JPS63190239A - Method for measuring reflection electron energy loss fine structure - Google Patents

Method for measuring reflection electron energy loss fine structure

Info

Publication number
JPS63190239A
JPS63190239A JP62021977A JP2197787A JPS63190239A JP S63190239 A JPS63190239 A JP S63190239A JP 62021977 A JP62021977 A JP 62021977A JP 2197787 A JP2197787 A JP 2197787A JP S63190239 A JPS63190239 A JP S63190239A
Authority
JP
Japan
Prior art keywords
sample
electron
energy loss
energy
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62021977A
Other languages
Japanese (ja)
Other versions
JP2525791B2 (en
Inventor
Seiji Usami
宇佐美 誠二
Takashi Fujikawa
藤川 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP62021977A priority Critical patent/JP2525791B2/en
Publication of JPS63190239A publication Critical patent/JPS63190239A/en
Application granted granted Critical
Publication of JP2525791B2 publication Critical patent/JP2525791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain a small-sized device easy to utilize by slantly radiating an incident electron beam on the sample surface at a small angle and measuring the energy loss spectrum of nonelastic scattered electrons reflected from the sample surface to measure the fine structure. CONSTITUTION:High-speed electrons are radiated to the surface of a sample to be measured 8 at a low incident angle with a device as shown by the figure, the energy loss spectrum of the nonelastic scattered electrons reflected from the surface of the sample to be measured 8 is measured by an energy analyzer 9, and the spectrum equivalent to the inner shell-excited X-ray absorption spectrum is determined. The vibration component (EXAFS) indicated in the spectrum and the X-ray absorption near edge structure (XANES) are analyzed to obtain the information on the surface arrangement and electronic state. Accordingly, measurement is performed by incident electrons, thus a large-scale facility such as the synchrotron orbital radiation light is not required and a small-sized electron source is sufficient, and the difficult problem of the spectroscopy is eliminated and the device is made easy to handle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料に電子ビームを照射し表面構造情報を得
る反射電子エネルギー損失微細構造測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reflected electron energy loss fine structure measurement method for obtaining surface structure information by irradiating a sample with an electron beam.

〔従来の技術〕[Conventional technology]

表面解析は、特に解析の難しい分野とされてきたが、近
年、表面解析装置の必要性が高まってきている。その理
由としては、電子デバイスのマイクロ化に伴い、表面の
影響が増大したこと、また、機能性表面、例えば触媒、
表面反応によるガス検知センサ等の動作特性の解析、さ
らには、表面保護膜の改善にとって有用であること等が
挙げられる。
Surface analysis has been considered to be a particularly difficult field, but in recent years, the need for surface analysis equipment has increased. The reason for this is that the influence of surfaces has increased with the miniaturization of electronic devices, and that functional surfaces, such as catalysts,
It is useful for analyzing the operating characteristics of gas detection sensors and the like based on surface reactions, and for improving surface protective films.

表面評価では、原子配列(原子の規則配列や原子間距離
)、原子組成(表面層の原子組成比)、電子状態(原子
間結合状態、原子間電子分布、表面分極)が評価の三要
素であるが、表面に関する情報のうち最も基本的といえ
るものは、原子配列、原子間距離という構造の知見であ
る。
In surface evaluation, the three elements of evaluation are atomic arrangement (regular arrangement of atoms and interatomic distance), atomic composition (atomic composition ratio of surface layer), and electronic state (interatomic bonding state, interatomic electron distribution, and surface polarization). However, the most basic information about surfaces is the structural knowledge of atomic arrangement and interatomic distance.

従来の原子配列の構造解析としては、顕微鏡により解析
する方法、回折像により解析する方法等がある。後者の
回折像による解析では、X線や中性子線、電子線を使っ
た弾性散乱波による解析及び非弾性散乱波による解析が
ある。特に近年、X線の吸収近傍に現れる振動構造を観
測し、それに数値的な処理を施すことによって原子間距
離を求める方法が使われるようになった。この方法の場
合、吸収端から30eVあたりまでの範囲は、多重散乱
効果を反映するため、理論的な扱いの便宜上、その先に
続く振動構造と区別し、後者をEXA  F  S (
Extended  X −ray  Absorpt
ion  Fine  5tructure、広域X線
吸収微細構造)と呼ぶのに対し、前者をX A N E
 S (X −ray Absorption Nea
r Edge 5tructure、 X線吸収近接微
細構造)と呼んでいる。従って、内殻XwA吸収スペク
トルには、吸収端の立ち上がり付近の大きな構造XAN
ESと、それより遠く離れたゆっくり振動する小さな構
造EXAFSが同時に見られる。この両者の違いは、内
殻よりX線でたたき出された光電子の運動エネルギーの
違いによるものであるが、それを解析する手段も得られ
る情報も大きく異なっている。EXAFSからはXvA
を吸収する原子とその周り、主に第−配位数の原子との
距離、およびその配位数についての情報が得られるが、
XANESから、はスペクトルを反映する程度のクラス
ターの三次元立体構造と電子状態について情報が得られ
る。
Conventional structural analyzes of atomic arrangement include a method of analyzing using a microscope, a method of analyzing using a diffraction image, and the like. The latter analysis using diffraction images includes analysis using elastic scattered waves using X-rays, neutron beams, and electron beams, and analysis using inelastic scattered waves. Particularly in recent years, a method has been used to determine the interatomic distance by observing the vibrational structure that appears near the absorption of X-rays and applying numerical processing to it. In this method, the range from the absorption edge to around 30 eV reflects the multiple scattering effect, so for convenience of theoretical treatment, it is distinguished from the vibrational structure that follows, and the latter is EXA F S (
Extended X-ray Absorpt
ion Fine 5structure, wide area X-ray absorption fine structure), whereas the former is called
S (X-ray Absorption Nea
It is called Edge 5structure (X-ray absorption adjacent fine structure). Therefore, the inner shell XwA absorption spectrum contains a large structure XAN near the rise of the absorption edge.
ES and a small, slowly vibrating structure EXAFS further away can be seen simultaneously. The difference between the two is due to the difference in the kinetic energy of the photoelectrons emitted from the inner shell by X-rays, but the means to analyze them and the information obtained are also very different. XvA from EXAFS
Information can be obtained about the distance between the atom that absorbs and its surroundings, mainly the atom with the -th coordination number, and its coordination number.
XANES provides information about the three-dimensional structure and electronic state of the cluster to the extent that it reflects the spectrum.

非弾性散乱の確率は、ロスエネルギーΔEが増すと小さ
くなるので、小さなΔE5すなわち軽重子(C,N、0
)や浅い方の内殻(AlのLよ、。
The probability of inelastic scattering decreases as the loss energy ΔE increases, so the probability of inelastic scattering decreases as the loss energy ΔE increases.
) and the shallower inner shell (L of Al.

殻等)からの励起シンクロトロンの励起光にして200
〜300eVあたりが最も得意とする領域になる。この
領域は、シンクロトロン放射光を利用する場合、分光を
行うのが最も困難な領域でもある。
Excitation light from an excitation synchrotron (shell, etc.) is 200
~300eV is the area of greatest strength. This region is also the most difficult region to perform spectroscopy using synchrotron radiation.

高速電子の非弾性散乱は、古くはBetheによって1
930年代に理論的に取り扱われ、前方方向の非弾性散
乱の断面積は光吸収断面積を再現することが予想されて
いた。しかしその精密な実験が行われるようになったの
はつい最近のことである。
Inelastic scattering of high-speed electrons was previously described by Bethe as 1
It was theoretically treated in the 1930s, and it was predicted that the cross section of inelastic scattering in the forward direction would reproduce the optical absorption cross section. However, it is only recently that such precise experiments have been carried out.

特にBr1onらは、分子の光吸収断面積を電子損失分
光法により、60以上の論文をまとめている。
In particular, Brion et al. have compiled more than 60 papers on the optical absorption cross section of molecules using electron loss spectroscopy.

高速電子の前方方向での電子損失微分断面積が光吸収断
面積を再現するのであるから、内殻からのイオン化に相
当するだけのエネルギーロスを観測した場合、勿論この
方法でEXAFSやXANESが測定出来るようになる
Since the electron loss differential cross section in the forward direction of high-speed electrons reproduces the optical absorption cross section, when an energy loss equivalent to ionization from the inner shell is observed, EXAFS and XANES can of course measure it using this method. become able to do.

実際、この方法で透過法を用いて気相分子や遷移金属、
T i Ozの薄膜のXANESが測定されている。こ
の測定方法では、シンクロトロン放射光を利用しないで
、それと比較して、ずっと安価にEXAFSやXANE
Sが測定できる利点をもつ。
In fact, using this method, gas-phase molecules and transition metals can be
The XANES of thin films of T i Oz has been measured. This measurement method does not use synchrotron radiation and is much cheaper than EXAFS or XANE.
It has the advantage that S can be measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のシンクロトロン放射光によるEXAFSでは種々
の問題がある。例えば、■変動部分の信号が弱いため極
めて強力な光源が必要である。■単色光にして照射する
ことが必要であり、そのため精密な単色化装置が不可欠
である。■大気中でも測定可能であるが大気の吸収補正
を考慮する必要がある。■そのため、光源に大きな施設
を伴い、非常に大規模な磁場を配置してエレクトロンを
加速するため、大型で且つ高価な装置となり、実験室の
ような場所で手軽に利用できるものがない。
Conventional EXAFS using synchrotron radiation has various problems. For example, (1) the signal in the fluctuating portion is weak, so an extremely powerful light source is required. ■It is necessary to irradiate with monochromatic light, so a precise monochromating device is essential. ■Measurement is possible even in the atmosphere, but atmospheric absorption correction must be taken into account. ■As a result, the light source requires a large facility and a very large magnetic field is placed to accelerate the electrons, resulting in large and expensive equipment that cannot be easily used in places such as laboratories.

大規模な放射光施設は、その運転に多くの人員を要する
ため、実施場所、時間に課せられる制限が厳しく十分な
研究が出来難い。また、高速電子の電子顕微鏡を用いて
損失スペクトル中のEXAFSを観測する方法は、試料
を薄片化することが必要となり、高度な加工技術が要求
される。
Large-scale synchrotron radiation facilities require many people to operate, and strict restrictions on location and time make it difficult to conduct sufficient research. Furthermore, the method of observing EXAFS in the loss spectrum using a high-speed electron microscope requires cutting the sample into thin sections, which requires advanced processing techniques.

本発明は、上記の問題点を解決するものであって、小型
で手軽に利用できる反射電子エネルギー損失微細構造測
定方法を提供することを目的とする。
The present invention solves the above-mentioned problems, and aims to provide a method for measuring the fine structure of reflected electron energy loss that is small and easy to use.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の反射電子エネルギー損失微細構造測
定製方法は、超高真空中に電子銃と保持具上の固体試料
とエネルギー分析器を配置し、該試料に電子ビームを入
射させて試料の微細構造を測定する反射電子エネルギー
損失微細構造測定装置に於いて、入射電子のエネルギー
を1KeV程度以上にするとともに、入射電子ビームを
試料表面に小さい角度で斜入射させて試料表面から反射
する非弾性散乱電子のエネルギー損失スペクトルを測定
することによって、微細構造を測定することを特徴とす
る。
To this end, the method for measuring the backscattered electron energy loss fine structure of the present invention places an electron gun, a solid sample on a holder, and an energy analyzer in an ultra-high vacuum, and injects an electron beam into the sample. In a backscattered electron energy loss microstructure measuring device that measures structures, inelastic scattering is used in which the energy of incident electrons is set to about 1 KeV or more, and the incident electron beam is obliquely incident on the sample surface at a small angle and reflected from the sample surface. It is characterized by measuring the fine structure by measuring the energy loss spectrum of electrons.

〔作用〕[Effect]

本発明の反射電子エネルギー損失微細構造測定方法では
、高速電子を試料表面に低入射角で入射せしめ、反射電
子のエネルギー損失を測定(小散乱角の電子のみを収集
)するので、内殻励起のX線吸収スペクトルと同等のス
ペクトルを求めることができる。従って、そのスペクト
ルに現れる振動成分(EXAFS)やX線吸収端近接微
細構造(XANES)を解析して、表面配置、電子状態
などについての情報を得ることができる。この場合、斜
め入射であることから、表面情報に敏感であり、強い短
波長光源を使用しなくても同等の情報が得られる。しか
も、入射電子のエネルギーを変え、入射強度を一定に保
つことが極めて容易に可能であるので、深さ方向の変化
を知ることもできる。
In the backscattered electron energy loss fine structure measurement method of the present invention, high-speed electrons are made incident on the sample surface at a low incident angle, and the energy loss of the backscattered electrons is measured (only electrons with small scattering angles are collected). A spectrum equivalent to an X-ray absorption spectrum can be obtained. Therefore, information about the surface arrangement, electronic state, etc. can be obtained by analyzing the vibrational components (EXAFS) and X-ray absorption edge near fine structure (XANES) appearing in the spectrum. In this case, since it is obliquely incident, it is sensitive to surface information, and equivalent information can be obtained without using a strong short wavelength light source. Furthermore, since it is extremely easy to change the energy of incident electrons and keep the incident intensity constant, changes in the depth direction can also be detected.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明の反射電子エネルギー損失微細構造測定
方法に適用される装置の1実施例構成を示す図、第2図
は外部刺戟による微小構造での作用を説明するための図
、第3図は電子入射の幾何配置の例を示す図、第4図は
散乱角度と反射電子エネルギー損失との関係を説明する
ための図、第5図は高速電子の運動量移動の大きさを説
明するための図である。
FIG. 1 is a diagram showing the configuration of one embodiment of the apparatus applied to the reflected electron energy loss microstructure measuring method of the present invention, FIG. 2 is a diagram for explaining the action on the microstructure due to external stimulation, and FIG. The figure shows an example of the geometry of incident electrons, Figure 4 is a diagram to explain the relationship between the scattering angle and reflected electron energy loss, and Figure 5 is a diagram to explain the magnitude of momentum transfer of high-speed electrons. This is a diagram.

第1図において、1は電子銃、2は集束コイル、3は偏
向コイル、4と5は観測窓、6は仕事関数測定器、7は
標準試料、8は測定試料、9はエネルギー分析器、10
はマニピュレータ、11は螢光板、12はエネルギー分
析器操作部、13は超高真空ポンプを示す。
In FIG. 1, 1 is an electron gun, 2 is a focusing coil, 3 is a deflection coil, 4 and 5 are observation windows, 6 is a work function measuring device, 7 is a standard sample, 8 is a measurement sample, 9 is an energy analyzer, 10
1 is a manipulator, 11 is a fluorescent plate, 12 is an energy analyzer operating section, and 13 is an ultra-high vacuum pump.

電子銃1は、高輝度微焦点にして感度を高めるため例え
ばFE  GUNが採用される。マニピュレータ10は
、軸のまわりの回転、あおりのほか上下、左右の3次元
移動が可能で、測定試料8のセント位置及び角度を制御
するものであり、これにより電子銃lから照射される電
子ビームの測定試料8に対する照射角度を調整する。エ
ネルギー分析器操作部12は、エネルギー分析器9を測
定状玄JRの固め7間串丑させふJlのであめ、これに
よってエネルギー分析器9の取出角を調整する。螢光板
11は、測定試料8の背後に配置され、エネルギー分析
器9がエネルギー分析器操作部12の操作に従って測定
試料8の周りを回転し測定試料8と螢光板11とを結ぶ
直線上から退避したときその螢光面に測定試料8の回折
パターンを写すものであり、これによりRHEED観測
も同時に可能とする。超高真空ポンプ13は、例えば主
ポンプとしてスパタイオンポンプ又はクライオポンプを
用い、サブリメーションポンプを併用して10−?pa
もしくは好ましくはそれ以上の超高真空を実現する。
For example, an FE GUN is used as the electron gun 1 in order to provide high brightness and fine focus to increase sensitivity. The manipulator 10 is capable of rotation around an axis, tilting, and three-dimensional movement up and down, left and right, and controls the center position and angle of the measurement sample 8, thereby controlling the electron beam irradiated from the electron gun l. The irradiation angle for the measurement sample 8 is adjusted. The energy analyzer operation unit 12 skewers the energy analyzer 9 for 7 minutes in the measurement state, thereby adjusting the take-out angle of the energy analyzer 9. The fluorescent plate 11 is placed behind the measurement sample 8 , and the energy analyzer 9 rotates around the measurement sample 8 according to the operation of the energy analyzer operating section 12 and is moved away from the straight line connecting the measurement sample 8 and the fluorescent plate 11 . When this happens, the diffraction pattern of the measurement sample 8 is copied onto the fluorescent surface, thereby making RHEED observation possible at the same time. The ultra-high vacuum pump 13 uses, for example, a spatium ion pump or a cryopump as the main pump, and a sublimation pump in combination with the 10-? pa
Or preferably achieve an even higher ultra-high vacuum.

本発明の反射電子エネルギー損失微細構造測定方法では
、第1図に示すような装置により高速電子を測定試料8
の表面に低入射角で入射せしめ、エネルギー分析器9で
測定試料8の表面から反射する非弾性散乱電子のエネル
ギー損失スペクトルを測定(小散乱角の電子のみを収集
)して、内殻励起のXi吸収スペクトルと同等のスペク
トルを求める。そして、そのスペクトルに現れる振動成
分(EXAFS)やX線吸収端近接微細構造(XANE
S)を解析して、表面配置、電子状態などについての情
報を得る。
In the backscattered electron energy loss fine structure measurement method of the present invention, high-speed electrons are measured on a measurement sample 8 using an apparatus as shown in FIG.
The energy loss spectrum of the inelastically scattered electrons reflected from the surface of the measurement sample 8 is measured by the energy analyzer 9 (only the electrons with small scattering angles are collected), and the energy loss spectrum of the inelastically scattered electrons is measured by the energy analyzer 9. Obtain a spectrum equivalent to the Xi absorption spectrum. The vibrational components (EXAFS) that appear in the spectrum and the fine structure near the X-ray absorption edge (XANE)
S) is analyzed to obtain information about surface arrangement, electronic state, etc.

まず、EXAFSの測定について説明する。物体に光を
透過させると、ある波長の光を吸収して出てくる光に色
の変化を生ずることがある。これは原子が共振状態にな
り得る光のみを吸収することが原因である。X線(波長
の短い光)の入射を行ったときも同様な現象がおこるが
、くわしく観察すると、吸収がおこったときX線の波長
をかえると吸収量が太き(なったり小さくなったりして
変動する様子がみられる。この変動を吸収微細構造と云
っている。今、第2図に示すようにある1つの原子Aが
外部の刺戟(この場合、X&JI)を受けて持っている
電子を1つ投げ出したとき、隣の原子Bにあたって跳ね
返ってくると考える。電子は波動の性格を備えており、
そのためにAから放出された電子と1回Bで散乱されて
戻ってくる電子波との干渉効果のために、原子固有の吸
収構造に微細構造があられれる。この構造の変動の間隔
と原子の間の間隔とは比較的簡単な理論式で結びついて
いて、EXAFSの実験データから原子間距離が算出さ
れる。
First, EXAFS measurement will be explained. When light passes through an object, it absorbs light of a certain wavelength, causing a color change in the emitted light. This is because atoms only absorb light that can cause them to resonate. A similar phenomenon occurs when X-rays (light with a short wavelength) are incident, but if you look closely, you will find that when absorption occurs, if you change the wavelength of the X-rays, the amount of absorption becomes thicker (or smaller). This fluctuation is called the absorption fine structure.Now, as shown in Figure 2, when one atom A receives external stimulation (in this case, X & JI), the electrons it has When one is thrown out, it will hit the neighboring atom B and bounce back.An electron has the characteristics of a wave,
Therefore, due to the interference effect between the electrons emitted from A and the electron waves that are scattered once by B and returned, a fine structure is created in the absorption structure unique to atoms. The interval of this structural variation and the interval between atoms are connected by a relatively simple theoretical formula, and the interatomic distance is calculated from the experimental data of EXAFS.

この場合、原子が規則配列して試料全体が単結晶になっ
ているならば、勿論この方法は適用できる。また、小範
囲では、決まった原子配列だが、試料全体が整列状態に
ない場合、例えば同じ形の小さいサイコロがきちんと並
んでいるのでなく、向きを揃えずバラまかれている状態
であったとしても、そのサイコロを形づ(っている粒子
間の距離を求めることができる。
In this case, of course, this method can be applied if the atoms are regularly arranged and the entire sample is a single crystal. In addition, in a small area, the atomic arrangement is fixed, but if the entire sample is not aligned, for example, small dice of the same shape are not lined up neatly, but are scattered with their orientations not aligned. , we can find the distance between the particles that make up the dice.

先に述べたようにEXAFSが吸収端から数百eVの広
域にわたる微細構造であるのに対し、吸収端近傍数十e
Vの範囲の微細構造はEXAFSとは異なる原因によっ
てあられれる。EXAFSは外部の刺戟を受けて飛び出
す電子のただ1度だけの散乱によっておこるのに対し、
XANESでは、電子のエネルギーが小さいために、何
度もまわりの原子から跳ね返され、その複数回の散乱の
干渉によっておこるため、EXAFSでは検出困難な軽
い元素(C,N、0など)の位置を知るのに有利となる
。このように光の代わりに電子を使う場合も同様で、E
XAFSと並んでXANESの測定にも軽元素を対象に
することができ、有機物、表面における気体の吸着・脱
離現象など、他の方法では困難な材料や現象の解析に有
効である。
As mentioned earlier, EXAFS has a fine structure over a wide range of several hundred eV from the absorption edge, whereas
The fine structure in the V range is caused by different causes than in EXAFS. Whereas EXAFS is caused by a single scattering of electrons that fly out in response to an external stimulus,
With XANES, since the energy of electrons is small, they are bounced off many times by surrounding atoms, and this occurs due to the interference of multiple scatterings, so it is difficult to detect the positions of light elements (C, N, 0, etc.) that are difficult to detect with EXAFS. It will be useful to know. The same is true when using electrons instead of light, and E
Along with XAFS, XANES can also measure light elements, and is effective in analyzing materials and phenomena that are difficult to use with other methods, such as organic matter and gas adsorption/desorption phenomena on surfaces.

電子の非弾性散乱で光吸収断面積を再現する条件は、ま
ず第1に、入射、散乱電子の運動エネルギーが十分太き
(、B orn近似が使えることである。第2に、散乱
電子の運動量をPt s入射電子の運動量をP、とする
と、高速電子の運動量移動ΔP=Pr  Ptの大きさ
が、励起される内殻軌道の大きさとの積が1に比べて小
さいことである。
The conditions for reproducing the light absorption cross section by inelastic scattering of electrons are, firstly, that the kinetic energies of the incident and scattered electrons are sufficiently large (the Born approximation can be used). Momentum is Pt sIf the momentum of the incident electron is P, then the momentum transfer of the high-speed electron ΔP=Pr The product of the magnitude of Pt and the magnitude of the excited inner orbit is smaller than 1.

ΔPの大きさが一番小さくなるのは第5図かられかるよ
うに前方散乱である。第3図は代表的な三つの幾何配置
を示したものであり、そのうち+8)、(blが光吸収
断面積を再現する配置である。(a)は従来行われてき
たが、山)の測定例は発明者等の知る限りでは見当たら
ない、(C)の配置でもイタリヤの/y” ++、 −
′f礒(鮪・遵1;茅 ブー% 1 k A I−CV
 A f” C’ JJL 77% a’lt調をロス
スペクトルで観測している。勿論、この場合EXAFS
を解析する式をそのまま適用出来ないが、局所的な幾何
学的情報を含んでいる。
As can be seen from FIG. 5, the magnitude of ΔP is the smallest in forward scattering. Figure 3 shows three typical geometric arrangements, among which +8) and (bl are the arrangements that reproduce the light absorption cross section. To the best of the inventors' knowledge, no measurement example has been found; even in the arrangement (C), /y" in Italy ++, -
'f 礒(Tuna・Jun 1; Kaya Boo% 1 k A I-CV
A f"C' JJL 77% a'lt key is observed in the loss spectrum. Of course, in this case EXAFS
Although the formula for analyzing cannot be applied directly, it contains local geometric information.

入射電子がエネルギーを一部失って散乱されてくるとき
、そのエネルギー損失を検出する方法を−mに電子エネ
ルギー損失スペクトルの方法といっている。しかし、ひ
と口にエネルギー損失スペクトルといってもその得よう
とする物質評価の情報は実施条件で全く異なる。反射電
子のエネルギー損失は、散乱角度により第4図に示すよ
うな特性を有し、EXAFSを得るには、比較的高いエ
ネルギーで入射させた電子の散乱を小角散乱の範囲でと
らなければならない。
When an incident electron loses part of its energy and is scattered, the method of detecting the energy loss is called the electron energy loss spectrum method. However, even though it is simply an energy loss spectrum, the information it seeks to obtain for material evaluation is completely different depending on the implementation conditions. Energy loss of reflected electrons has characteristics as shown in FIG. 4 depending on the scattering angle, and in order to obtain EXAFS, the scattering of electrons incident at relatively high energy must be within the small-angle scattering range.

電子エネルギー損失スペクトルは、入射エネルギーE0
、得られる情報等によって次の三つの領域に分けること
が出来る。
The electron energy loss spectrum is based on the incident energy E0
It can be divided into the following three areas depending on the information obtained.

■、低エネルギー領域(E6≦10eV)表面素励起(
表面phonon励起、表面電子励起)の分散、表面吸
着種の振動等を調べるのに通している。これらの素励起
は10meV (fmeV=8 cm−’ )のオーダ
ーであるので、それだけの分解能が必要である。例えば
、coが金属表面に吸着した時、Co伸縮振動の有無で
COが解離吸着かどうかが判定できる。(Co伸縮振動
がなければ解離吸着) ■、中間エネルギー領域(E、〜100eV、LE E
 D Sff域) 表面での電子励起、表面プラズモン励起を調べるのに適
している。これらの励起エネルギーは、1〜10eVの
オーダーであるのでそれぼど分解能は必要としない、励
起のモメントは双極子選択則ではないので光学的に禁制
なパン、ドも観測される。
■, low energy region (E6≦10eV) surface elementary excitation (
It is used to investigate the dispersion of surface phonon excitation (surface phonon excitation, surface electron excitation), vibration of surface adsorbed species, etc. Since these elementary excitations are on the order of 10 meV (fmeV=8 cm-'), that much resolution is required. For example, when Co is adsorbed on a metal surface, it can be determined whether the CO is dissociatively adsorbed or not based on the presence or absence of Co stretching vibration. (Dissociation adsorption if there is no Co stretching vibration) ■, intermediate energy region (E, ~100 eV, LE E
D Sff region) Suitable for investigating electronic excitation and surface plasmon excitation on the surface. Since these excitation energies are on the order of 1 to 10 eV, no resolution is required.Since the moment of excitation is not based on the dipole selection rule, optically prohibited pans and dos are also observed.

■、高エネルギー領域(Eo>1keV)古くはバルク
プラズモンの研究に使われてきた。
■High energy region (Eo>1keV) It has long been used for research on bulk plasmons.

プラズモンの分散、プラズモンによるエネルギー損失強
度の規則性がそれによって明らかになった。
This revealed the dispersion of plasmons and the regularity of the intensity of energy loss due to plasmons.

待に、高いエネルギー領域では電子の波動関数を平面波
で扱うホルン近似が成立して、取り扱いがずっと容易に
なる。しかし、この近似を用いても、一般の散乱角の非
弾性散乱を解釈するのは困難であるが、散乱角が充分小
さい場合は、非弾性散乱強度が丁度光学吸収強度を再現
する。すなわち、電気双極子近似則に従う。特に内殻か
らの励起を観察すればEXAFSやXANESがシンク
ロトロン放射光を用いなくても測定できるようになる。
Finally, in the high energy region, the Horn approximation, which treats the electron wave function as a plane wave, holds true, making it much easier to handle. However, even using this approximation, it is difficult to interpret inelastic scattering at a general scattering angle, but if the scattering angle is sufficiently small, the inelastic scattering intensity exactly reproduces the optical absorption intensity. That is, it follows the electric dipole approximation law. In particular, if excitation from the inner shell is observed, EXAFS and XANES can be measured without using synchrotron radiation.

これらのデータを解析することによって、励起原子の廻
りの局所式な幾何構造や電子構造についての情報を得る
ことが可能となる。散乱角が大きい場合では、散乱強度
が小さく且つまた電気双極子近似が破れる。
By analyzing these data, it becomes possible to obtain information about the local geometric structure and electronic structure around the excited atoms. When the scattering angle is large, the scattering intensity is small and the electric dipole approximation is broken.

第6図は仕事関数を測定するシステムの構成例を示す図
である。標準試料を測定試料に近づけて両者の距離を周
期的に変化させる。両者の電位が異なるときには交流電
流が流れ、この信号がプリアンプ21から位相検出器2
2を通してDCアンプ27へ帰還され、積分器28で積
分される。従って、この帰還により検出信号が0になっ
たときの帰還量、すなわち積分器28の出力値が両者の
電位差としてレコーダ29に記録される。このように、
仕事関数の測定が可能になると、表面分極の状態を知る
ことができる。
FIG. 6 is a diagram showing an example of the configuration of a system for measuring a work function. The standard sample is brought close to the measurement sample and the distance between the two is changed periodically. When the two potentials are different, an alternating current flows, and this signal is sent from the preamplifier 21 to the phase detector 2.
2 to the DC amplifier 27 and integrated by the integrator 28. Therefore, the amount of feedback when the detection signal becomes 0 due to this feedback, that is, the output value of the integrator 28, is recorded in the recorder 29 as a potential difference between the two. in this way,
Once the work function can be measured, the state of surface polarization can be determined.

以上のように本発明に係る反射電子エネルギー損失微細
構造測定方法は、高精度の表面解析を可能にし、触媒材
料や表面吸着物質等の表面原子間距離の決定、非晶質シ
リコンやセラミックスにおける近接原子間隔の決定、多
Ji薄膜や表面改質層等の表面状態の研究その他の分野
に寄与できるものである。
As described above, the backscattered electron energy loss fine structure measurement method according to the present invention enables highly accurate surface analysis, determines the distance between surface atoms of catalyst materials, surface adsorbed substances, etc., and determines the distance between surface atoms in amorphous silicon and ceramics. This can contribute to the determination of atomic spacing, research on the surface state of multi-Ji thin films, surface-modified layers, and other fields.

なお、本発明は、種々の変形が可能であり、上記実施例
に限定されるものではない0例えば2つの測定試料を向
き合わせて同時マウントし、交互に測定できるようにす
るとともに、ピエゾ素子を利用して試料に振動を加え高
感度で信号検出を可能にしてもよい。
Note that the present invention can be modified in various ways, and is not limited to the above-mentioned embodiments. It may also be used to apply vibration to the sample and enable signal detection with high sensitivity.

試料に振動を加えた状態で入射電子の散乱を行わせると
、散乱強度が散乱角によって第4図に示す如く著しい変
わり方をするため、励振の振動に同期した信号変動を検
出する位相検波増幅器を用いることによって、高感度で
信号を取り出すことができる。角度変調法と呼ぶにふさ
れしいこの検出方法は、低角散乱の実験には極めて有効
である。
When incident electrons are scattered while the sample is vibrating, the scattering intensity changes significantly depending on the scattering angle as shown in Figure 4. Therefore, a phase detection amplifier is used to detect signal fluctuations synchronized with the excitation vibrations. By using this, signals can be extracted with high sensitivity. This detection method, which can be appropriately called the angle modulation method, is extremely effective for low-angle scattering experiments.

RHEEDの回折点近傍における角度分散を測定する場
合においても、この方法を用いれば測定が容易であり、
広く電子エネルギーの損失分光での角度分解実験に適用
できる点でも、従来行われていない新しい着想の有力手
段である。
Even when measuring the angular dispersion near the diffraction point of RHEED, it is easy to measure using this method,
It is also a powerful means of creating new ideas that have not been done before, as it can be widely applied to angle-resolved experiments in electron energy loss spectroscopy.

さらに、試料の加振は、第6図に示されるようなケルビ
ン法による表面電位の測定を行う上でも当然役立てるこ
とができる。表面電位差に用いられる基準電極を試料面
に極めて接近させた位置で安定に振動を加えることがで
きるため、この場合にも悪魔は著しく向上し、精度が高
められる。
Furthermore, excitation of the sample can of course be useful in measuring the surface potential using the Kelvin method as shown in FIG. Since the reference electrode used to measure the surface potential difference can be stably vibrated at a position extremely close to the sample surface, in this case as well, the amplitude is significantly improved and accuracy is increased.

さらに、電子銃に代えて電子源とイオン源とを一体化し
た荷電粒子発生装置を取り付けることによって、イオン
散乱分光法により表面欠陥構造を知ることも可能になる
Furthermore, by installing a charged particle generator that integrates an electron source and an ion source in place of the electron gun, it becomes possible to determine the surface defect structure by ion scattering spectroscopy.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、透過
電子エネルギー損失分光と比べてこの方法ではバルクの
平均的な情報を得るだけの方法と異なり、斜め入射を行
うため表面情報に冨むデータが得られ表面近傍の観測が
可能となる。背面反射エネルギー損失分光と比べて、正
確なEXAFSならびにXANESの振動成分を与える
ことができる。放射光を用いる方法と比べて、これが大
規模設備と人手を必要とするのに対し、実験室規模で容
易に実験ができる。
As is clear from the above description, according to the present invention, compared to transmission electron energy loss spectroscopy, this method uses oblique incidence to obtain surface information, unlike the method that only obtains average information of the bulk. Data can be obtained and observation near the surface becomes possible. Compared to back reflection energy loss spectroscopy, accurate EXAFS and XANES vibrational components can be provided. Compared to methods using synchrotron radiation, which require large-scale equipment and manpower, experiments can be easily performed on a laboratory scale.

また、電子入射による測定を行うので、■シンクロトロ
ン放射光のような大規模施設が不要になり、小型な電子
源でよくなるため、分光技術の困難な問題がなくなると
共に扱い易くなる、■照射エネルギーが自由に変えられ
る、しかも電子エネルギー損失スペクトルは、入射電子
のエネルギーの大小により深さ方向の情報その地異なる
情報を得ることができる、■比較的安価にできる。なお
、真空中の測定が必要であるが表面研究に真空は不可欠
であるので、問題とはならない。
In addition, since measurement is performed by electron injection, large-scale facilities such as synchrotron synchrotron radiation are not required, and a small electron source can be used, eliminating difficult problems with spectroscopic technology and making it easier to handle.■ Irradiation energy can be changed freely, and the electron energy loss spectrum can provide different information in the depth direction depending on the energy level of the incident electrons. ■It is relatively inexpensive. Although measurement in vacuum is required, this is not a problem since vacuum is essential for surface research.

光入射による方法°は、透過光の強度の測定か、あるい
は光電子の検出を行うのに対し、電子入射の場合は、散
乱電子のエネルギー分析を行ってEXAFSを求めるこ
とができる。また、透過電子ではなく、反射電子を観測
するため、試料を一様に薄く仕上げる必要がなく、任意
の試料表面を対象にすることができ、熟練を要する1片
試料の調整が不要となる。従って、試料調整も容易にな
る。
In the method using light incidence, the intensity of transmitted light is measured or photoelectrons are detected, whereas in the case of electron incidence, EXAFS can be obtained by analyzing the energy of scattered electrons. Furthermore, since reflected electrons are observed instead of transmitted electrons, there is no need to finish the sample uniformly thin, any sample surface can be targeted, and there is no need to prepare a single sample that requires skill. Therefore, sample preparation becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の反射電子エネルギー損失微細構造測定
方法に通用される装置の1実施例構成を示す図、第2図
は外部刺戟による微小構造での作用を説明するための図
、第3図は電子入射の幾何配置の例を示す図、第4図は
散乱角度と反射電子エネルギー損失との関係を説明する
ための図、第5図は高速電子の運動量移動の大きさを説
明するための図、第6図は仕事関数を測定するシステム
の構成例を示す図である。 第1図において、1は電子銃、2は集束コイル、3は偏
向コイル、4と5は観測窓、6は仕事関数側定器、7は
標準試料、8は測定試料、9はエネルギー分析器、10
はマニピュレータ、11は螢光板、12はエネルギー分
析器操作部、13は超高真空ポンプ。 出 願 人  新技術開発事業団 代理人 弁理士 阿 部 龍 吉 第1図 第2図 第3図 (4)         (C) 0’   5’   TO”   Is’   20’
   2!5”   37’袈牝l!l泉 第5図 す 第6図
FIG. 1 is a diagram showing the configuration of one embodiment of the apparatus applicable to the reflected electron energy loss microstructure measurement method of the present invention, FIG. 2 is a diagram for explaining the action on the microstructure due to external stimulation, and FIG. The figure shows an example of the geometry of incident electrons, Figure 4 is a diagram to explain the relationship between the scattering angle and reflected electron energy loss, and Figure 5 is a diagram to explain the magnitude of momentum transfer of high-speed electrons. FIG. 6 is a diagram showing an example of the configuration of a system for measuring a work function. In Figure 1, 1 is an electron gun, 2 is a focusing coil, 3 is a deflection coil, 4 and 5 are observation windows, 6 is a work function side regulator, 7 is a standard sample, 8 is a measurement sample, and 9 is an energy analyzer. , 10
1 is a manipulator, 11 is a fluorescent plate, 12 is an energy analyzer operating section, and 13 is an ultra-high vacuum pump. Applicant New Technology Development Corporation Agent Patent Attorney Ryukichi Abe Figure 1 Figure 2 Figure 3 (4) (C) 0'5'TO"Is'20'
2! 5"37' 袈女l!l Izumi 5th figure 6th figure

Claims (5)

【特許請求の範囲】[Claims] (1)超高真空中に電子銃と保持具上の固体試料とエネ
ルギー分析器を配置し、該試料に電子ビームを入射させ
て試料の微細構造を測定する反射電子エネルギー損失微
細構造測定装置に於いて、入射電子のエネルギーを1K
eV程度以上にするとともに、入射電子ビームを試料表
面に小さい角度で斜入射させて試料表面から反射する非
弾性散乱電子のエネルギー損失スペクトルを測定するこ
とによって、微細構造を測定することを特徴とする反射
電子エネルギー損失微細構造測定方法。
(1) A backscattered electron energy loss microstructure measuring device that measures the microstructure of the sample by arranging an electron gun, a solid sample on a holder, and an energy analyzer in an ultra-high vacuum, and injecting an electron beam into the sample. In this case, the energy of the incident electron is 1K
eV or more, and the fine structure is measured by making the incident electron beam obliquely incident on the sample surface at a small angle and measuring the energy loss spectrum of inelastically scattered electrons reflected from the sample surface. Backscattered electron energy loss fine structure measurement method.
(2)入射電子ビームのエネルギー値や入射角度やエネ
ルギー分析器の検出角度を変えることによって、試料の
表面から内部へ深さ方向の構造変化を測定することを特
徴とする特許請求の範囲第1項記載の反射電子エネルギ
ー損失微細構造測定方法。
(2) The structure change in the depth direction from the surface of the sample to the inside is measured by changing the energy value and angle of incidence of the incident electron beam and the detection angle of the energy analyzer. The method for measuring the backscattered electron energy loss fine structure described in Section 1.
(3)試料の保持具を真空容器の外から操作して、電子
ビームの入射角度及び試料の測定位置を変えることを特
徴とする特許請求の範囲第1項記載の反射電子エネルギ
ー損失微細構造測定方法。
(3) Backscattered electron energy loss fine structure measurement according to claim 1, characterized in that the incident angle of the electron beam and the measurement position of the sample are changed by operating the sample holder from outside the vacuum container. Method.
(4)エネルギー分析器の検出角度を真空容器の外から
操作して変えることを特徴とする特許請求の範囲第1項
記載の反射電子エネルギー損失微細構造測定方法。
(4) The method for measuring the fine structure of reflected electron energy loss according to claim 1, characterized in that the detection angle of the energy analyzer is changed by operating from outside the vacuum container.
(5)電子銃正面に螢光板を設置して反射高速電子回折
の測定も行うことを特徴とする特許請求の範囲第1項記
載の反射電子エネルギー損失微細構造測定方法。
(5) A method for measuring reflected electron energy loss microstructure according to claim 1, characterized in that a fluorescent plate is installed in front of the electron gun to also measure reflected high-speed electron diffraction.
JP62021977A 1987-02-02 1987-02-02 Reflection electron energy-loss fine structure measurement method Expired - Lifetime JP2525791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62021977A JP2525791B2 (en) 1987-02-02 1987-02-02 Reflection electron energy-loss fine structure measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021977A JP2525791B2 (en) 1987-02-02 1987-02-02 Reflection electron energy-loss fine structure measurement method

Publications (2)

Publication Number Publication Date
JPS63190239A true JPS63190239A (en) 1988-08-05
JP2525791B2 JP2525791B2 (en) 1996-08-21

Family

ID=12070084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021977A Expired - Lifetime JP2525791B2 (en) 1987-02-02 1987-02-02 Reflection electron energy-loss fine structure measurement method

Country Status (1)

Country Link
JP (1) JP2525791B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166542A (en) * 2003-12-04 2005-06-23 Ricoh Co Ltd Measuring method of surface potential distribution and surface potential distribution measuring device
CN106770392A (en) * 2016-12-16 2017-05-31 中国科学院长春光学精密机械与物理研究所 A kind of near side (ns) X-ray absorption spectrometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593964U (en) * 1978-12-22 1980-06-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593964U (en) * 1978-12-22 1980-06-28

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166542A (en) * 2003-12-04 2005-06-23 Ricoh Co Ltd Measuring method of surface potential distribution and surface potential distribution measuring device
JP4559063B2 (en) * 2003-12-04 2010-10-06 株式会社リコー Method for measuring surface potential distribution and apparatus for measuring surface potential distribution
CN106770392A (en) * 2016-12-16 2017-05-31 中国科学院长春光学精密机械与物理研究所 A kind of near side (ns) X-ray absorption spectrometer
CN106770392B (en) * 2016-12-16 2020-04-10 中国科学院长春光学精密机械与物理研究所 Near-edge X-ray absorption spectrometer

Also Published As

Publication number Publication date
JP2525791B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
US6697454B1 (en) X-ray analytical techniques applied to combinatorial library screening
Szlachetko et al. Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF)
US5138158A (en) Surface analysis method and apparatus
EP0615123A4 (en) Method and apparatus for surface analysis.
WO2006049051A1 (en) Fluorescent x-ray analy sis device
RU137951U1 (en) DEVICE FOR X-RAY MICROANALYSIS
US4255656A (en) Apparatus for charged particle spectroscopy
JPH06258260A (en) X-ray diffraction device
JPS63190239A (en) Method for measuring reflection electron energy loss fine structure
Cookson et al. The nuclear microprobe as an analytical tool
US3376415A (en) X-ray spectrometer with means to vary the spacing of the atomic planes in the analyzing piezoelectric crystal
JP3268872B2 (en) Secondary electron spectrometer
US5336886A (en) Apparatus for measuring a diffraction pattern of electron beams having only elastic scattering electrons
RU2138797C1 (en) Method and device to study physical properties of surface layer of material
US3612875A (en) Mossbauer spectrometer
JPH03160353A (en) Fluorescent x-ray analysis and fluorescent x-ray spectrometer
WO2003081222A1 (en) Screening of combinatorial library using x-ray analysis
JP2003282018A (en) Three-dimensional ion scattering spectroscopy and spectrometer
Panicker et al. Spectroscopy for material characterization-review
Venkatraman Towards High Spatial Resolution Vibrational Spectroscopy in a Scanning Transmission Electron Microscope
JPH0361840A (en) Measuring apparatus for x-ray absorption spectrum
JPH01161139A (en) Measuring instrument for local structure of surface of solid body
JPH0954052A (en) Method and device for x-ray analysis
JP2917475B2 (en) X-ray analyzer
BIBICU Developments in Mössbauer Spectroscopy technique

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term