JPS63190343A - Formation of insulating film of semiconductor device - Google Patents

Formation of insulating film of semiconductor device

Info

Publication number
JPS63190343A
JPS63190343A JP2189387A JP2189387A JPS63190343A JP S63190343 A JPS63190343 A JP S63190343A JP 2189387 A JP2189387 A JP 2189387A JP 2189387 A JP2189387 A JP 2189387A JP S63190343 A JPS63190343 A JP S63190343A
Authority
JP
Japan
Prior art keywords
insulating film
radical
formula
semiconductor substrate
desirably
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2189387A
Other languages
Japanese (ja)
Inventor
Shunichi Fukuyama
俊一 福山
Shoji Shiba
昭二 芝
Kazumasa Saito
斎藤 和正
Yoko Kawasaki
陽子 川崎
Keiji Watabe
慶二 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2189387A priority Critical patent/JPS63190343A/en
Publication of JPS63190343A publication Critical patent/JPS63190343A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form a flat insulating film on the semiconductor substrate having a roughened surface or a stepping by a method wherein a specific resin solution is coated on a wired semiconductor substrate, and then a heat treatment is performed thereon. CONSTITUTION:The resin solution indicated separately by the formula 'I' is coated on a wired semiconductor substrate, and then a silicon oxynitride insulating film is formed by performing a heat treatment. In the formula 'I' mentioned separately, R indicates an independent alkyl radical, desirably alkyl radical of 1-6C, or aryl radical desiably alkylphenyl radical replaced by phenyl radical or alkyl radical of 1-4C, or alkkoxy radical desirably alkoxy radical of 1-4C, and (n) indicates the degree of polymerization, desirably indicating 10-1000. As a result, a film having excellent coating adaptability and flatness can be formed on the substrate having a roughened surface.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、半導体装置の絶縁膜形成工程において、凹凸
表面をもつ半導体基板表面上に従来のCVD法などの無
機膜形成技術で絶縁膜を形成する際生じる絶縁不良等の
問題を解決するため、スピンコード法により成膜可能な
段差被覆性に優れたシリコンオキシナイトライド膜を提
供することにより、従来法の欠点を解決するものである
[Detailed Description of the Invention] [Summary] The present invention provides a method for forming an insulating film on the surface of a semiconductor substrate having an uneven surface using a conventional inorganic film forming technique such as a CVD method in an insulating film forming process of a semiconductor device. In order to solve problems such as poor insulation, the present invention provides a silicon oxynitride film with excellent step coverage that can be formed by a spin code method, thereby solving the drawbacks of conventional methods.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の絶縁膜形成方法に関し、更に詳し
くは絶縁膜の凹凸や配線段差を平坦化することのできる
半導体装置の絶縁膜形成方法に関する。
The present invention relates to a method for forming an insulating film for a semiconductor device, and more particularly to a method for forming an insulating film for a semiconductor device that can flatten unevenness in the insulating film and wiring steps.

〔従来の技術〕[Conventional technology]

大量の情報を高速に処理する方法として情報処理装置の
主体を占める半導体装置は高集積化による大容量化が進
んでおり、LSIよりも一段と容量の大きなVLS I
が実用化されている。
Semiconductor devices, which are the mainstay of information processing equipment as a means of processing large amounts of information at high speed, are increasing in capacity due to high integration, and VLSI, which has a much larger capacity than LSI,
has been put into practical use.

ここで、高集積化は単位素子の小形化と高密度化とによ
って行われている。すなわち、配線パターンなどの最小
パターン幅は1μm以下のいわゆるサブミクロンにまで
微少化したものが用いられている。
Here, high integration is achieved by downsizing and increasing the density of unit elements. That is, the minimum pattern width of a wiring pattern is 1 μm or less, which is so-called submicron.

また、電子回路の集積化は回路パターンの多層化によっ
て行われており、半導体基板上に設けた絶縁層を窓開け
して不純物イオンを拡散させるか或いはイオン注入など
を行って異種の半導体領域を作ると共に、絶縁層上に配
線パターンを形成してそれぞれの領域と回路接続して電
子回路を形成している。
In addition, integration of electronic circuits is achieved by multilayering circuit patterns, and by opening windows in the insulating layer provided on the semiconductor substrate to diffuse impurity ions, or by performing ion implantation, different types of semiconductor regions are formed. At the same time, a wiring pattern is formed on the insulating layer and circuit connections are made to each region to form an electronic circuit.

この場合、回路が複雑化してX方向パターンとY方向パ
ターンとが交差する場合があり、また最近ではかかる電
子回路上に更に半導体層を形成し、これに電子回路を形
成して多層化することも研究されている。
In this case, the circuit may become complicated and the X-direction pattern and the Y-direction pattern may intersect, and recently, a semiconductor layer is further formed on the electronic circuit, and an electronic circuit is formed on this to form a multilayer structure. is also being studied.

電子回路がこのように複雑でない場合も配線パターンの
形成による段差の影響は顕著であり、この上に形成する
絶縁層に平坦化作用がなければ、段差部にヒビ割れを生
じたり、またこの上に配線パターンを形成した場合には
断線を生じたりするという問題がある。
Even if the electronic circuit is not as complex as this, the effect of the level difference due to the formation of the wiring pattern is significant, and if the insulating layer formed on top of this does not have a planarizing effect, cracks may occur at the level difference, or If a wiring pattern is formed on the substrate, there is a problem that wire breakage may occur.

例えば、被処理基板上に配線パターンを形成し、この上
に絶縁層を形成して絶縁被覆を行う場合に絶縁層は、 ■ 絶縁抵抗が高く、耐湿性と耐熱性の優れた材料から
得られるものであること、 ■ 基板との接着性が良く、平坦化作用をもっているこ
と、 ■ ピンホールやクランクなどの発生のないこと、など
の要件を具備していることが必要である。
For example, when forming a wiring pattern on a substrate to be processed and then forming an insulating layer on it to cover it, the insulating layer should be made of a material with high insulation resistance, moisture resistance, and heat resistance. It must meet the following requirements: (1) It must have good adhesion to the substrate and have a flattening effect; (2) It must not generate pinholes or cranks.

すなわち素子の被覆材として使用する場合には耐湿性が
優れており、ピンホールやタラワクなどが無いことが必
要であり、また、多層構造の層間絶縁層として用いる場
合は平坦化作用が優れ、絶縁抵抗が高く、耐熱性がよ(
、ピンホールやクランクのないことが必要である。かか
る絶縁層は、従来、主として化学気相成長法(Chem
ical VaporDepos i tion略して
CVD法)によってシラン系ガスを用いた無機膜形成技
術が用いられていた。
In other words, when used as a covering material for an element, it must have excellent moisture resistance and be free of pinholes and cracks, and when used as an interlayer insulating layer in a multilayer structure, it must have an excellent flattening effect and be an insulating material. High resistance and heat resistance (
, must be free of pinholes and cranks. Conventionally, such insulating layers have been mainly formed by chemical vapor deposition (Chem).
An inorganic film forming technique using a silane-based gas has been used by ical vapor deposition (abbreviated as CVD method).

然し、CVD法では段差を無くして平坦化する程度まで
厚く形成することは工程上不可能であった。
However, with the CVD method, it is impossible to form a layer thick enough to eliminate steps and flatten the layer due to the process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記したように、従来のCVD法等により、凹凸表面を
有する半導体基板上に、絶縁膜を形成せしめる場合には
、絶縁膜としての必要特性を満足させるために、絶縁膜
をかなりの厚膜としなければならない。しかしながら、
絶縁膜を厚膜とすると、上部配線と下部配線の導通を行
うスルーホール形成工程において、スルーホールが形成
し難くなるという問題があり、しかも絶縁膜を厚膜にし
ても凹凸段差を十分に平坦化することはできなかった。
As mentioned above, when an insulating film is formed on a semiconductor substrate with an uneven surface by conventional CVD method, etc., the insulating film must be made quite thick in order to satisfy the required characteristics as an insulating film. There must be. however,
If the insulating film is made thick, there is a problem that it becomes difficult to form through holes in the through hole formation process that connects the upper wiring and the lower wiring.Moreover, even if the insulating film is made thick, it is difficult to sufficiently flatten uneven steps. It was not possible to convert it into

従って、本発明はこのような従来技術の8題点を解決し
て凹凸表面又は段差を有する半導体基板上に平坦な絶縁
膜を形成することのできる半導体装置の絶縁膜形成方法
を提供することを目的とする。
Therefore, it is an object of the present invention to provide a method for forming an insulating film for a semiconductor device, which can solve the eight problems of the prior art and form a flat insulating film on a semiconductor substrate having an uneven surface or a step. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に従えば、前記した問題点は、式(1)(式中、
Rは、独立に、アルキル基、好ましくは炭素数1〜6の
アルキル基、アリール基、好ましくはフェニル基若しく
は炭素数1〜4のアルキル基で置換されたアルキルフェ
ニル基又はアルコキシ基好ましくは炭素数1〜4のアル
コキシ基を示し、nは重合度、好ましくは10〜100
0を示す)で表わされる樹脂液を配線された半導体基板
上に例えばスピンコード法により塗布し、次いで熱処理
することによりシリコンオキシナイトライド絶縁膜を形
成せしめることから成る半導体装置の絶縁膜形成方法が
提供される。
According to the present invention, the above problem can be solved by formula (1) (wherein,
R is independently an alkyl group, preferably an alkyl group having 1 to 6 carbon atoms, an aryl group, preferably a phenyl group, or an alkylphenyl group substituted with an alkyl group having 1 to 4 carbon atoms, or an alkoxy group, preferably an alkoxy group 1 to 4 alkoxy groups, n is the degree of polymerization, preferably 10 to 100
A method for forming an insulating film for a semiconductor device comprises applying a resin liquid represented by 0) onto a wired semiconductor substrate by, for example, a spin code method, and then heat-treating to form a silicon oxynitride insulating film. provided.

本発明方法によれば前記した一般式(I)の樹脂を適当
な溶媒(例えばジイソブチルケトン、n−ブチルエーテ
ル、ブチルセロソルブ、ブチルセロソルブアセテート、
エチルセロソルブアセテートなど)に溶解し、この樹脂
液はスピンコード法などの慣用塗布方法により例えばア
ルミニウム配線を施した半導体基板上に塗布する。塗布
厚は基板表面上の配線厚さく即ち段差や凹凸)にもよる
が、好ましくは1.5〜2.0μm(乾燥厚)とする。
According to the method of the present invention, the resin of general formula (I) described above is mixed with a suitable solvent (e.g. diisobutyl ketone, n-butyl ether, butyl cellosolve, butyl cellosolve acetate,
(ethyl cellosolve acetate, etc.), and this resin liquid is applied onto a semiconductor substrate provided with aluminum wiring, for example, by a conventional coating method such as a spin-coating method. Although the coating thickness depends on the wiring thickness on the substrate surface (i.e., steps and unevenness), it is preferably 1.5 to 2.0 μm (dry thickness).

なお、前記式(1)の樹脂は例えば下記式のリチウムシ
ランジオレート ■ ■ と下記式のジクロロシクロジシラザン ■ とを反応させることにより得ることができる。樹脂の好
ましい重量平均分子量は5.000〜200.000、
分散度(Miv/Mn)は1.5〜7である。
The resin of formula (1) can be obtained, for example, by reacting lithium silanediolate (2) of the following formula with dichlorocyclodisilazane (4) of the following formula. The preferred weight average molecular weight of the resin is 5.000 to 200.000,
The degree of dispersion (Miv/Mn) is 1.5-7.

このようにして樹脂液を塗布した半導体基板を加熱して
溶剤を除去乾燥し、次いで空気又は酸素中で300〜5
00℃、好ましくは400〜450℃にて熱処理するこ
とにより半導体基板上にシリコンオキシナイトライド(
SiON)絶縁膜が形成される。
The semiconductor substrate coated with the resin liquid in this way is heated to remove the solvent and dried, and then heated to
Silicon oxynitride (
A SiON) insulating film is formed.

〔作 用〕[For production]

本発明に従えば式(I)で表わされる樹脂を例えばスピ
ンコード法などにより塗布して熱処理することにより、
半導体装置の絶縁膜に用いられているシリコンオキシナ
イトライド膜を半導体基板に形成せしめるため、凹凸表
面を有する基板でもその表面に被覆性・平坦性に優れた
膜を形成することができる。
According to the present invention, by applying the resin represented by formula (I) by, for example, a spin code method and heat-treating the resin,
Since the silicon oxynitride film used for the insulating film of semiconductor devices is formed on the semiconductor substrate, a film with excellent coverage and flatness can be formed on the surface of even a substrate having an uneven surface.

〔実施例〕〔Example〕

以下、実施例に従って本発明を更に、具体的に説明する
が、本発明の技術的範囲をこれらの実施例に限定するも
のでないことはいうまでもない。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the technical scope of the present invention is not limited to these Examples.

%」−工合迩LULL 滴下ロート及びジムロート冷却管を備えた四つロフラス
コに、ジメチルスルホキシド溶媒200 g 。
%''-Engineering LULL In a four-necked flask equipped with a dropping funnel and a Dimroth condenser, 200 g of dimethyl sulfoxide solvent.

下記式のリチウムシランジオレ−ト20gH3 CH。Lithium silanediolate 20gH3 of the following formula CH.

及び下記式のジクロロシクロジシラザン20gH3 ■ C)13 を混合した。次に、これにヨウ素1gを滴下し、130
℃で3時間反応した。
and 20 g of dichlorocyclodisilazane of the following formula were mixed. Next, 1 g of iodine was added dropwise to this, and 130
The reaction was carried out at ℃ for 3 hours.

得られたポリマーの重量平均分子量は8.0×104、
分散度は2.4であった。
The weight average molecular weight of the obtained polymer was 8.0×104,
The degree of dispersion was 2.4.

■)ユ災籐桝と 例1で合成したポリマーをジイソブチルケトンに溶解し
て30重量%樹脂液を作り、これにアルミニウム(M)
の配線パターンが施されているSi基板上に回転速度3
000rpmで30秒間スピンコードした。なお、Si
基板上の配線パターンは厚さが1μm、線幅が1〜10
0μm、線間隔2〜200μmであった・ スピンコードした樹脂液は温度120℃で30分間加熱
して溶剤を除去乾燥させ、次に空気中で450℃の温度
で1時間加熱して樹脂を硬化させシリコンオキシナイト
ライド膜の、絶縁層を形成した。
■) Dissolve Yusai Rattan Masu and the polymer synthesized in Example 1 in diisobutyl ketone to make a 30% by weight resin liquid, and add aluminum (M) to this.
Rotation speed 3 on a Si substrate with a wiring pattern of
Spin code was performed at 000 rpm for 30 seconds. In addition, Si
The wiring pattern on the board has a thickness of 1 μm and a line width of 1 to 10
The spin-coded resin liquid was heated at 120°C for 30 minutes to remove the solvent and dried, and then heated in air at 450°C for 1 hour to harden the resin. An insulating layer of silicon oxynitride film was formed.

このようにして形成した絶縁層について、膜厚を測定し
たところ、配線パターン上では0.8μm、配線パター
ン間の凹部では1.7μmであり、段差は0.1μm程
度で平坦化されていた。
When the film thickness of the insulating layer thus formed was measured, it was 0.8 μm on the wiring pattern, 1.7 μm in the recess between the wiring patterns, and the thickness was flattened to about 0.1 μm.

また、絶縁層の厚さが1μmを越すにも拘らず、ピンホ
ールやクランクは全く認められなかった。
Further, even though the thickness of the insulating layer exceeded 1 μm, no pinholes or cranks were observed.

次に、2層目の配線を施すために、スルーホールを形成
し、Mを蒸着し、2層目のパターニングを行なった。こ
の配線パターン上に上と同様にしてシリコンオキシナイ
トライド膜の絶縁層を形成した。この絶縁膜の表面段差
は0.3μm以下であった。
Next, in order to provide a second layer of wiring, through holes were formed, M was vapor deposited, and the second layer was patterned. An insulating layer of silicon oxynitride film was formed on this wiring pattern in the same manner as above. The surface level difference of this insulating film was 0.3 μm or less.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、凹凸表面を有す
る半導体装置に、平坦で信転性の高い、シリコンオキシ
ナイトライド膜を形成することができる。
As described above, according to the present invention, a flat silicon oxynitride film with high reliability can be formed on a semiconductor device having an uneven surface.

Claims (1)

【特許請求の範囲】 1、式 ▲数式、化学式、表等があります▼( I ) (式中、Rは、独立に、アルキル基、アリール基又はア
ルコキシ基を示し、nは重合度を示す)で表わされる樹
脂液を配線された半導体基板上に塗布し、次いで熱処理
することによりシリコンオキシナイトライト絶縁膜を形
成せしめることを特徴とする半導体装置の絶縁膜形成方
法。
[Claims] 1. Formula ▲ Numerical formula, chemical formula, table, etc. ▼ (I) (In the formula, R independently represents an alkyl group, aryl group, or alkoxy group, and n represents the degree of polymerization.) 1. A method for forming an insulating film for a semiconductor device, comprising applying a resin liquid represented by the formula above onto a wired semiconductor substrate, and then heat-treating the resin to form a silicon oxynitrite insulating film.
JP2189387A 1987-02-03 1987-02-03 Formation of insulating film of semiconductor device Pending JPS63190343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189387A JPS63190343A (en) 1987-02-03 1987-02-03 Formation of insulating film of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189387A JPS63190343A (en) 1987-02-03 1987-02-03 Formation of insulating film of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63190343A true JPS63190343A (en) 1988-08-05

Family

ID=12067782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189387A Pending JPS63190343A (en) 1987-02-03 1987-02-03 Formation of insulating film of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63190343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038929A1 (en) * 2011-09-12 2013-03-21 新日鉄住金化学株式会社 Organic electroluminescent element material having silicon-containing four membered ring structure, and organic electroluminescent element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038929A1 (en) * 2011-09-12 2013-03-21 新日鉄住金化学株式会社 Organic electroluminescent element material having silicon-containing four membered ring structure, and organic electroluminescent element
CN103814035A (en) * 2011-09-12 2014-05-21 新日铁住金化学株式会社 Organic electroluminescent element material having silicon-containing four membered ring structure, and organic electroluminescent element

Similar Documents

Publication Publication Date Title
JP3418458B2 (en) Method for manufacturing semiconductor device
KR900005894B1 (en) Manufacture of multilayer interconnection structure
US6395649B1 (en) Low dielectric constant polyorganosilicon coatings generated from polycarbosilanes
US20030105264A1 (en) Organosiloxanes
KR20020075876A (en) Polycarbosilane Adhesion Promoters for Low Dielectric Constant Polymeric Materials
CN101021680B (en) Material for forming exposure light-blocking film, multilayer interconnection structure and manufacturing method thereof, and semiconductor device
JPS63190343A (en) Formation of insulating film of semiconductor device
JP3982073B2 (en) Low dielectric constant insulating film forming method
JP3485425B2 (en) Method for forming low dielectric constant insulating film and semiconductor device using this film
JP2006503165A (en) Organosiloxane
JPH06291202A (en) Manufacture of semiconductor device
JPS62290139A (en) High-temperature resin composition
JPH04359056A (en) Resin composition and method for forming layer insulating film
JPH04125929A (en) Insulating film forming method of semiconductor device and semiconductor device
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device
JP3227359B2 (en) Semiconductor device
JP2705078B2 (en) Method for planarizing semiconductor element surface
JPS63152673A (en) Heat-resistant resin composition
JPH09326389A (en) Forming method of moisture-resistant insulating film and forming method of interlayer insulating film
JPH01313942A (en) Semiconductor device
JPH0439371A (en) Formation of insulating film and semiconductor device having insulating film
JPH04185641A (en) Production of heat-resistant resin composition and insulation film
JP2671902B2 (en) Method for forming multi-layer wiring of semiconductor integrated circuit
JPH02192729A (en) Manufacture of insulating layer
JPH06271772A (en) Silsesquioxane polymer composition