolling mills
JPH0910809A (en) Method for controlling continuous hot rolling mill
JPH05177223A (en) Method for adjusting running schedule of tandem rolling mill
US5101650A (en) Tandem mill feed forward gage control with speed ratio error compensation
KOndo et al. A new automatic gauge control system for a reversing cold mill
JPH0433522B2 (en)
JP2914135B2 (en) Looper control method in hot running thickness change
JPH06179006A (en) Method for changing and rolling sheet thickness of running hot rolled strip
KR100354214B1 (en) Change rolling speed during hot continuous rolling
JP2907419B2 (en) Method of controlling elongation of rolled sheet material in rolling equipment
JP3270389B2 (en) Control method of coil tip thickness in hot finish rolling
JPS6352963B2 (en)
KR790001893B1 (en) Shape control method for tandem rolling mill
JPS6257704A (en) Method for controlling shape in sheet rolling
JPH07164029A (en) Flying hot rolled plate thickness changing control method
JPH03180204A (en) Tension control method of stock to be rolled in continuous mill
JPS63174710A (en) Method for controlling shape
JPH0576916A (en) Method for controlling width in cold tandem rolling
JPH06269825A (en) Method for controlling meander of metal plate in mill
JPH02112810A (en) Method for controlling shape of strip for cold rolling mill