JPS63191721A - Liquefying inert gas dripping device - Google Patents

Liquefying inert gas dripping device

Info

Publication number
JPS63191721A
JPS63191721A JP1370187A JP1370187A JPS63191721A JP S63191721 A JPS63191721 A JP S63191721A JP 1370187 A JP1370187 A JP 1370187A JP 1370187 A JP1370187 A JP 1370187A JP S63191721 A JPS63191721 A JP S63191721A
Authority
JP
Japan
Prior art keywords
inert gas
liquefied inert
nozzle
liquefied
liquefying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1370187A
Other languages
Japanese (ja)
Inventor
岩室 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SANGARIA BEBARETSUJI CO
NIPPON SANGARIA BEBARETSUJI CO KK
Original Assignee
NIPPON SANGARIA BEBARETSUJI CO
NIPPON SANGARIA BEBARETSUJI CO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SANGARIA BEBARETSUJI CO, NIPPON SANGARIA BEBARETSUJI CO KK filed Critical NIPPON SANGARIA BEBARETSUJI CO
Priority to JP1370187A priority Critical patent/JPS63191721A/en
Publication of JPS63191721A publication Critical patent/JPS63191721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vacuum Packaging (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は軟質容器特にアルミニウム製ツーピース缶(D
I缶)などに非炭故飲料を充填するためには飲料中の炭
酸ガスによる缶内圧の上昇が期待てさないことから、i
α体窒素等の液化不活性ガスを巻き締め直前に飲料充填
後の缶内部に滴下する)α化不活性ガス滴下装置に間す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides flexible containers, particularly aluminum two-piece cans (D
When filling non-charcoal beverages into non-charcoal beverages such as I cans, the pressure inside the can cannot be expected to increase due to carbon dioxide gas in the beverage.
A liquefied inert gas such as α-nitrogen is dripped into the inside of the can after the beverage is filled just before the can is tightened.

従来、上記のような液化不活性ガス、なかんずく)α体
窒素を缶体内に充填するための1!置としては液1ヒ不
活性ガスを充填すべき缶体が搬送されてきた時だけ)α
化不活性ガスを滴下する間欠滴下式と、常時液化不活性
ガスを流下する連続流下式の2方式の装置がある。本発
明は液化不活性ガスを充填すべき缶体が搬送されてきた
時だけ)α化不活性ガスを滴下する間欠;向下式装置の
改良に係わるものである。
Conventionally, 1! (Only when a can body to be filled with liquid 1 and inert gas is transported) α
There are two types of devices: an intermittent drip type that drips liquefied inert gas, and a continuous flow type that constantly drips liquefied inert gas. The present invention relates to an improvement in an intermittent downward-direction type device that drips pregelatinized inert gas (only when a can to be filled with liquefied inert gas is transported).

現在知り得ろ)α化不活性ガスを滴下する間欠滴下式装
置は、連続流下式の欠点である缶ピッチ間での液化不活
性ガスのロスをなくすべく開発された装置であり、一定
量の液化不活性ガスを一缶毎滴下するものである。そし
て、短時間とこ一定量の)α化不活性ガスを吐出するた
めに液化不活性ガスの貯溜槽にOllから0.2kg/
cm2の微圧をかけ圧力制御により運転しているが、そ
の圧力変動は約10Xと大さく、また、圧力がかかつて
いるため液化不活性ガスの滴下速度が大きくなり、内容
物液面で、α化不活性ガスが誂ね返り、その結果、缶内
圧のばらつきが大きくなる。つまり缶内圧を適正値にし
ようとしてもほとんどIkg/cm”以下の低圧缶とな
ってしまう。そのため必要以上の液化不活性ガスを吐出
することとなる。
The intermittent dripping device that drips pregelatinized inert gas (currently known) is a device that was developed to eliminate the loss of liquefied inert gas between can pitches, which is a drawback of the continuous flow type. Inert gas is dripped into each can. Then, in order to discharge a certain amount of α-inert gas for a short period of time, 0.2kg/0.2kg/
It is operated under pressure control by applying a small pressure of cm2, but the pressure fluctuation is large, about 10X, and because of the pressure, the dropping rate of liquefied inert gas increases, and the liquid level of the contents increases. The pregelatinized inert gas rebounds, and as a result, the variation in the internal pressure of the can becomes large. In other words, even if an attempt is made to bring the internal pressure of the can to an appropriate value, the pressure of the can is almost always lower than Ikg/cm''.As a result, more liquefied inert gas than necessary is discharged.

そして、上記のごとくの欠点をなくすべく液化不活性ガ
スの運動方向を缶体が搬送する方向と一致させたり、内
容物液面でのショックを和らげるためにIα化不活性ガ
スをスプレー状に添加するという9日前もあるが、それ
てもばらつきが大さくかつ液1ヒ不活性ガスの使用量が
多いという。
In order to eliminate the above-mentioned drawbacks, the direction of movement of the liquefied inert gas is made to match the direction in which the can is conveyed, and Iα-formed inert gas is added in a spray form to soften the shock at the liquid surface of the contents. There have been nine days since the start of the test, but even then there are large variations and the amount of liquid and inert gas used is large.

本発明は上記の如き従来例の問題点を解消したlへ(ヒ
不活性ガス滴下装置を提供することを目的とするもので
ある。
It is an object of the present invention to provide an inert gas dripping device that eliminates the problems of the prior art as described above.

以下に本発明の実8′i!例を添付図面を参照して説明
する。第1図は本発明の一実施例を示すものである。第
1図において、光ファイバー方式による液滴1/制御セ
ンサーl″r:液化不活性ガスの液面を高精度(±3m
m)  に検知し、コントローラーlOを介して電磁開
閉弁2で液化不活性ガスの送出、滲出を行う。液面制御
センサー1は101用されてきた熱電対方式やフロート
方式と比較して、湾1ヒ不活性ガスのロス率がほとんど
なくかつ高精度である。すなわち、液体窒素の液面をL
 E Dなとの発光素子から出た光が光ファイバーを介
して液面での反射、屈折を利用したものである。1:1
.つて、熱E】人は殆とゼロに等しい。発光素子はL 
E Dにのみ限定されろものではなく半導体レーザーな
とでもよい。液(ヒ不活性ガスの貯溜槽は真空槽8て構
成され、バルブ11により真空引さを1テう。ざらに真
空槽8の中には、モレキュラーシーブスが充填され液化
不活性ガスの貯溜時に、より高真空が達成されろように
なっている。すなわち、通常のロータリーポンプでの真
空到達度はIQ−3mml13程度であるが、モレキュ
ラーシーブが充填されている1間合ロータリーポンプて
引くと、イα化不活性ガスの貯溜時には10−4から1
0−’mm11gとなり高価なターボ真空ポンプなとで
予め高真空引にする必要もない。つまり、貯溜槽自体が
ソープションポンプの役割を果している。
The following are the fruits of the present invention! Examples will be described with reference to the accompanying drawings. FIG. 1 shows an embodiment of the present invention. In Figure 1, a droplet 1/control sensor l″r using an optical fiber method measures the liquid level of liquefied inert gas with high precision (±3 m
m) is detected, and the liquefied inert gas is sent out and seeped out using the electromagnetic on-off valve 2 via the controller IO. The liquid level control sensor 1 has almost no loss rate of inert gas and is highly accurate compared to the thermocouple type or float type used in the 101. In other words, the liquid level of liquid nitrogen is L
Light emitted from a light-emitting element such as ED is transmitted through an optical fiber and utilizes reflection and refraction at the liquid surface. 1:1
.. Therefore, heat E] for humans is almost equal to zero. The light emitting element is L
It is not limited to only ED, but may also be a semiconductor laser. The storage tank for the liquid (inert gas) is composed of a vacuum tank 8, which is evacuated once by a valve 11.The vacuum tank 8 is filled with molecular sieves, which are used to store the liquefied inert gas. In other words, the degree of vacuum achieved with a normal rotary pump is about IQ-3 mml13, but if you pull it with a 1-way rotary pump filled with molecular sieve, 10-4 to 1 when storing α-gelatinized inert gas
0-'mm and 11g, so there is no need to use an expensive turbo vacuum pump to create a high vacuum in advance. In other words, the storage tank itself plays the role of a sorption pump.

本装置は基本的には間欠滴下式であるが、液化不活性ガ
スの貯溜槽には圧力をかけないため概念としては間欠流
下式である。つまり、流下式のロス部分をカットすると
いう考え方である。
This device is basically an intermittent drip type, but in concept it is an intermittent flow type because no pressure is applied to the liquefied inert gas storage tank. In other words, the idea is to cut the loss part of the flow-down method.

従来の間欠滴下式の場合に貯溜槽に圧力をかけていたの
は、高速ライン(1200epm )での追随性を持た
すためと青光られるが、装置が必然的に複雑どなり高価
なものとなった。本発明者らがこれらの点について鋭意
検討した結果、間欠流下式でも十分追随することが判明
した。すなわち、ノズルロッド5の軽量化、ソレノイド
4のTiX的制御による改良、つまり、ソレノイドの制
i3jを高速化するために適正電圧が12ボルトのソレ
ノイドの場合、24ボルトの電圧をかけてノズルロッド
5の引上げ時間の短縮をはかった。
In the case of the conventional intermittent dripping method, pressure was applied to the reservoir tank in order to maintain followability on high-speed lines (1200epm), but the equipment was inevitably complicated and expensive. . As a result of intensive study by the present inventors on these points, it was found that even an intermittent flow type can sufficiently follow the same. In other words, in order to reduce the weight of the nozzle rod 5 and improve the solenoid 4 through TiX-like control, in other words, to speed up the control i3j of the solenoid, in the case of a solenoid whose appropriate voltage is 12 volts, the nozzle rod 5 is changed by applying a voltage of 24 volts. The aim was to shorten the lifting time.

しかし、間欠流下式でもlノズルに対して1個のノズル
孔で運転した場合、液化不活性ガスの液適が大さくなり
、その結果、内容物液面での飛散が多くなるという現象
を発見した。そのため缶内圧の変動が大きくなった。そ
こで、1ノズルに対してノズル孔を2〜4個に増やし液
滴の大きさを小さくした結果、液化不活性ガスの飛散は
ほとんどなくなり、缶内圧のばらつきのない製品を生産
ずろことが可能となった。これ以上孔の数を増やすと1
ノズルでは液滴が再凝集して大きな液滴となり効果はな
かった。またもし孔を離しても液滴の表面(倉が大きく
なり、蒸発しやすくなる。そして、このノズルの材質に
間しては、金属たとえば炭素鋼あるいはステンレス等で
製作テストした結果、そのfA伝導性の高さく 10〜
50kcal/n+−hr・’C)から周囲から熱を伝
え、その結果、ノズル11近での液化不活性ガスのバブ
リングを起こし、一定量の液適を滴下することが困難で
あった。そこで、熱伝導率の低いtオTl (0,2〜
0.3kcal/m−hr・℃)つまり高分子化合物を
選び、かつ対衝撃強度の大きいものたとえばガラス、炭
素、アラミドあるいはボロン繊推て強化したプラスチッ
クで製作テストした。
However, we discovered a phenomenon in which, even with intermittent flow, when operating with one nozzle hole per nozzle, the amount of liquefied inert gas increases, and as a result, the contents scatter more on the liquid surface. did. This resulted in large fluctuations in the can internal pressure. Therefore, by increasing the number of nozzle holes to 2 to 4 per nozzle and reducing the size of the droplets, the scattering of liquefied inert gas was almost eliminated, making it possible to produce products without variations in can internal pressure. became. If you increase the number of holes further, it will become 1
In the nozzle, the droplets re-agglomerated into large droplets and had no effect. Furthermore, even if the holes are separated, the surface of the droplet (the surface of the droplet) becomes larger and evaporates more easily.The material of this nozzle is metal, such as carbon steel or stainless steel. Highly sexual 10~
Heat was transferred from the surroundings from 50 kcal/n+-hr·'C), and as a result, bubbling of the liquefied inert gas occurred near the nozzle 11, making it difficult to drip a fixed amount of liquid. Therefore, Tl (0,2~
In other words, a polymer compound (0.3 kcal/m-hr.degree. C.) was selected, and materials with high impact resistance such as glass, carbon, aramid, or plastic reinforced with boron fiber were fabricated and tested.

その結果、いずれの繊唯強化復合tオ科を用いても1a
IWの大きさは一定となり極めて良好な流量が得られ、
また始動時間の短縮にもなった。
As a result, it was found that 1a
The size of the IW is constant and an extremely good flow rate is obtained.
It also shortened startup time.

本装置の液化不活性ガスの流量調整は、一定のノズル口
径に対して、ノズルロッド5の開閉時間および液化不活
性ガスの液面の高さの変更により容易に可変でき、運転
中でも変更できろ機能を有する。つまり、ノズル口径に
もよるがノズルロッド5の開閉時間を0〜40m5ec
 、可変するだけで液化不活性ガスの1缶あたりの流量
が0.17〜0.341の間で調整ができるので極めて
融通性がきく機能を有している。通常、20G/2 +
 1−径の350g缶にはホットバックで0.25m1
の液体窒素を充填すれば約1.8J/cm’の缶内圧が
得られる。
The flow rate adjustment of the liquefied inert gas of this device can be easily varied for a fixed nozzle diameter by changing the opening/closing time of the nozzle rod 5 and the height of the liquefied inert gas liquid level, and can be changed even during operation. Has a function. In other words, depending on the nozzle diameter, the opening and closing time of the nozzle rod 5 is 0 to 40 m5ec.
The flow rate per can of liquefied inert gas can be adjusted between 0.17 and 0.341 by simply changing the flow rate, so it has an extremely flexible function. Usually 20G/2 +
1-diameter 350g can with hot bag 0.25ml
If the tank is filled with liquid nitrogen, an internal pressure of about 1.8 J/cm' can be obtained.

実施例 第1因に示した装置を用い、 B2O,9のアイソトニ
ック飲料を206/211径の350g缶に、充填温度
90℃、パ充填速度430cpmでノズル口径φ1.4
mm+X 3個1、)α体窒素の水頭圧140mIw、
ノズル開閉時閏30m5ec。
Using the apparatus shown in Example 1, an isotonic beverage containing BO, 9 was filled into a 350 g can with a diameter of 206/211 at a filling temperature of 90°C, a filling speed of 430 cpm, and a nozzle diameter of φ1.4.
mm+X 3 pieces 1,) Water head pressure of α-nitrogen 140 mIw,
Leap 30m5ec when opening and closing the nozzle.

で約18万缶操業した。その結果、缶内圧の平均が1.
8kg/cm2、圧力幅は1.6〜2.0kg/cm2
であり、また、実際の液体窒素の使用量はllokgで
あった。
Approximately 180,000 cans were operated. As a result, the average can internal pressure was 1.
8kg/cm2, pressure range is 1.6~2.0kg/cm2
The actual amount of liquid nitrogen used was 10 kg.

以上のように、本装置による実缶製造においても缶内圧
のばらつきも少なく、また、液体窒素の使用量も僅少で
あった。
As described above, even in the production of actual cans using this apparatus, there was little variation in can internal pressure, and the amount of liquid nitrogen used was also small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 1・・・液面制御センサー、2・・・Mll開開閉弁3
・・・ミストセパレーター、4・・・ソレノイド、5・
・・ノズルロッド、6・・・ノズル、7・・・モレキュ
ラーシーブス、8・・・真空貯溜槽、9・・・缶検知セ
ンサー、10・・・コントローラー、11・・・真空引
き用バルブ、12・・・液体窒素タンク、13・・・ガ
ス放出口、14・・・バネ。 特許出願人 株式会社日本サンガリアベバレツジカンパ
ニー
Fig. 1 1...Liquid level control sensor, 2...Mll on/off valve 3
...Mist separator, 4...Solenoid, 5.
... Nozzle rod, 6... Nozzle, 7... Molecular sieve, 8... Vacuum storage tank, 9... Can detection sensor, 10... Controller, 11... Vacuuming valve, 12 ...Liquid nitrogen tank, 13...Gas discharge port, 14...Spring. Patent applicant: Japan Sangaria Beverage Company, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 容器の密封直前に容器内に液化不活性ガスを充填するた
めの装置において、液化不活性ガスの貯溜槽が液化不活
性ガス貯溜時高真空を維持するためモレキュラーシーブ
スを充填した真空断熱槽で構成され、さらに、液化不活
性ガスの液面制御を光ファイバー方式を採用するととも
に、間欠滴下ノズルの形状が1ノズルに対して2〜4個
のノズル孔を持ち、かつその材質が熱伝導率が低く又強
度の大きいガラス、炭素、アラミド、ボロン繊維強化プ
ラスチック(総称して繊維強化複合材料)より成る液化
不活性ガス滴下装置。
In a device for filling a container with liquefied inert gas immediately before sealing the container, the liquefied inert gas storage tank is composed of a vacuum insulation tank filled with molecular sieves to maintain a high vacuum while storing the liquefied inert gas. In addition, an optical fiber method is used to control the liquid level of the liquefied inert gas, the shape of the intermittent dripping nozzle has 2 to 4 nozzle holes per nozzle, and the material is made of a material with low thermal conductivity. A liquefied inert gas dripping device made of strong glass, carbon, aramid, and boron fiber-reinforced plastics (collectively referred to as fiber-reinforced composite materials).
JP1370187A 1987-01-22 1987-01-22 Liquefying inert gas dripping device Pending JPS63191721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1370187A JPS63191721A (en) 1987-01-22 1987-01-22 Liquefying inert gas dripping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1370187A JPS63191721A (en) 1987-01-22 1987-01-22 Liquefying inert gas dripping device

Publications (1)

Publication Number Publication Date
JPS63191721A true JPS63191721A (en) 1988-08-09

Family

ID=11840508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1370187A Pending JPS63191721A (en) 1987-01-22 1987-01-22 Liquefying inert gas dripping device

Country Status (1)

Country Link
JP (1) JPS63191721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614699U (en) * 1992-07-22 1994-02-25 株式会社東理社 Low temperature liquefied gas dropping device
JP2014020667A (en) * 2012-07-18 2014-02-03 Taiyo Nippon Sanso Corp Low temperature liquefied gas supplying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614699U (en) * 1992-07-22 1994-02-25 株式会社東理社 Low temperature liquefied gas dropping device
JP2014020667A (en) * 2012-07-18 2014-02-03 Taiyo Nippon Sanso Corp Low temperature liquefied gas supplying device

Similar Documents

Publication Publication Date Title
US4588000A (en) Method and apparatus for metering and dispensing volatile liquids
JPH02500020A (en) Controlled supply of cryogenic liquids
EP1106510A1 (en) Method and device for manufacturing positive pressure packaging body
US20210277491A1 (en) Cryogenic laser shock strengthening method and apparatus based on laser-induced high temperature plasma technology
EP0421597B1 (en) A liquid dispensing system and packaging apparatus which includes such a system
US5743096A (en) Controlled dosing of liquid cryogen
US20070157563A1 (en) Method and Apparatus for Inerting Head Space of a Capped Container
US4607489A (en) Method and apparatus for producing cold gas at a desired temperature
AU7619598A (en) Method and device for sequentially spraying a cryogenic liquid, cooling method and installation making application thereof
JPS63191721A (en) Liquefying inert gas dripping device
US5465582A (en) Cryogenic liquid dispensers
US20070056652A1 (en) Method and Apparatus for Inerting Head Space of a Container by Way of Chute Attachment
JPH0740915B2 (en) Continuous freezing device for viscous liquids
US4253502A (en) Carbonated beverage bottling apparatus
CN102582873A (en) Method and device for filling containers
JP4025418B2 (en) Method and apparatus for manufacturing gas replacement positive pressure package
US2888789A (en) Method of filling volatile propellant on warm product
US20060010886A1 (en) Liquid cryogen dosing system with nozzle for pressurizing and inerting containers
EP1012109A2 (en) A process and a device for headspace foaming of containers filled with carbonated beverages
EP2906497B1 (en) Carbon dioxide dosing apparatus
CN211649823U (en) Filling valve of liquid nitrogen filling machine
JP2000128122A (en) Liquefied gas spraying and filling method, and its device
WO2008039184A1 (en) Method and apparatus for inerting head space of a capped container
JP2000326921A (en) Inert gas charging device
Ghering Improving the Strength of Glass Containers Through Design