JPS63191684A - Production of electrotehrmal-type transfer material - Google Patents

Production of electrotehrmal-type transfer material

Info

Publication number
JPS63191684A
JPS63191684A JP62024217A JP2421787A JPS63191684A JP S63191684 A JPS63191684 A JP S63191684A JP 62024217 A JP62024217 A JP 62024217A JP 2421787 A JP2421787 A JP 2421787A JP S63191684 A JPS63191684 A JP S63191684A
Authority
JP
Japan
Prior art keywords
resistance layer
low
layer
resin
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62024217A
Other languages
Japanese (ja)
Inventor
Naonobu Miama
尚伸 美甘
Noboru Kotani
小谷 昇
Akio Shimizu
清水 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62024217A priority Critical patent/JPS63191684A/en
Publication of JPS63191684A publication Critical patent/JPS63191684A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/3825Electric current carrying heat transfer sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Impression-Transfer Materials And Handling Thereof (AREA)

Abstract

PURPOSE:To reduce contact resistance at a part of contact with an energizing electrode and suppress diffusion of an electric current through a low resistance layer, by providing the low-resistance layer on a high-resistance layer on the side for contact with the energizing electrode by spray coating. CONSTITUTION:A low-resistance layer is provided by using a coating material comprising a resin and a conductivity-affording agent. By removing a solvent by drying after spray coating, the low-resistance layer is constituted of a conductive resin material comprising a mixture of the resin and the conductivity- affording agent. The resin is preferably an acrylic resin or the like. The conductivity-affording agent may be, for example, a carbon material such as carbon black and graphite, or a powder of a metal such as silver, copper, nickel, aluminum and gold. The resin and the conductivity-affording agent are used in respective relative amounts of 10-60 pts.wt. and 40-90 pts.wt. A mixture of the resin and the conductivity-affording agent is used in the form of the coating material, by diluting with a solvent before spray coating. By the spray coating, the low-resistance layer is provided in the thickness of 0.1-3 mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二層構造の抵抗層を有する通電式感熱転写体の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an electrically conductive thermal transfer member having a two-layered resistance layer.

〔従来の技術〕[Conventional technology]

通電式感熱転写記録法とは、抵抗層、導電層および熱溶
融性インク層を備えた転写体の抵抗層に記録電極針と呼
ばれる先端が針状をした通電用電極を接触させ、電圧を
印加して電流が通電用電極から抵抗層、導電層の順に流
れて帰路電極に帰るようにし、電流が抵抗層を通過する
際に発生する熱でインクを部分的に溶融させ、その溶融
した部分のインクを祇その他の記録体に転写させる記録
法である。
The current-carrying thermal transfer recording method is a method in which a current-carrying electrode with a needle-shaped tip called a recording electrode needle is brought into contact with the resistance layer of a transfer body that includes a resistance layer, a conductive layer, and a heat-melting ink layer, and a voltage is applied. The current flows from the current-carrying electrode to the resistive layer and then to the conductive layer before returning to the return electrode.The heat generated when the current passes through the resistive layer partially melts the ink, and the melted portion This is a recording method in which ink is transferred to a recording medium such as yam or other recording medium.

この通電式感熱転写記録法では、抵抗層の抵抗値が大き
いと通電用電極と抵抗層との接触抵抗も大きくなるため
、その部分でエネルギー損失が生じ、また接触抵抗値が
抵抗層の各部分で一様でなく大きくバラライで印字特性
に影響を与えるため、印字特性が低下するという問題が
あった。
In this current-carrying thermal transfer recording method, when the resistance value of the resistance layer is large, the contact resistance between the current-carrying electrode and the resistance layer also becomes large, resulting in energy loss at that part, and the contact resistance value varies at each part of the resistance layer. There was a problem in that the printing characteristics were deteriorated because the printing characteristics were not uniform and varied widely, which affected the printing characteristics.

そこで、その解決法として、特開昭59−227492
号公報や特開昭60−64893号公報などには抵抗層
の通電用電極と接触する側に抵抗の低い抵抗層を設けて
、接触抵抗を#、滅することが提案されている。
Therefore, as a solution to this problem, Japanese Patent Application Laid-Open No. 59-227492
JP-A-60-64893 and the like propose that a resistance layer having a low resistance is provided on the side of the resistance layer that comes into contact with the current-carrying electrode to eliminate contact resistance.

ところが、上記特開昭59−227492号公報や特開
昭60−64893号公報では、低抵抗層の具体的形成
手段を明らかにしておらず、また、低抵抗層(特開昭5
9−227492号公報や特開昭60−64893号公
報では、低抵抗層は「通電層」という表現で示されてい
る)の厚さも15μmに形成している。しかしながら、
本発明者らが検討したところでは、そのように低抵抗層
が15μmもある場合には、通電用電極との接触抵抗は
低減できても、低抵抗層が厚すぎて、低抵抗層のところ
で電流の拡散が生じて充分な印字特性が得られず、また
通電用電極の消耗をはやめる原因にもなるなどの問題が
あった。
However, the above-mentioned JP-A-59-227492 and JP-A-60-64893 do not disclose specific means for forming the low-resistance layer.
In JP-A No. 9-227492 and JP-A-60-64893, the low-resistance layer (indicated by the expression "current-carrying layer") is also formed to have a thickness of 15 μm. however,
The inventors have investigated that when the low-resistance layer is as thick as 15 μm, even if the contact resistance with the current-carrying electrode can be reduced, the low-resistance layer is too thick. There have been problems in that current diffusion occurs, making it impossible to obtain sufficient printing characteristics, and also causing premature wear of the current-carrying electrodes.

すなわち、低抵抗層が厚いということは、抵抗の低い層
が厚くなるということであるため、通電用電極からの電
流が低抵抗層のところで拡散されて、所望とする部分で
の発熱が少なくなり、予定した部分のインクの熔融が行
われなくなって、所望とする印字が得られなくなる。そ
のため、印加電圧を大きくすることが必要となり、その
結果、通電用t&の消耗をはやめることになるのである
In other words, a thicker low-resistance layer means that the lower-resistance layer is thicker, so the current from the current-carrying electrode is diffused in the low-resistance layer, and less heat is generated in the desired area. , the ink is not melted in the intended area, making it impossible to obtain the desired print. Therefore, it is necessary to increase the applied voltage, and as a result, consumption of the current-carrying t& can be reduced.

このように、低抵抗層が厚いと電流が拡散されるという
不利があるにもかかわらず、上記特開昭59−2274
92号公報や特開昭60−64893号公報において、
低抵抗層が厚く形成されるのは、その形成法の関係上、
薄く形成することが困難であるということに基づくもの
と考えられる。
In this way, despite the disadvantage that a thick low-resistance layer causes the current to spread, the above-mentioned Japanese Patent Application Laid-Open No. 59-2274
In Publication No. 92 and Japanese Unexamined Patent Publication No. 60-64893,
The reason why the low resistance layer is formed thick is because of its formation method.
This is thought to be due to the fact that it is difficult to form thin.

すなわち、上記の特開昭59−227492号公報や特
開昭60−64893号公報には、前述したように低抵
抗層の具体的形成手段が示されておらず、そのため、低
抵抗層の形成にあたっては、この種の分野において従来
から一般的に採用されている塗布方法が採用されるもの
と考えられるが、その塗布用組成物の固形分濃度(約3
5.5重量%)から判断すると、グラビアコートかまた
は溶液流延法が採用されるものと考えられる。
That is, the above-mentioned Japanese Patent Laid-Open No. 59-227492 and Japanese Patent Laid-Open No. 60-64893 do not disclose a specific means for forming a low resistance layer, and therefore, it is difficult to form a low resistance layer. For this purpose, it is thought that the coating method that has been commonly used in this type of field will be adopted, but the solid content concentration of the coating composition (approximately 3
5.5% by weight), it seems likely that gravure coating or solution casting will be employed.

しかしながら、最も一般式なグラビアコートでは、低抵
抗層形成時のグラビアロールによる加圧により、すでに
形成済みの高抵抗層などが機械的に破壊されるおそれが
あり、特に薄い低抵抗層を形成しようとすると高抵抗層
などの破壊が著しくなるので、薄い低抵抗層の形成は困
難である。また、高抵抗層の損傷を防ぐため、低抵抗層
を高抵抗層より先に形成することも考えられるが、低抵
抗層を先に形成して後から高抵抗層を形成するようなこ
とは、低抵抗層の厚さが薄く破壊がより大きくなるため
さらに行いがたい、一方、溶液流延法では、設定したス
リット間隙に塗材を流して塗膜を形成するため、既に形
成済みの層(本件では高抵抗層、導電層、熱溶融性イン
ク層)の厚みのバラツキも層形成に影響を与え、しかも
薄膜形成にあたっては塗材の粘度を下げるため、乾燥ま
での間に塗材中の溶剤が既に形成済の層に悪影響を及ぼ
すので、本質的に均一な薄膜形成が困難であり、そのた
め、前記のような厚さに形成され、その結果、電流の拡
散を招いて印字特性の低下を引き起こしたり、電極の消
耗をはやめる要因になるのである。
However, with the most common type of gravure coating, the pressure applied by the gravure roll when forming the low resistance layer may mechanically destroy the high resistance layer that has already been formed. In this case, the destruction of the high-resistance layer and the like becomes significant, making it difficult to form a thin low-resistance layer. Also, to prevent damage to the high-resistance layer, it is possible to form the low-resistance layer before the high-resistance layer, but it is not possible to form the low-resistance layer first and then form the high-resistance layer. However, in the solution casting method, the coating material is poured into a predetermined slit gap to form a coating film, which makes it even more difficult to perform because the low resistance layer is thin and the damage is greater. Variations in the thickness of the layers (in this case, the high-resistance layer, conductive layer, and hot-melt ink layer) also affect layer formation, and in order to reduce the viscosity of the coating material when forming a thin film, the viscosity of the coating material is reduced before drying. It is inherently difficult to form a uniform thin film because the solvent has an adverse effect on the already formed layer, and therefore the thickness mentioned above results in current spreading and poor printing characteristics. This can cause problems and reduce the wear and tear of the electrodes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、これまでの通電式感熱転写体が持っていた
通電用電極と抵抗層との間の接触抵抗が高く印字特性を
低下させたり、あるいはそれを解決するための低抵抗層
が厚く形成されていたために電流の拡散が生じてエネル
ギーロスが出るため、印加電圧を大きくしなければ所望
とする印字ができなかったという問題点を解決し、低抵
抗層を薄く形成する方法を開発して、通電用電極との接
触抵抗を低減し、かつ低抵抗層による電流の拡散を少な
くすることを目的とする。
This invention solves the problem of the high contact resistance between the current-carrying electrode and the resistance layer that conventional current-carrying type thermal transfer materials had, which deteriorates printing characteristics, or the formation of a thick low-resistance layer to solve this problem. To solve this problem, we developed a method to form a thin low-resistance layer. The purpose is to reduce the contact resistance with the current-carrying electrode and to reduce the diffusion of current through the low-resistance layer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、インクを溶融させるための熱を発生する高い
電気抵抗を存する高抵抗層の通電用電極と接触する側に
スプレー塗装によって低抵抗層を0.1〜3μmの厚さ
に形成することによって、通電用電極との接触抵抗を低
くするとともに、低抵抗層が厚く形成されることによっ
て生じる電流の拡散などの弊害を排除して、印字特性が
良好な通電式感熱転写体が得られるようにしたものであ
る。
The present invention involves forming a low-resistance layer with a thickness of 0.1 to 3 μm by spray coating on the side of the high-resistance layer having high electrical resistance that generates heat to melt the ink and comes into contact with the current-carrying electrode. In this way, it is possible to lower the contact resistance with the current-carrying electrode, eliminate the negative effects such as current diffusion caused by forming a thick low-resistance layer, and obtain a current-carrying thermal transfer material with good printing characteristics. This is what I did.

すなわち、本発明では低抵抗層をスプレー塗装で形成す
るため、0.1〜3μmという薄い厚さで低抵抗層を形
成することができ、低抵抗層による電流の拡散を防止す
ることができる。また、転写体ないしはその構成部材に
グラビアロールなどの塗布用治具をまったく接触するこ
となく低抵抗層を形成することができるので、インク層
や導電層を損傷することがない、そして、そのような薄
い低抵抗層の形成により、通電用電極との接触抵抗を低
減でき、印字特性の良好な通電式感熱転写体が得られる
ようになるのである。
That is, in the present invention, since the low-resistance layer is formed by spray coating, the low-resistance layer can be formed with a thickness as thin as 0.1 to 3 μm, and current diffusion due to the low-resistance layer can be prevented. In addition, since the low resistance layer can be formed without any contact with the transfer body or its constituent members with a coating jig such as a gravure roll, the ink layer or conductive layer will not be damaged. By forming such a thin, low-resistance layer, the contact resistance with the current-carrying electrode can be reduced, making it possible to obtain a current-carrying thermal transfer member with good printing characteristics.

本発明において、低抵抗層の形成にあたっては樹脂と導
電性付与剤とを含んだ塗材が用いられ、スプレー塗装後
の溶剤の乾燥により低抵抗層は樹脂と導電性付与剤との
混合物からなる導電性樹脂材料で構成されることになる
が、該樹脂としては、例えばポリカーボネート、ポリア
ミド、ポリイミド、ポリアミドイミド、ポリウレタン、
ポリプロピレン、ポリエチレンテレフタレート、ポリブ
チレンテレフタレート、アクリル樹脂などが好適に用い
られる。これらの樹脂は皮膜形成能と導電性付与剤を結
着する結着作用を有し、かつ融点または軟化点が150
°C以上と高く、印字にあたって熱溶融性インクを溶融
させる程度の熱(通常、熱溶融性インクは約50〜14
0°C程度で溶融する)では溶融しないという理由から
好用される。
In the present invention, a coating material containing a resin and a conductivity-imparting agent is used to form the low-resistance layer, and when the solvent dries after spray coating, the low-resistance layer is formed of a mixture of the resin and the conductivity-imparting agent. It will be composed of a conductive resin material, such as polycarbonate, polyamide, polyimide, polyamideimide, polyurethane,
Polypropylene, polyethylene terephthalate, polybutylene terephthalate, acrylic resin, etc. are preferably used. These resins have a film-forming ability and a binding effect to bind the conductivity imparting agent, and have a melting point or softening point of 150
°C or higher, and the heat is high enough to melt the heat-melt ink during printing (normally, heat-melt ink is about 50 to 14
It is preferably used because it does not melt at temperatures of about 0°C.

一方、導電性付与剤としては、例えばカーボンブラック
、黒鉛などの炭素系のものや、銀、銅、ニッケル、アル
ミニウム、金などの金属粉末などが用いられる。そして
、これら樹脂と導電性付与剤との割合としては樹脂10
〜60重量部に対して導電性付与剤40〜911部とす
るのが好ましい、これは樹脂量が前記範囲より少なくな
ると均一な低抵抗層の形成が困難になり、一方、樹脂量
が前記範囲より多くなると抵抗が大きくなって低抵抗層
としての役割である接触抵抗の低減という役割が充分に
果たせなくなるからである。
On the other hand, as the conductivity imparting agent, for example, carbon-based materials such as carbon black and graphite, and metal powders such as silver, copper, nickel, aluminum, and gold are used. The ratio of these resins and the conductivity imparting agent is 10% of the resin.
It is preferable to use 40 to 911 parts of the conductivity imparting agent to 60 parts by weight. This is because if the resin amount is less than the above range, it will be difficult to form a uniform low resistance layer. On the other hand, if the resin amount is less than the above range, This is because if the number of layers increases, the resistance increases and the low-resistance layer cannot sufficiently fulfill its role of reducing contact resistance.

この樹脂と導電性付与剤との混合は、スプレー塗装にあ
たって溶剤で希釈して塗材にしてから用いることが必要
な関係上、溶剤の存在下で混合すればよい、その際に、
この樹脂と導電性付与剤との混合物中に、例えば界面活
性剤などを導電性付与剤の分散を良くするなどの目的で
若干加えてもよい。
The resin and the conductivity imparting agent may be mixed in the presence of a solvent because it is necessary to dilute it with a solvent and use it as a coating material before spray painting.
For example, a small amount of a surfactant or the like may be added to the mixture of the resin and the conductivity imparting agent for the purpose of improving the dispersion of the conductivity imparting agent.

本発明において、スプレー塗装により低抵抗層を0.1
〜3μmの厚さに形成するが、これは低抵抗層の厚みが
3μmより厚くなると前述したように低抵抗層で電流の
拡散が生じてエネルギーロスが生じ、また低抵抗層の厚
さが0.1μmより薄くなると厚さの減少に応じて低抵
抗層の役割である接触抵抗を下げることができなくなる
し、また、接触抵抗のバラツキが大きくなるからである
。つまり、低抵抗層が厚くなると電流の拡散が生じやす
くなり、低抵抗層が薄くなると接触抵抗のバラツキが大
きくなるのである。
In the present invention, a low resistance layer of 0.1
It is formed to a thickness of ~3 μm, but this is because if the thickness of the low resistance layer becomes thicker than 3 μm, current diffusion occurs in the low resistance layer and energy loss occurs as described above. This is because if it becomes thinner than .1 μm, it becomes impossible to lower the contact resistance, which is the role of a low resistance layer, as the thickness decreases, and the variation in contact resistance increases. In other words, the thicker the low-resistance layer, the more likely current diffusion will occur, and the thinner the low-resistance layer, the greater the variation in contact resistance.

スプレー塗装にあたっては、樹脂と導電性付与剤とを含
んだ塗材が使用されるが、このスプレー塗装を容易に実
施し、かつ塗装物の厚みをコントロールするにあたって
重要な条件は、塗材の粘度と、被塗装物、つまり転写体
の移動速度を適正にすることである。塗材粘度としては
、通常2〜50センチボイズ程度にするのが好ましく、
このときの固形分濃度はおおよそ1〜IO重量%程度に
相当する。したがって、前記特開昭59−227492
号公報や特開昭60−64893号公報のように固形分
濃度が約35.5重量%もある場合は、粘度が高すぎ、
スプレー塗装により低抵抗層を形成するものではないこ
とが明らかである。そして、移動速度としては、通常5
〜50m/winにするのが好ましい。このような条件
を採用することにより、低抵抗層を0.1〜3μmとい
う薄い厚さで容易に形成することができる。つまり、ス
プレー塗装ではグラビアコートのように高抵抗層や、導
電層、熱溶融性インク層などを損傷させることがないし
、また既に形成済みの高抵抗層などに厚みのバラツキが
あっても、低抵抗層としてはその塗材の粘度と被塗装物
の移動速度を適正に設定することによって均一な厚みで
薄い層を形成することができる。
For spray painting, a coating material containing a resin and a conductivity imparting agent is used, but in order to easily carry out this spray coating and to control the thickness of the coated object, an important condition is the viscosity of the coating material. And, the moving speed of the object to be coated, that is, the transfer body, must be appropriate. The viscosity of the coating material is preferably about 2 to 50 centimeters,
The solid content concentration at this time corresponds to approximately 1 to IO weight %. Therefore, the above-mentioned JP-A-59-227492
When the solid content concentration is about 35.5% by weight as in Japanese Patent Publication No. 60-64893, the viscosity is too high;
It is clear that a low resistance layer is not formed by spray painting. And the movement speed is usually 5
It is preferable to set it to ~50m/win. By employing such conditions, a low resistance layer can be easily formed with a thickness as thin as 0.1 to 3 μm. In other words, unlike gravure coating, spray painting does not damage high-resistance layers, conductive layers, heat-melt ink layers, etc., and even if there are variations in the thickness of high-resistance layers that have already been formed, As the resistance layer, a thin layer with a uniform thickness can be formed by appropriately setting the viscosity of the coating material and the moving speed of the object to be coated.

本発明において、低抵抗層を上記のようにスプレー塗装
で薄く形成するが、それ以外の部分、例えば高抵抗層は
従来の抵抗層と同様に形成することができ、また導電層
や熱溶融性インク層などは従来同様に形成することがで
きる。
In the present invention, the low resistance layer is thinly formed by spray painting as described above, but other parts, such as the high resistance layer, can be formed in the same manner as conventional resistance layers, and the conductive layer and the The ink layer and the like can be formed in a conventional manner.

〔実施例〕〔Example〕

実施例1 ポリカーボネート15重量部をジクロロメタン130重
量部中に溶解させ、この溶液に導電性カーボンブラック
(米国キャボット社製のパルカンXC−72(商品名)
) 5.4重量部を添加し、ボールミルで8時間混合し
て分散させた。この分散物を厚さ75μmのポリエステ
ルフィルム(ポリエチレンテレフタレートフィルム)上
に乾燥時の厚さカ15±1μmになるように溶液流延法
で塗布し、乾燥して高抵抗層を形成した。この高抵抗層
の表面抵抗を測定したところ約650Ω/口であった。
Example 1 15 parts by weight of polycarbonate was dissolved in 130 parts by weight of dichloromethane, and conductive carbon black (Pulcan XC-72 (trade name) manufactured by Cabot, Inc., USA) was added to this solution.
) 5.4 parts by weight were added and mixed in a ball mill for 8 hours to disperse. This dispersion was applied onto a 75 μm thick polyester film (polyethylene terephthalate film) by a solution casting method to a dry thickness of 15±1 μm, and dried to form a high resistance layer. When the surface resistance of this high resistance layer was measured, it was approximately 650Ω/hole.

つぎに、この高抵抗層上にアルミニウムを1500人の
厚さに蒸着して導電層を形成し、さらに該導電層上にカ
ーボンブラックを着色剤として用い、ワックスを主バイ
ンダーとする熱溶融性インクをホットメルトコーティン
グ法により厚さ4μmに塗布して熱溶融性インク層を形
成した後、ポリエステルフィルムを高抵抗層から引き剥
がした。
Next, a conductive layer is formed by vapor-depositing aluminum to a thickness of 1,500 mm on this high-resistance layer, and then on the conductive layer, carbon black is used as a coloring agent, and hot-melt ink with wax as the main binder is applied. was applied to a thickness of 4 μm using a hot-melt coating method to form a heat-melt ink layer, and then the polyester film was peeled off from the high-resistance layer.

つぎに、上記高抵抗層のポリエステルフィルムに接して
いた側に、ポリカーボネート50重量部をジクロロメタ
ン670重量部に溶解したものの中に導電性カーボンブ
ラックを50重量部投入して混合し、さらにジクロロメ
タン700重量部を加えて溶液粘度が20センチボイズ
に調整したもの(固形分濃度約7重量%)をノズル径1
00μmのノズルを有するスプレー塗装装置で被塗装物
、つまり高抵抗層側を10m/+winの速度で移動さ
せて乾燥時の厚さが1μmになるようにスプレー塗装し
、乾燥して低抵抗層を形成した。この低抵抗層の表面抵
抗は100Ω/口であった。
Next, 50 parts by weight of conductive carbon black was added and mixed into a solution of 50 parts by weight of polycarbonate dissolved in 670 parts by weight of dichloromethane on the side of the high-resistance layer that was in contact with the polyester film, and then 700 parts by weight of dichloromethane was added. The solution viscosity was adjusted to 20 centivoise by adding 50% of the solution (solid content concentration about 7% by weight) to a nozzle diameter of 1%.
The object to be coated, that is, the high-resistance layer side, is moved at a speed of 10 m/+win using a spray coating device with a 00 μm nozzle, and the coating is spray-coated to a dry thickness of 1 μm. After drying, the low-resistance layer is formed. Formed. The surface resistance of this low resistance layer was 100Ω/hole.

上記のように製造した通電式感熱転写体を第1図に示す
0図中、1は低抵抗層1aと高抵抗層1bとからなる抵
抗層であり、2は導電層で、3は熱溶融性インク層であ
る。
The electrically conductive heat-sensitive transfer material produced as described above is shown in FIG. This is a sexual ink layer.

上記通電式感熱転写体を幅7flのリボン状に裁断し、
第2図に示すようなり様で用い、ボンド紙を記録体とし
て印字を行った。
The above-mentioned electrically conductive thermal transfer body was cut into a ribbon shape with a width of 7 fl,
Printing was carried out using bond paper as a recording medium in the manner shown in FIG.

第2図において、4はボンド紙からなる記録体であり、
通電式感熱転写体10の熱溶融性インク層3側に配置さ
れている。5は直径75μmのタングステン電極よりな
る通電用電極で、6はタングステン製の帰路電極であり
、通電用電極5を転写体10の低抵抗層la上に接触さ
せ、帰路電極6は導電層2に接触させている。この状態
で電極5.6間に0.5ミリ秒間20V、30mAの電
圧を印加し、抵抗層1(主として高抵抗層1b)を発熱
させて印字を行った。この印字を前記と同様に製造した
転写体5点について行い、印字の大きさを測定した。
In FIG. 2, 4 is a recording medium made of bond paper;
It is arranged on the heat-melting ink layer 3 side of the electrically conductive heat-sensitive transfer body 10. 5 is a current-carrying electrode made of a tungsten electrode with a diameter of 75 μm; 6 is a return electrode made of tungsten; the current-carrying electrode 5 is brought into contact with the low resistance layer la of the transfer body 10; I am in contact with it. In this state, a voltage of 20 V and 30 mA was applied between the electrodes 5.6 for 0.5 milliseconds to cause the resistance layer 1 (mainly the high resistance layer 1b) to generate heat to perform printing. This printing was performed on five transfer bodies manufactured in the same manner as above, and the size of the printing was measured.

その結果を第1表に平均値とバラツキで示す。The results are shown in Table 1 as average values and variations.

実施例2 被塗装物の移動速度を20m/+winに変え、低抵抗
層の厚さを0.5μmに形成したほかは実施例1と同様
にして通電式感熱転写体を製造し、ついで実施例1と同
条件下で印字を行った。その結果を第1表に示す。
Example 2 An electrically conductive thermal transfer body was manufactured in the same manner as in Example 1 except that the moving speed of the object to be coated was changed to 20 m/+win and the thickness of the low resistance layer was formed to 0.5 μm, and then Example Printing was carried out under the same conditions as in Example 1. The results are shown in Table 1.

実施例3 被塗装物の移動速度を5m/winに変え、低抵抗層の
厚さを3μmに形成したほかは実施例1と同様にして通
電式感熱転写体を製造し、ついで実施例1と同条件下で
印字を行った。その結果を第1表に示す。
Example 3 An electrically conductive thermal transfer body was manufactured in the same manner as in Example 1, except that the moving speed of the object to be coated was changed to 5 m/win and the thickness of the low resistance layer was formed to 3 μm. Printing was performed under the same conditions. The results are shown in Table 1.

実施例4 被塗装物の移動速度を50m/minに変え、低抵抗層
の厚さを0.1 p mに形成したほかは実施例1と同
様にして通電式感熱転写体を製造し、ついで実施例1と
同条件下で印字を行った。その結果を第1表に示す。
Example 4 An electrically conductive thermal transfer member was manufactured in the same manner as in Example 1 except that the moving speed of the object to be coated was changed to 50 m/min and the thickness of the low resistance layer was formed to 0.1 pm. Printing was carried out under the same conditions as in Example 1. The results are shown in Table 1.

比較例1 被塗装物の移動速度を3 m/sinに変え、低抵抗層
の厚さを5μmに形成したほかは実施例1と同様にして
通電式感熱転写体を製造し、ついで実施例1と同条件下
で印字を行った。その結果を第1表に示す。
Comparative Example 1 An electrically conductive thermal transfer body was manufactured in the same manner as in Example 1 except that the moving speed of the object to be coated was changed to 3 m/sin and the thickness of the low resistance layer was formed to 5 μm. Printing was carried out under the same conditions. The results are shown in Table 1.

比較例2 低抵抗層の形成を行わなかったほかは実施例1と同様の
構成の通電式感熱転写体を製造した。つまり、この通電
式感熱転写体は低抵抗層を設けずに高抵抗層と導電層と
熱溶融性インク層で構成されている。この通電式感熱転
写体について実施例1と同条件下で印字を行った。その
結果を第1表に示す。
Comparative Example 2 An electrically conductive thermal transfer member having the same structure as in Example 1 was manufactured except that the low resistance layer was not formed. In other words, this electrically conductive heat-sensitive transfer member is composed of a high-resistance layer, a conductive layer, and a heat-melting ink layer without providing a low-resistance layer. Printing was performed on this electrically conductive thermal transfer member under the same conditions as in Example 1. The results are shown in Table 1.

なお、第1表には低抵抗層の有無および低抵抗層の厚さ
が印字特性に与える影響を明らかにするために低抵抗層
の厚さ順に配列して印字試験結果を示した。
Note that Table 1 shows the printing test results arranged in order of the thickness of the low resistance layer in order to clarify the effects of the presence or absence of the low resistance layer and the thickness of the low resistance layer on printing characteristics.

第      1      表 第1表に示すように、低抵抗層を設けていない比較例2
では、接触抵抗が高いためにエネルギーロスが生じ、抵
抗層内での充分な発熱が得られず印字の大きさが小さく
なるとともに、接触抵抗のバラツキも大きいため、印字
にもバラツキが生じて、印字特性が非常に悪かった。こ
れに対し、本発明の実施例1〜4では、印字の大きさが
ほぼ予定したとおりであり、また印字のバラツキも小さ
く、印字特性が優れていた。
Table 1 As shown in Table 1, Comparative Example 2 without a low resistance layer
In this case, energy loss occurs due to the high contact resistance, and sufficient heat generation within the resistive layer is not achieved, resulting in a small print size.The contact resistance also varies widely, resulting in variations in print. The printing characteristics were very poor. On the other hand, in Examples 1 to 4 of the present invention, the print size was almost as expected, the variation in print was small, and the print characteristics were excellent.

すなわち、低抵抗層を設けた場合は、低抵抗層の厚さが
増加するとともにバラツキが小さくなったが、バラツキ
は低抵抗層の厚さが1.0μmを超えるとそれ以上では
変化がなかった。一方、印字の大きさは、低抵抗層の厚
さが増えるにしたがって電流の拡散が大きくなるため少
しずつ小さくなり、低抵抗層の厚さが3.0μmになる
と実施例3に示すように印字の大きさが95μmになり
、低抵抗層の厚さが5.0μmになると比較例2に示す
ように印字の大きさが70μmになった。
In other words, when a low-resistance layer was provided, the variation became smaller as the thickness of the low-resistance layer increased, but the variation did not change when the thickness of the low-resistance layer exceeded 1.0 μm. . On the other hand, as the thickness of the low-resistance layer increases, the size of the print gradually decreases because the current diffusion increases. When the size of the printed character became 95 μm and the thickness of the low resistance layer became 5.0 μm, the size of the printed character became 70 μm as shown in Comparative Example 2.

印字が予定した大きさより小さくなった場合、印加電圧
を大きくすることによって印字を太き(することができ
るが(逆に印字が予定より大きくなった場合、印加電圧
を小さくすることによって印字の大きさを適正にするこ
ともできる)、0.5ミリ秒間20Vの印加電圧で75
μmになったものを100μmまで大きくしようとする
と、印加電圧をかなり大きくせざるを得す、エネルギー
ロスが大きくなるとともに、通電用電極の損傷が大きく
なるおそれがある。しかし、低抵抗層の厚さが3.0μ
mの実施例3では、低抵抗層による電流の拡散がそれほ
ど大きくなく、95μmの印字が得られており、これを
100μmまで大きくするにはそれほど大きな印加電圧
を必要としないので、エネルギーロスもそれほど大きく
なく、通電用電極の損傷のおそれもほとんどないため、
実用可能であり、これら印字の大きさ、バラツキの両面
から判断して、低抵抗層の厚さとしては0.1〜3.0
μm1特に0.5〜1.0μmの範囲にするのが好まし
いといえる。
If the print size is smaller than expected, you can make the print thicker by increasing the applied voltage. 75 with an applied voltage of 20V for 0.5 ms.
If an attempt is made to increase the size from μm to 100 μm, the applied voltage will have to be considerably increased, which will increase energy loss and may increase damage to the current-carrying electrode. However, the thickness of the low resistance layer is 3.0μ
In Example 3 of M, the current diffusion due to the low resistance layer is not so large and a print of 95 μm is obtained, and increasing this to 100 μm does not require a very large applied voltage, so the energy loss is not so large. Since it is not large and there is little risk of damaging the current-carrying electrode,
Judging from both the size and variation of these prints, the thickness of the low resistance layer is 0.1 to 3.0, which is practical.
[mu]m1 It can be said that it is particularly preferable to set it in the range of 0.5 to 1.0 [mu]m.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、スプレー塗装により
低抵抗層を0.1〜3μmの厚さに形成することによっ
て、通電用電極と抵抗層との接触抵抗を低くし、かつ低
抵抗層での電流の拡散を抑制して、印字特性の良好な通
電式感熱転写体を提供することができた。
As explained above, in the present invention, by forming a low resistance layer with a thickness of 0.1 to 3 μm by spray coating, the contact resistance between the current-carrying electrode and the resistance layer is reduced, and the low resistance layer is formed with a thickness of 0.1 to 3 μm. By suppressing the current diffusion, it was possible to provide an electrically conductive thermal transfer member with good printing characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る通電式感熱転写体の一例を示す断
面図である。第2図は通電式感熱転写体により印字する
状態を示す断面図である。 1・・・抵抗層、 1a・・・低抵抗層、 1b・・・
高抵抗層、2・・・導電層、 3・・・熱溶融性インク
層、5・・・通電用電極
FIG. 1 is a sectional view showing an example of an electrically conductive heat-sensitive transfer member according to the present invention. FIG. 2 is a cross-sectional view showing a state in which printing is performed using the electrically conductive heat-sensitive transfer member. 1... Resistance layer, 1a... Low resistance layer, 1b...
High resistance layer, 2... Conductive layer, 3... Hot-melt ink layer, 5... Current-carrying electrode

Claims (1)

【特許請求の範囲】[Claims] (1)熱溶融性インク層、導電層および抵抗層を備え、
上記抵抗層が、通電によって熱溶融性インクを溶融させ
るための熱を発生することができる電気抵抗を有する高
抵抗層と、通電用電極と接する側に上記高抵抗層より低
い抵抗を有する低抵抗層とからなる通電式感熱転写体を
製造するにあたり、上記低抵抗層を、樹脂と導電性付与
剤とを含んだ塗材を高抵抗層上にスプレー塗装すること
によって0.1〜3μmの厚さに形成することを特徴と
する通電式感熱転写体の製造方法。
(1) Comprising a heat-melting ink layer, a conductive layer, and a resistive layer,
The resistance layer includes a high resistance layer having an electrical resistance capable of generating heat for melting the thermofusible ink when energized, and a low resistance layer having a resistance lower than the high resistance layer on the side in contact with the current-carrying electrode. In manufacturing an electrically conductive heat-sensitive transfer body consisting of a layer, the low resistance layer is formed to a thickness of 0.1 to 3 μm by spray-coating a coating material containing a resin and a conductivity imparting agent onto the high resistance layer. 1. A method for producing an electrically conductive heat-sensitive transfer material, characterized in that the material is formed in a cylindrical shape.
JP62024217A 1987-02-04 1987-02-04 Production of electrotehrmal-type transfer material Pending JPS63191684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62024217A JPS63191684A (en) 1987-02-04 1987-02-04 Production of electrotehrmal-type transfer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62024217A JPS63191684A (en) 1987-02-04 1987-02-04 Production of electrotehrmal-type transfer material

Publications (1)

Publication Number Publication Date
JPS63191684A true JPS63191684A (en) 1988-08-09

Family

ID=12132121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62024217A Pending JPS63191684A (en) 1987-02-04 1987-02-04 Production of electrotehrmal-type transfer material

Country Status (1)

Country Link
JP (1) JPS63191684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379334A2 (en) * 1989-01-17 1990-07-25 Matsushita Electric Industrial Co., Ltd. Resistive sheet transfer printing and electrode head
US5387460A (en) * 1991-10-17 1995-02-07 Fuji Xerox Co., Ltd. Thermal printing ink medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379334A2 (en) * 1989-01-17 1990-07-25 Matsushita Electric Industrial Co., Ltd. Resistive sheet transfer printing and electrode head
US5146237A (en) * 1989-01-17 1992-09-08 Matushita Electric Industrial Co., Ltd. Resistive sheet transfer printing and electrode head
US5387460A (en) * 1991-10-17 1995-02-07 Fuji Xerox Co., Ltd. Thermal printing ink medium

Similar Documents

Publication Publication Date Title
US4103066A (en) Polycarbonate ribbon for non-impact printing
US4453839A (en) Laminated thermal transfer medium for lift-off correction and embodiment with resistive layer composition including lubricating contact graphite coating
CA1222659A (en) Modified resistive layer in thermal transfer medium
CA1176055A (en) Polyimide ribbon and method for thermal printing
JPS63191684A (en) Production of electrotehrmal-type transfer material
CA1180183A (en) Intermediate layer in thermal transfer medium
US4678701A (en) Resistive printing ribbon having improved properties
JPS63191685A (en) Production of electrothermal-type transfer material
US4710782A (en) Current-applying thermal transfer film
EP0200523B1 (en) Resistive ribbon for use in resistive ribbon thermal transfer printing
JPS63288779A (en) Thermal transfer material
JPS63288780A (en) Thermal transfer material
JPH01110187A (en) Thermal transfer body
JPH0249918B2 (en)
US5387460A (en) Thermal printing ink medium
JP2569644B2 (en) Print recording medium
JP2824671B2 (en) Plate for energized lithographic printing
JPH0377793B2 (en)
JPS58185664A (en) Ink medium
JPS60171194A (en) Printing medium
JPH0522589B2 (en)
JPH01198390A (en) Transfer body for current supply thermal transfer recording
JPS58102792A (en) Ink medium
JPS61277486A (en) Pressure-sensitive thermal transfer material
JPS63214460A (en) Power-conduction transfer recording type printer