JPS6319140B2 - - Google Patents

Info

Publication number
JPS6319140B2
JPS6319140B2 JP57211258A JP21125882A JPS6319140B2 JP S6319140 B2 JPS6319140 B2 JP S6319140B2 JP 57211258 A JP57211258 A JP 57211258A JP 21125882 A JP21125882 A JP 21125882A JP S6319140 B2 JPS6319140 B2 JP S6319140B2
Authority
JP
Japan
Prior art keywords
heating cylinder
cylinder
heating
sucrose
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57211258A
Other languages
Japanese (ja)
Other versions
JPS59102358A (en
Inventor
Hisami Ooiso
Norio Kamyama
Kazuhiro Fujimoto
Hiroyoshi To
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Tokuden Co Ltd Kyoto
Original Assignee
Meiji Seika Kaisha Ltd
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd, Tokuden Co Ltd Kyoto filed Critical Meiji Seika Kaisha Ltd
Priority to JP21125882A priority Critical patent/JPS59102358A/en
Publication of JPS59102358A publication Critical patent/JPS59102358A/en
Publication of JPS6319140B2 publication Critical patent/JPS6319140B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Confectionery (AREA)

Description

【発明の詳細な説明】 本発明は蔗糖に水を加えることなく加熱して連
続的に融解する融解装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a melting device that continuously melts sucrose by heating it without adding water.

従来蔗糖に水を加えることなく加熱して連続的
に融解するには第1図の如くねじ溝を刻設した回
転可能な内側加熱筒1の壁内にニクロム線ヒータ
ー2を埋設し、さらに該内側加熱筒1の外側に外
側加熱筒3を遊嵌し、該外側加熱筒3の壁内にニ
クロム線ヒーター4を埋設し、該外側加熱筒3の
上部には蔗糖を投入するホツパー5を取着してお
き、このホツパー5より蔗糖を投入し、内側加熱
筒1を回転させることによつて投入された蔗糖が
ねじ溝6に沿つて降下しながらニクロム線ヒータ
ー2,4によつて加熱されて融解され、排出口7
より取り出されるようにした融解装置が知られて
いる。
Conventionally, in order to continuously melt sucrose by heating without adding water, a nichrome wire heater 2 was buried in the wall of a rotatable inner heating cylinder 1 with a threaded groove as shown in Fig. An outer heating cylinder 3 is loosely fitted on the outside of the inner heating cylinder 1, a nichrome wire heater 4 is embedded in the wall of the outer heating cylinder 3, and a hopper 5 for charging sucrose is installed in the upper part of the outer heating cylinder 3. Then, sucrose is charged through the hopper 5, and by rotating the inner heating cylinder 1, the sucrose is heated by the nichrome wire heaters 2 and 4 while descending along the threaded groove 6. is melted and discharged from the outlet 7.
Melting devices are known that are designed to allow for greater removal.

このような従来の融解装置に於て、ニクロム線
ヒーターが加熱され、次に伝熱によつて内側加熱
筒1及び外側加熱筒3を加熱しているので該融解
装置全体を所期の温度までに昇温せしめるのに多
大な時間がかかり、しかもニクロム線ヒーターよ
りの伝導効率を良くする為に銅材、アルミ材等の
如く高価な材質を選択する必要がある。
In such a conventional melting apparatus, the nichrome wire heater is heated, and then the inner heating cylinder 1 and the outer heating cylinder 3 are heated by heat transfer, so that the entire melting apparatus reaches the desired temperature. It takes a lot of time to raise the temperature, and in order to improve the conduction efficiency compared to a nichrome wire heater, it is necessary to select an expensive material such as copper or aluminum.

またニクロム線ヒーター2,4を内側加熱筒1
及び外側加熱筒3に埋設されているので自ずと内
側加熱筒1、外側加熱筒3が肉厚となり、内側加
熱筒1の外壁面及び外側加熱筒3の内壁面を所期
の温度まで上昇せしめるのにニクロム線ヒーター
よりの伝熱に時間がかかる。さらにまた回転する
内側加熱筒1に埋設したニクロム線ヒーター2に
電力を供給するには電力供給装置が複雑となり、
全体が大きくなる。しかもニクロム線ヒーターは
断線し易く、ニクロム線ヒーターが内側加熱筒1
及び外側加熱筒3に埋設されているので極めて修
理が難かしい。
In addition, the nichrome wire heaters 2 and 4 are connected to the inner heating tube 1.
Since it is embedded in the outer heating cylinder 3, the inner heating cylinder 1 and the outer heating cylinder 3 naturally have thick walls, and it is possible to raise the outer wall surface of the inner heating cylinder 1 and the inner wall surface of the outer heating cylinder 3 to the desired temperature. It takes longer to transfer heat than a nichrome wire heater. Furthermore, the power supply device becomes complicated in order to supply power to the nichrome wire heater 2 embedded in the rotating inner heating cylinder 1.
The whole thing gets bigger. Moreover, the nichrome wire heater is easily broken, and the nichrome wire heater is
Since it is buried in the outer heating cylinder 3, repair is extremely difficult.

本発明者等は上記の如き従来の諸問題を解消す
べく鋭意研究の結果、外周面に螺旋溝を有し、回
転自在に支持された内側加熱筒と、該内側加熱筒
の外面にこれと同心配置に設けた外側加熱筒とを
備え、両加熱筒間の上端にホツパーを備え、該ホ
ツパーより前記両加熱筒間に蔗糖を挿入自在にし
てなる蔗糖融解装置において、前記内側加熱筒及
び外側加熱筒を珪素鋼、鉄材等の磁性材料をもつ
て形成し、前記内側加熱筒の中心側に同心配置に
コイル支持筒を備え、該コイル支持筒の外周に内
側励磁コイルを備え、前記外側加熱筒の外周に軸
方向に位置をずらせて複数の外側励磁コイルを備
え、該複数の外側励磁コイルの外側を磁性材料か
らなる磁束ガイドをもつてそれぞれ覆い、該各磁
束ガイド及び前記コイル支持筒には周方向の一部
の箇所に軸方向に沿つて連続した切欠を形成し、
前記各励磁コイルに交流電源を接続自在となし、
該電源の印加により交番磁束を前記両加熱筒に通
過させることによつて発熱させることを特徴とす
る。
As a result of intensive research to solve the conventional problems as described above, the inventors of the present invention have developed an inner heating tube that has a spiral groove on its outer peripheral surface and is rotatably supported. A sucrose melting device comprising an outer heating cylinder arranged concentrically, a hopper at the upper end between the heating cylinders, and sucrose can be freely inserted between the heating cylinders from the hopper. A heating tube is formed of a magnetic material such as silicon steel or iron, and a coil support tube is provided concentrically on the center side of the inner heating tube, and an inner excitation coil is provided on the outer periphery of the coil support tube, and the outer heating tube is provided with an inner excitation coil on the outer periphery of the coil support tube. A plurality of outer excitation coils are provided at positions shifted in the axial direction on the outer periphery of the cylinder, the outsides of the plurality of outer excitation coils are each covered with a magnetic flux guide made of a magnetic material, and each magnetic flux guide and the coil support cylinder are provided with a magnetic flux guide made of a magnetic material. forms a continuous notch along the axial direction at some location in the circumferential direction,
An AC power source can be freely connected to each of the excitation coils,
It is characterized in that heat is generated by passing an alternating magnetic flux through both heating cylinders by applying the power.

次に、本発明の実施の一例を第2図以下の図面
を参照しながら説明する。図中10は内側加熱筒
であり、11は外側加熱筒である。両加熱筒1
0,11は同心配置に備えられ、外側加熱筒11
は装置機枠に固定され、内側加熱筒10は外径が
外側加熱筒11の内面に摺接する程度に形成さ
れ、その外面にねじ溝12が形成されている。
Next, an example of the implementation of the present invention will be described with reference to the drawings from FIG. 2 onwards. In the figure, 10 is an inner heating cylinder, and 11 is an outer heating cylinder. Both heating tubes 1
0 and 11 are provided in a concentric arrangement, and the outer heating cylinder 11
is fixed to the device frame, and the inner heating cylinder 10 is formed so that its outer diameter is in sliding contact with the inner surface of the outer heating cylinder 11, and a thread groove 12 is formed on its outer surface.

また内側加熱筒10は外側加熱筒11より上端
が長く形成され、その上方への突出部分が外側に
截頭円錐形状をしたホツパー13が配置され、そ
のホツパー13の下端を外側加熱筒11の上端に
固定し、ホツパー13の下端内と両加熱筒10,
11間の間隙とを連通させている。
The upper end of the inner heating cylinder 10 is longer than the outer heating cylinder 11, and a hopper 13 whose upwardly protruding part is shaped like a truncated cone is disposed on the outside, and the lower end of the hopper 13 is connected to the upper end of the outer heating cylinder 11. inside the lower end of the hopper 13 and both heating cylinders 10,
11 are communicated with each other.

更に内側加熱筒10にはその内側に同心配置に
軸支用の内筒14が設けられ、両筒10,14の
下端間の連接部14aにより一体化させている。
そして、内筒14内に支軸15が挿通し内向きの
フランジ部14bをナツト15aをもつて締め付
けて支持されている。一方支軸15の機枠に対し
ベアリング16を介して回転自在に支持され、図
示していないがモーターの回転が伝えられるよう
にしている。而して、この支軸15により内筒1
4の連接部14aを介して内側加熱筒10が支持
され、支軸15の回転駆動によつて旋回されるよ
うにしている。
Furthermore, an inner cylinder 14 for shaft support is provided inside the inner heating cylinder 10 in a concentric arrangement, and the two cylinders 10 and 14 are integrated by a connecting portion 14a between their lower ends.
A support shaft 15 is inserted into the inner cylinder 14 and supported by tightening the inward flange portion 14b with a nut 15a. On the other hand, it is rotatably supported by the machine frame of the support shaft 15 via a bearing 16, so that the rotation of the motor can be transmitted although it is not shown. Therefore, the inner cylinder 1 is
The inner heating cylinder 10 is supported through the connecting portions 14a of the four connecting parts 14a, and is rotated by the rotational drive of the support shaft 15.

上述の如く配置される内側外側の両加熱筒1
0,11は磁性材料をもつて形成され、内側加熱
筒10の内側及び外側加熱筒11の外側にそれぞ
れ加熱手段を構成する内側外側の励磁コイル1
7,18が設けられている。
Both inner and outer heating cylinders 1 arranged as described above
Reference numerals 0 and 11 indicate inner and outer excitation coils 1 which are made of a magnetic material and constitute heating means inside the inner heating cylinder 10 and outside the outer heating cylinder 11, respectively.
7 and 18 are provided.

両加熱筒10,11の磁性材料としては変圧器
におけるコイルの鉄心として使用できる材質であ
ればよく、例えば珪素鋼、鉄材が挙げられ、なか
でも日本工業規格でいう機械構造用炭素鋼、一般
構造用圧延材等が用いられる。なお、半磁性材料
であるステンレス鋼は後述する交番磁束を受けて
生じる短絡電流が弱いので好ましくない。
The magnetic material for both heating cylinders 10 and 11 may be any material that can be used as the core of a coil in a transformer, such as silicon steel or iron, among which carbon steel for machine structures and general structures as defined in the Japanese Industrial Standards. Rolled material etc. are used. Note that stainless steel, which is a semimagnetic material, is not preferable because short circuit current generated by receiving alternating magnetic flux, which will be described later, is weak.

内側励磁コイル17は、機枠に固定され、内側
加熱筒10の内面側に挿入されたコイル支持筒1
9に支持されているものであり、このコイル支持
筒19の外面に形成した凹部内に巻装されてい
る。
The inner excitation coil 17 is fixed to the machine frame, and the coil support tube 1 is inserted into the inner surface of the inner heating tube 10.
9 , and is wound within a recess formed on the outer surface of this coil support tube 19 .

このコイル支持筒19は磁性材料からなり内側
励磁コイル17に交番電流を流した際に第2図中
破線Aで示すように閉磁気回路が構成されるよう
にしている。
This coil support tube 19 is made of a magnetic material and is configured to form a closed magnetic circuit as shown by the broken line A in FIG. 2 when an alternating current is passed through the inner excitation coil 17.

一方外側励磁コイル18は外側加熱筒11の外
周に軸方向に間隔を隔てて複数個巻装され、その
各外側励磁コイルの外側、即ち両端面及び円周面
を磁性材料からなる磁束ガイド20をもつてそれ
ぞれ個別に覆いこの外側励磁コイル18に交番電
流を通電させることによつて第2図中破線Bで示
す閉磁気回路が構成されるようにしている。
On the other hand, a plurality of outer excitation coils 18 are wound around the outer circumference of the outer heating cylinder 11 at intervals in the axial direction, and a magnetic flux guide 20 made of a magnetic material is provided on the outside of each outer excitation coil, that is, on both end surfaces and the circumferential surface. By covering each of the outer excitation coils 18 individually and applying an alternating current to the outer excitation coil 18, a closed magnetic circuit shown by the broken line B in FIG. 2 is constructed.

なお図中21a,21bは外側励磁コイル18
用の非磁性材料からなる位置決めリングである。
また前述した複数の各磁束ガイド20、コイル支
持筒19及び内筒14には第3図に示すようにそ
れぞれ周方向の一部の箇所に軸方向に沿つて連続
した切欠20a,19a,14aがそれぞれ形成
され、各励磁コイル17,18に通電されたとき
に生じる周方向の短絡電流が流れないようにして
いる。
In addition, 21a and 21b in the figure are the outer excitation coils 18.
This is a positioning ring made of non-magnetic material.
Furthermore, as shown in FIG. 3, each of the plurality of magnetic flux guides 20, the coil support tube 19, and the inner tube 14 has notches 20a, 19a, and 14a continuous along the axial direction at some locations in the circumferential direction. They are formed to prevent a circumferential short circuit current from flowing when each exciting coil 17, 18 is energized.

次にこのように構成される装置の作用について
説明する。
Next, the operation of the device configured as described above will be explained.

まず内外の両励磁コイル17,18に交流電源
を接続するとともに支軸15をモーターにより回
転させ、この状態でホツパー13内の蔗糖を投入
する。
First, an AC power source is connected to both the inner and outer excitation coils 17 and 18, and the spindle 15 is rotated by a motor, and in this state, the sucrose in the hopper 13 is charged.

このとき内側励磁コイル17への交番電流が通
電されることにより前述した破線Aに沿つて交番
磁束が発生する。この交番磁束の発生により、内
側加熱筒10には第3図中破線Cに示すように周
方向の短絡電流が流れ、これによつてジユール熱
が発生する。また交番磁束通過に伴う内側加熱筒
10自体のヒステリシス損によつても発熱する。
At this time, an alternating current is applied to the inner excitation coil 17, thereby generating an alternating magnetic flux along the broken line A mentioned above. Due to the generation of this alternating magnetic flux, a circumferential short circuit current flows through the inner heating tube 10 as shown by the broken line C in FIG. 3, thereby generating Joule heat. Heat is also generated due to hysteresis loss of the inner heating tube 10 itself due to the passage of alternating magnetic flux.

また同様に外側励磁コイル18への交番電流の
通電により、破線Bに沿つて交番磁束が発生しこ
れに伴う外側加熱筒11自体のヒステリシス損及
び図中破線Dに沿つて発生する短絡電流によるジ
ユール熱の発生により加熱され、これによつてホ
ツパー13内より両加熱筒10,11間をねじ溝
12に沿つて通過される蔗糖が加熱されて融解さ
れ、取り出し口22へ向けて降下する。
Similarly, by applying an alternating current to the outer excitation coil 18, an alternating magnetic flux is generated along the broken line B, resulting in a hysteresis loss of the outer heating cylinder 11 itself and a short-circuit current generated along the broken line D in the figure. The sucrose that is passed between the heating tubes 10 and 11 from inside the hopper 13 along the threaded groove 12 is heated and melted by the generation of heat, and falls toward the outlet 22.

なお、内側加熱筒10の外周のねじ溝12によ
り粒状の蔗糖が下方へ直接降下してしまう、所謂
シヨートパスが防止されるとともに、蔗糖の流量
が制御され、かつ伝熱面積を増加せしめて粒状の
蔗糖との熱交換と容易にし、粒状の蔗糖が融解し
ながら薄膜状となし、撹拌しつつ取り出し口22
へ降下される。
Note that the threaded groove 12 on the outer periphery of the inner heating cylinder 10 prevents the so-called shot pass in which granular sucrose directly falls downward, and also controls the flow rate of sucrose and increases the heat transfer area. The granulated sucrose is melted into a thin film by easy heat exchange with the sucrose, and is then removed from the outlet 22 while stirring.
descended to.

また前述した交番磁束の発生により磁束ガイド
20、コイル支持筒19及び内筒14も影響を受
けるが、これらには切欠20a,19a,14a
が形成されているため、周方向の短絡電流は発生
せず従つてジユール熱は発生しないが、ヒステリ
シス損によつて発熱する。しかし、その発熱はジ
ユール熱に比べて小さく、コイルその他に悪影響
を及ぼさない。
Furthermore, the magnetic flux guide 20, coil support tube 19, and inner tube 14 are also affected by the generation of the alternating magnetic flux described above, and these have notches 20a, 19a, and 14a.
is formed, so no circumferential short-circuit current occurs and therefore no Joule heat is generated, but heat is generated due to hysteresis loss. However, the heat generated is smaller than that of Joule heat, and does not adversely affect the coil or other parts.

なお、内側加熱筒10の温度制御は該筒10内
に埋設した温度センー23によつて温度を検出し
内側励磁コイル17に印加する電源を温度に応じ
て調整するようにしており、温度センサー23の
リード線23aは支軸15の中心を通して導出し
てる。
The temperature of the inner heating cylinder 10 is controlled by detecting the temperature with a temperature sensor 23 embedded in the cylinder 10 and adjusting the power applied to the inner excitation coil 17 according to the temperature. The lead wire 23a is led out through the center of the support shaft 15.

また、外側加熱筒11の温度制御は各外側励磁
コイル18に対応させて設けた温度センサー24
により各部位の温度を検出し、その温度に応じて
印加する電源を調節し、必要な温度に保つように
している。
The temperature of the outer heating cylinder 11 is controlled by a temperature sensor 24 provided corresponding to each outer excitation coil 18.
The temperature of each part is detected and the applied power is adjusted according to the temperature to maintain the required temperature.

本発明の蔗糖融解装置は上述の如く構成され、
ニクロム線ヒーターを埋設した装置に比べ、所期
の温度にまで上昇せしめるのに短時間で到達す
る。即ちニクロム線ヒーターによる伝熱効果で装
置を加熱しているので昇温時間が要するのに対
し、本発明による装置はジユール熱及びヒステリ
シス損により内側加熱筒及び外側加熱筒自体が発
熱し、しかも複数の外側励磁コイルの外側を磁性
材料からなる磁束ガイドをもつて覆うので、当該
各磁束ガイドと外側加熱筒によつても確実に閉磁
気回路が形成され、いずれか一方の加熱筒のみの
場合に比較して蔗糖を変色させることのない極め
て短時間内に所期の温度まで上昇する。加えて内
側加熱筒及び外側加熱筒が珪素鋼、鉄材等の磁性
材料であるので常温時乃至低温時での誘導負荷と
しての磁性材料の内部電気抵抗が小さく昇温の初
期段階ではこれに見合う大きな短絡電流を誘導し
て発熱量は過渡的に極大となり、内側加熱筒及び
外側加熱筒の磁性材料の抵抗係数の関係で昇温と
共に徐々に定格電流に減衰していくので極めて短
時間で所期の温度まで上昇する。またニクロム線
ヒーターを埋設した装置においては加熱部即ち内
側加熱筒及び外側加熱筒が肉厚となり、かつ熱伝
導の良い銅材、アルミ材を使用する必要があり、
材料費が高くなる。
The sucrose melting device of the present invention is configured as described above,
Compared to a device with a buried nichrome wire heater, it takes a shorter time to reach the desired temperature. That is, since the device is heated by the heat transfer effect of the nichrome wire heater, it takes time to raise the temperature, whereas in the device according to the present invention, the inner heating tube and the outer heating tube themselves generate heat due to Joule heat and hysteresis loss. Since the outside of the outer excitation coil is covered with a magnetic flux guide made of magnetic material, a closed magnetic circuit is reliably formed by each magnetic flux guide and the outer heating cylinder, and even if only one heating cylinder is used, In comparison, the desired temperature is raised within a very short time without discoloring the sucrose. In addition, since the inner heating cylinder and the outer heating cylinder are made of magnetic materials such as silicon steel or iron, the internal electrical resistance of the magnetic material as an inductive load at room temperature or low temperature is small, and at the initial stage of temperature rise, there is a commensurately large resistance. By inducing a short circuit current, the amount of heat generated transiently reaches a maximum, and due to the resistance coefficients of the magnetic materials of the inner and outer heating cylinders, the current gradually decreases to the rated current as the temperature rises, so the desired current can be achieved in an extremely short period of time. temperature rises to . In addition, in devices with embedded nichrome wire heaters, the heating parts, that is, the inner heating cylinder and the outer heating cylinder, have thick walls, and it is necessary to use copper or aluminum materials with good thermal conductivity.
Material costs will increase.

一方本発明による装置は単に磁性材料であれば
熱伝導度には関係なくなんでも良く、またニクロ
ム線ヒーターを埋設していないので内側加熱筒及
び外側加熱筒を薄く加工することが出来るので、
それ等を通過する磁束の密度を高くすることが可
能となり、所期の温度への昇温が速くなる。しか
も磁性材料である内側加熱筒及び外側加熱筒がそ
れ自体発熱体となつており、ニクロム線ヒーター
による加熱に比べ電気エルギーが2割程度節約出
来る。さらにまたニクロム線ヒーターにより装置
を加熱する場合、通常の電線に比べ可撓性に乏し
い該ニクロム線ヒーターを第1図に示す如く内側
加熱筒、外側加熱筒内にそれぞれ埋設せざるを得
ず、埋設加工に手間がかかると共に電気に対する
絶縁性を断線事故を充分に配慮して施工する必要
がある。しかし本発明による装置では繁雑な埋設
加工が不要であり、ニクロム線ヒーターに比べ可
撓性の有る電線を用いて励磁コイルを内側加熱
筒、外側加熱筒に囲繞しているのみなので加工が
簡単である。
On the other hand, the device according to the present invention can be made of any magnetic material regardless of thermal conductivity, and since the nichrome wire heater is not embedded, the inner heating cylinder and the outer heating cylinder can be made thin.
It becomes possible to increase the density of the magnetic flux passing through them, and the temperature rises to the desired temperature faster. Furthermore, the inner heating tube and the outer heating tube, which are made of magnetic materials, are themselves heat generating elements, and electrical energy can be saved by about 20% compared to heating with a nichrome wire heater. Furthermore, when heating the device with a nichrome wire heater, the nichrome wire heater, which is less flexible than ordinary electric wire, must be buried in the inner heating cylinder and the outer heating cylinder, respectively, as shown in Fig. 1. It takes time and effort to bury it, and it is necessary to install it with sufficient consideration for electrical insulation to prevent disconnection accidents. However, the device according to the present invention does not require complicated embedding processing, and the excitation coil is surrounded by an inner heating tube and an outer heating tube using electric wires that are more flexible than nichrome wire heaters, so processing is easier. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のニクロム線ヒーターを用いた蔗
糖融解装置の断面図、第2図は本発明による蔗糖
の融解装置の断面図、第3図は第2図中の―
線断面図、第4図は第2図中の―線断面図で
ある。 10……内側加熱筒、11……外側加熱筒、1
2……ねじ溝、13……ホツパー、15……支
軸、17……内側励磁コイル、18……外側励磁
コイル。
Fig. 1 is a cross-sectional view of a sucrose melting device using a conventional nichrome wire heater, Fig. 2 is a cross-sectional view of a sucrose melting device according to the present invention, and Fig. 3 is a cross-sectional view of a sucrose melting device using a conventional nichrome wire heater.
4 is a sectional view taken along the line -- in FIG. 2. 10...Inner heating cylinder, 11...Outer heating cylinder, 1
2... Thread groove, 13... Hopper, 15... Support shaft, 17... Inner excitation coil, 18... Outer excitation coil.

Claims (1)

【特許請求の範囲】[Claims] 1 外周面にねじ溝を有し、回転自在に支持され
た内側加熱筒と、該内側加熱筒の外面にこれと同
心配置に設けた外側加熱筒とを備え、両加熱筒間
の上端にホツパーを備え、該ホツパーより前記両
加熱筒間に蔗糖を挿入自在にしてなる蔗糖融解装
置において、前記内側加熱筒及び外側加熱筒を珪
素鋼、鉄材等の磁性材料をもつて形成し、前記内
側加熱筒の中心側に同心配置にコイル支持筒を備
え、該コイル支持筒の外周に内側励磁コイルを備
え、前記外側加熱筒の外周に軸方向に位置をずら
せて複数の外側励磁コイルを備え、該複数の外側
励磁コイルの外側を磁性材料からなる磁束ガイド
をもつて覆い、該各磁束ガイド及び前記コイル支
持筒には周方向の一部の箇所に軸方向に沿つて連
続した切欠を形成し、前記各励磁コイルに交流電
源を接続自在となし、該電源の印加により交番磁
束を前記両加熱筒に通過させることによつて発熱
させることを特徴とする蔗糖融解装置。
1.Equipped with an inner heating cylinder that has a thread groove on its outer peripheral surface and is rotatably supported, and an outer heating cylinder that is provided on the outer surface of the inner heating cylinder in a concentric arrangement, and a hopper is provided at the upper end between the two heating cylinders. In the sucrose melting device, in which sucrose can be freely inserted between the two heating cylinders from the hopper, the inner heating cylinder and the outer heating cylinder are formed of a magnetic material such as silicon steel or iron material, and the inner heating cylinder is made of a magnetic material such as silicon steel or iron. A coil support cylinder is provided concentrically on the center side of the cylinder, an inner excitation coil is provided on the outer periphery of the coil support cylinder, a plurality of outer excitation coils are provided on the outer periphery of the outer heating cylinder at positions shifted in the axial direction, and The outer sides of the plurality of outer excitation coils are covered with magnetic flux guides made of a magnetic material, and each of the magnetic flux guides and the coil support cylinder is formed with a continuous notch along the axial direction at a part of the circumferential direction, A sucrose melting device characterized in that an alternating current power source can be freely connected to each of the excitation coils, and when the power source is applied, an alternating magnetic flux is passed through the heating cylinders to generate heat.
JP21125882A 1982-12-03 1982-12-03 Apparatus for melting sucrose Granted JPS59102358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21125882A JPS59102358A (en) 1982-12-03 1982-12-03 Apparatus for melting sucrose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21125882A JPS59102358A (en) 1982-12-03 1982-12-03 Apparatus for melting sucrose

Publications (2)

Publication Number Publication Date
JPS59102358A JPS59102358A (en) 1984-06-13
JPS6319140B2 true JPS6319140B2 (en) 1988-04-21

Family

ID=16602926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21125882A Granted JPS59102358A (en) 1982-12-03 1982-12-03 Apparatus for melting sucrose

Country Status (1)

Country Link
JP (1) JPS59102358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300157A (en) * 1988-05-27 1989-12-04 Harman Co Ltd Gas instantaneous hot water boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300157A (en) * 1988-05-27 1989-12-04 Harman Co Ltd Gas instantaneous hot water boiler

Also Published As

Publication number Publication date
JPS59102358A (en) 1984-06-13

Similar Documents

Publication Publication Date Title
CN103814515B (en) Electromechanically integrated assembly
US6255632B1 (en) Device with induction heating roller with a projection between coil windings
JP3240384B2 (en) Fluid heating device
JP5654791B2 (en) Superheated steam generator
JP2007128751A (en) Fluid heating apparatus and heat medium conduction roller device using same
JP2007152651A (en) Fluid induction heating device
EP0473313B1 (en) Induction heater
US6303908B1 (en) Heat treatment apparatus
JP3334504B2 (en) Induction heating fixing device
JPH07319312A (en) Fixing device with induction heating
JPS6319140B2 (en)
WO1993012627A1 (en) Induction heater
CN201056046Y (en) Heating mechanism of charging barrel of plastic jetting-moulding machine
JP3756261B2 (en) Induction heating roller device
JPH05286018A (en) Device for heating cylinder of extruder
US3628948A (en) Electric arc vacuum melting processes
JP2655223B2 (en) Heat source for electric water heater
KR890003059B1 (en) Electrode assembly for arc furnades
JPH02108998A (en) Heat-resisting driving coil and control rod driving device
EP3934381B1 (en) Induction heated roll apparatus
JP3025354B2 (en) Method and apparatus for levitation heating of metal lump
RU12638U1 (en) ELECTRIC HEATER
JP3935657B2 (en) Fixing apparatus and image forming apparatus
JPH07126766A (en) Electromagnetic float-up melting furnace
JPS6213353Y2 (en)