JPS63189822A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPS63189822A
JPS63189822A JP2201187A JP2201187A JPS63189822A JP S63189822 A JPS63189822 A JP S63189822A JP 2201187 A JP2201187 A JP 2201187A JP 2201187 A JP2201187 A JP 2201187A JP S63189822 A JPS63189822 A JP S63189822A
Authority
JP
Japan
Prior art keywords
lens
laser beam
image
spherical aberration
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2201187A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
隆史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2201187A priority Critical patent/JPS63189822A/en
Publication of JPS63189822A publication Critical patent/JPS63189822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain a laser beam scanning system having high accuracy and high resolution by arranging a scanning lens between a laser beam deflecting device and a plane to be scanned and arranging a spherical aberration correcting lens between a laser beam source and the deflecting device. CONSTITUTION:Diffused beams radiated from a semiconductor laser 5 are converted into parallel beams by a collimater lens 4, and while passing through planar convex lens and planar concaved lens which curved surfaces are bent to a laser side 5 a reverse code having the same quantity as that of spherical aberration included in an ftheta lens 3 is applied to the parallel beams and a linear image is formed on the face 11 of a rotary polygon mirror. Further, the image is scanned by the face 11 and an image is formed on the surface 61 of a photosensitive body through the ftheta lens 3. Since the spherical aberration is suppressed to a small value and other aberrations also are effectively corrected, the shape of an image-formed optical point is excellent and a required diameter f the optical point can be obtained. The correction lens 3 is constituted of two cylindrical lenses having at least positive and negative refractive forces.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は写真フィルム、光アドレス形液晶素子等の記録
媒体に画像信号を記録して拡大投影する装置に使用する
画像信号光書き込み装置の光走査装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the optical system of an image signal optical writing device used in a device that records an image signal on a recording medium such as a photographic film or an optically addressed liquid crystal element, and then enlarges and projects the image signal. Relating to a scanning device.

〔従来の技術〕[Conventional technology]

従来、レーザービームな微小なスポットに結像しそれを
感光体上に走査して、レーザービームを強度変調するこ
とによって直接感光体上に画像を形成する技術はレーザ
ービームプリンタの走査光学系に代表される。
Conventionally, the scanning optical system of a laser beam printer is a typical technique for directly forming an image on a photoreceptor by focusing a laser beam on a minute spot, scanning it onto a photoreceptor, and modulating the intensity of the laser beam. be done.

レーザービームプリンタ等に用いられる光走査装置の光
ビーム偏向器には、比較的低価格で高速、安定な光走査
が可能なことから回転多面鏡偏向方式が広く利用されて
いる。第5図に回転多面鏡偏向装置を用いた光走査装置
の一例を示す、半導体レーザー5から出射した拡散ビー
ムはコリメータレンス4によって平行ビームとされ、モ
ータ2によって回転される回転多面鏡1によ6て走査さ
れる。fθレンズ3は該平行ビームを感光ドラム6上に
所望のスポット径に結像させ、かつ等角速度で走査され
ているビームに対して該結像スポットが感光ドラム6上
で等速で移動するような歪みを与える機能を持つ。
BACKGROUND ART A rotating polygonal mirror deflection system is widely used as a light beam deflector of an optical scanning device used in a laser beam printer or the like because it is relatively inexpensive, enables high-speed, and stable optical scanning. FIG. 5 shows an example of an optical scanning device using a rotating polygonal mirror deflection device. A diffused beam emitted from a semiconductor laser 5 is made into a parallel beam by a collimator lens 4, and is then turned into a parallel beam by a rotating polygonal mirror 1 rotated by a motor 2. 6 is scanned. The fθ lens 3 forms an image of the collimated beam onto the photosensitive drum 6 to a desired spot diameter, and so that the imaged spot moves at a constant speed on the photosensitive drum 6 with respect to the beam being scanned at a constant angular speed. It has the function of giving a certain amount of distortion.

ところで回転多面鏡偏向方式で高精度、高解像度の光走
査を行う際問題となるのは、多面鏡の各面間の平行度の
誤差C面倒れ誤差)によって生じる走査線のピッチムラ
である。このピッチムラが無視できる程度に面倒れ誤差
を抑えるためには多面鏡や回転軸に極めて高い精度が要
求され、高価にならざるを得ない。従りて何らかの面倒
れ補正機構を付加することによって走査ピッチムラを、
抑えることが必要どなる。この面倒れ補正は、光学的に
行われるが一般的である。第6図にこの補正方法の原理
図を示す、第7図(α)は光ビームの偏向面方向の断面
C子午光束)を示す図で、光束は多面鏡面11を平行光
束として出射して凸レンズの様に正の屈折力を有する球
面レンズ31、正の屈折力を有する円筒レンズ32、凹
レンズの様に負の屈折力を有する球面レンズ5303枚
のレンズから成るfθレンズ3によって感光体面61に
結像される。一方、第7図(b)に示す偏向面と垂直な
方向の断面(球欠光束)は回転多面鏡面11の前におか
れた円筒レンズ7によって多面鏡面11で一旦結像した
ifθレンズ3によりて再び感光ドラム面61に結像す
る。即ち多面鏡面11と感光ドラム面61は共役像点の
関係にある。従って図中点線で示されるように、多面鏡
面11が傾いたことによって出射方向が多少変化しても
像点はほとんど変化しない。このようにして面倒れ誤差
の補正が可能となる。
However, when performing high-precision, high-resolution optical scanning using the rotating polygon mirror deflection method, a problem is the pitch unevenness of the scanning line caused by the error in parallelism between each surface of the polygon mirror. In order to suppress the surface tilt error to such an extent that this pitch unevenness can be ignored, extremely high precision is required for the polygon mirror and the rotating shaft, which inevitably leads to an increase in price. Therefore, by adding some kind of surface tilt correction mechanism, scanning pitch unevenness can be reduced.
It is necessary to suppress it. This surface tilt correction is generally performed optically. Fig. 6 shows the principle of this correction method. Fig. 7 (α) is a diagram showing a cross section C (meridian ray) in the direction of the deflection plane of the light beam. The fθ lens 3 is made up of three lenses: a spherical lens 31 with positive refractive power, a cylindrical lens 32 with positive refractive power, and 5303 spherical lenses with negative refractive power such as a concave lens. imaged. On the other hand, the cross section (spherical beam) in the direction perpendicular to the deflection plane shown in FIG. Then, the image is again formed on the photosensitive drum surface 61. That is, the polygonal mirror surface 11 and the photosensitive drum surface 61 are in a conjugate image point relationship. Therefore, as shown by the dotted line in the figure, even if the emission direction changes somewhat due to the tilting of the polygonal mirror surface 11, the image point hardly changes. In this way, it is possible to correct the surface tilt error.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の従来のレーザービームプリンタ用走査光学系は、
レーザービームの開口角が非常に小さいため球面収差と
コマ収差の発生がほとんどなく、像面湾曲収差、非点収
差、歪曲収差が補正された光学系になっている。これは
、レーザービームプリンタに求められる解像度がS O
O(lot / 1nch程度であるため結像スピット
直径(ただしピーク強度の142 直径)は80μm〜
100μrn程度でよく、レーザービームの結像スポッ
ト径と開口角の関係を表す周知のガラスビームの結像の
式(ここでWoは結像スポット半径、λはレーザービー
ム波長、θは開口角である。) によれば開口角θは[Lo 05〜no O6(rad
)(λ= 780 n rn ) 19度になるからで
ある。従って例えば第6図においてfθレンズ30部分
は像面湾曲収差と非点収差、歪曲収差を補正するため両
凸球面レンズ31.平凸円筒レンズ32.メニスカス球
面レンズ3303枚構成となっているが、偏向前の円筒
レンズ7はレーザービームは光軸上を動かないため上記
3収差も発生せず近軸結像のみを考えればよく平凸の円
筒レンズ1個でよいところが、本発明が対象とする記録
媒体は写真フィルムや光アドレス形液晶素子であって、
レーザービームプリンタの場合と異なり実際に人間が見
る時の画面の大きさよりも縮小して記録される。具体的
には本発明は結像スポット径が10μm〜20μm程度
で記録されるべき画像を対象とする。即ち例えば解像点
数が2000点X2000点、結像スポット径が15μ
扉である場合、画面は5 cm X 5 cmという小
さなものとなる。さてこのとき、前述のガウスビームの
結像の式によれば波長780 n mのレーザービーム
を15μmのスポット径に結像する時開口角θは0.0
53になり、球面収差、コマ収差の影響が現れて結像ス
ポット形状が乱れ所望のスポット径が得られないという
問題が生ずる。
The conventional scanning optical system for laser beam printers mentioned above is
Since the aperture angle of the laser beam is extremely small, spherical aberration and comatic aberration hardly occur, and the optical system is corrected for field curvature, astigmatism, and distortion. This means that the resolution required for a laser beam printer is SO
O (lot/1 nch), so the diameter of the imaging spit (however, the diameter of the peak intensity) is 80 μm ~
It may be about 100μrn, and is based on the well-known glass beam imaging formula that expresses the relationship between the laser beam imaging spot diameter and the aperture angle (where Wo is the imaging spot radius, λ is the laser beam wavelength, and θ is the aperture angle). ), the aperture angle θ is [Lo 05~no O6 (rad
) (λ=780 n rn ) 19 degrees. Therefore, for example, in FIG. 6, the fθ lens 30 is replaced with a biconvex spherical lens 31 to correct field curvature, astigmatism, and distortion. Plano-convex cylindrical lens 32. It is composed of 3303 meniscus spherical lenses, but the cylindrical lens 7 before deflection is a plano-convex cylindrical lens, since the laser beam does not move on the optical axis, the above three aberrations do not occur, and only paraxial imaging needs to be considered. Although only one piece is required, the recording medium targeted by the present invention is a photographic film or an optically addressable liquid crystal element,
Unlike laser beam printers, images are recorded in a smaller size than the actual screen size when viewed by humans. Specifically, the present invention is directed to images to be recorded with an imaging spot diameter of approximately 10 μm to 20 μm. That is, for example, the number of resolution points is 2000 points x 2000 points, and the imaging spot diameter is 15μ.
In the case of a door, the screen would be as small as 5 cm x 5 cm. At this time, according to the Gaussian beam imaging formula described above, when a laser beam with a wavelength of 780 nm is focused on a spot diameter of 15 μm, the aperture angle θ is 0.0.
53, the influence of spherical aberration and comatic aberration appears and the shape of the imaged spot is disturbed, causing a problem that a desired spot diameter cannot be obtained.

本発明者はこのスポット形状の乱れが主として球欠光束
について生じそれが前述の面倒れ補正光学系によるもの
であることを発見した。それは以下の理由による。即ち
、第6図に示すように子午光束については平行ビームを
一度収束させて結像させるのに対し、球欠光束について
は一度多面鏡面に収束させた光束を再び平行光束にしさ
らにもう一度収束させて結像させるため子午光束の数倍
の球面収差が生じるためである。このように従来のレー
ザービームプリンタに使用されている走査光学系では良
好な結像スポット径が得られないという欠点を有してい
た。
The inventor of the present invention has discovered that this disturbance in the spot shape mainly occurs in the spherical beam and is caused by the above-mentioned surface tilt correction optical system. This is due to the following reasons. That is, as shown in Figure 6, for meridional rays, a parallel beam is once converged to form an image, whereas for spherical rays, the spherical beam is once converged on a polygonal mirror, then made into a parallel beam again, and then converged again. This is because spherical aberration several times as large as the meridional light beam is generated to form an image. As described above, the scanning optical system used in conventional laser beam printers has the disadvantage that a good imaging spot diameter cannot be obtained.

そこでfθレンズの枚数をふやして走査幅全体にわたっ
て球面収差を補正する方法が考えられる。ところがfθ
レンズは像面湾曲、非点、歪曲の各収差も走査幅全体に
わたって同時に補正する必要があるため複雑化、大口径
化を招き、高価なレンズとなってしまう。
Therefore, a method can be considered to correct the spherical aberration over the entire scanning width by increasing the number of fθ lenses. However, fθ
The lens must also correct aberrations such as curvature of field, astigmatism, and distortion simultaneously over the entire scanning width, making the lens complex and having a large aperture, resulting in an expensive lens.

本発明は上述の点に鑑みてなされたもので、その目的と
するところは、走査レンズの枚数を増やすことなく極め
て小さなスポット径まで結像できる高精度、高解像度の
レーザービーム走査光学系を提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide a high-precision, high-resolution laser beam scanning optical system that can form an image down to an extremely small spot diameter without increasing the number of scanning lenses. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、 (1)  レーザービームな出射するレーザー光源と、
該レーザービームを偏向走査する光偏向装置と、前記光
偏向装置と被走査平■との間にあってレーザービームな
被走査平面上に結像する走査レンズと、前記レーザー光
源と前記光偏向装置との間にあってレーザービームな光
偏向装置の偏向曲に偏向方向と平行な方向に線状結像し
かつ前記偏向レンズの有する球面収差を補正する如く構
成された補正レンズとを具備すること、 (2)  前記補正レンズは少なくとも正の屈折力を有
する円筒レンズと負の屈折力を有する円筒レンズの2枚
で構成されていることを特徴とする。
The present invention comprises: (1) a laser light source that emits a laser beam;
an optical deflection device that deflects and scans the laser beam, a scanning lens that is located between the optical deflection device and the scanned plane and forms an image on the scanned plane, which is the laser beam, and the laser light source and the optical deflection device. (2) a correction lens configured to form a linear image in a direction parallel to the deflection direction on the deflection curve of the light deflection device, which is a laser beam, and to correct the spherical aberration of the deflection lens; The correction lens is characterized in that it is composed of at least two lenses, a cylindrical lens having a positive refractive power and a cylindrical lens having a negative refractive power.

〔作用〕[Effect]

以下本発明の作用原理を説明する。第7図(α)(b)
(C)と第8図(a)(J)(a)はレーザー光源と回
転多面鏡との間の面倒れ補正用の円筒レンズが1枚で構
成されて≠る、即ち球面収差の補正がなされていない場
合のビームスポットの結像のようすを示すもので、第7
図(α)(b)(C)は子午光束であって図中X軸がレ
ーザービームの進行方向、y軸が子牛方向のビームの拡
がりを表し、ビームの強度を等高線で表している。なお
強度の値は無収差の場合の結像点のピーク値を1とした
相対値である。tた球面収差を考慮しない場合に結像ス
ポット径が15μ隅となるように設計されたものである
。(α>、Cb)、(C)はそれぞれ走査幅の一方の端
、中央、他方の端に結像するビームである。第8図(α
)(b)(C)は球欠光束であって図中2軸が球欠方向
のビームの拡がりを表している以外は第8図(α)(b
)(C)と同じである。第7図、第8図かられかること
はスポット形状の乱れにより所望のスポット形状になら
ないのは球欠光束であってしかもその形状の乱れ方は走
査位置即ち偏向角によらず一定の表れ方をするというこ
とである。これは補正すべき球欠光束の球面収差が偏向
角全体にわたってほぼ一定の値を有しているということ
な意、レーザー光源と回転多面鏡の間の而倒れ補正円の
円筒レンズで球欠方向の球面収差をある任意の偏向角の
光束について補正してやれば偏向角全体にわたって補正
され、良好な結像スポットが得られることになる。
The principle of operation of the present invention will be explained below. Figure 7 (α) (b)
(C) and Figures 8(a), (J), and (a) are composed of one cylindrical lens for correcting the surface tilt between the laser light source and the rotating polygon mirror, that is, the spherical aberration can be corrected. This shows how the beam spot is formed when the beam spot is not formed.
Figures (α), (b), and (C) show the meridional light flux, in which the X-axis represents the traveling direction of the laser beam, the y-axis represents the spread of the beam in the calf direction, and the intensity of the beam is represented by contour lines. Note that the intensity value is a relative value with the peak value of the imaging point in the case of no aberration being 1. This lens is designed so that the diameter of the imaging spot is 15 μm when spherical aberration is not considered. (α>, Cb) and (C) are beams focused on one end, the center, and the other end of the scanning width, respectively. Figure 8 (α
)(b)(C) is a spherical beam, and the two axes in the figure represent the spread of the beam in the spherical direction.
) Same as (C). From Figures 7 and 8, it can be seen that it is the spherical beam that does not form the desired spot shape due to the disturbance of the spot shape, and that the shape of the disturbance is constant regardless of the scanning position, that is, the deflection angle. This means doing the following. This means that the spherical aberration of the spherical beam to be corrected has a nearly constant value over the entire deflection angle. If the spherical aberration of is corrected for a light beam having an arbitrary deflection angle, it will be corrected over the entire deflection angle, and a good imaging spot will be obtained.

ところで球欠光束は前述したように2@収束させるレン
ズ系であるため正の屈折力を加えるレンズが多く用いら
れているため、それらの球面収差を補正するためには負
の屈折力を加えるレンズ面を必要とする。従って、圓倒
れ補正円筒レンズが少なくとも正の屈折力を有する円筒
レンズと負の屈折力を有する円筒レンズで構成されてい
れば良い。
By the way, as mentioned above, the spherical beam is a lens system that converges at 2@, so lenses that add positive refractive power are often used, so in order to correct these spherical aberrations, lenses that add negative refractive power are used. Requires a face. Therefore, it is sufficient that the cylindrical lens for correcting the inclination is composed of at least a cylindrical lens having a positive refractive power and a cylindrical lens having a negative refractive power.

〔実施例〕〔Example〕

第1図(α)(b)に本発明の走査光学系の一実施例を
示す。(α)は子午光束、(b)は球欠光束を示す展開
図である。牛導体レーザー5から出射した拡散ビームは
コリメータレンズ4によって平行ビーム〉され−面素の
方寸A面か牢道伏し−ザー5側に向けた平凸円筒レンズ
71.平凹円筒レンズ72を順に通って回転多面鏡の多
面鏡面11にfθレンズ3の有する球面収差と同量で符
号が逆の収差を与えられて線状結像する。さらに回転多
面鏡面11で走査されfθレンズ5で感光体面61上に
等速度で走査されるよう結像される。この時球間収差は
小さい値に抑えられており、また他の収差も良好に補正
されているため結像スポット形状は良好で所望のスポッ
ト径が得られている。
FIG. 1(α)(b) shows an embodiment of the scanning optical system of the present invention. (α) is a developed diagram showing a meridional luminous flux, and (b) is a developed diagram showing a spherical luminous flux. The diffused beam emitted from the conductor laser 5 is converted into a parallel beam by the collimator lens 4, and is then turned into a parallel beam by the plano-convex cylindrical lens 71, which is directed toward the laser 5 side. The light passes sequentially through the plano-concave cylindrical lens 72 and is given an aberration of the same amount and opposite sign to the spherical aberration of the fθ lens 3 on the polygonal mirror surface 11 of the rotating polygonal mirror, forming a linear image. The image is further scanned by the rotating polygonal mirror surface 11 and imaged by the fθ lens 5 onto the photoreceptor surface 61 so as to be scanned at a constant speed. This temporal spherical aberration is suppressed to a small value, and other aberrations are also well corrected, so that the imaged spot shape is good and a desired spot diameter is obtained.

(数値例) 8g1表〜第3表に本発明の光学系の一実施例の光学パ
ラメータを示す1表における面の記号は、第1図(b)
におけるレンズ又は鏡面に付した記号を示す、第1表は
コリメート後の2枚組面倒れ補正円筒レンズのレンズパ
ラメータで、第2表はfθレンズのレンズパラメータで
ある。また第3表は回転多面鏡の配置に関するパラメー
タである第  1  表 第  2  表 第2図は第1表の光学系の特性を示す図で第2図(α)
は像面湾曲収差と非点収差、(b)は歪曲収差(走査直
線性)を示す収差図である。また第5図(α)(A)(
C)はそれぞれ(α〉が偏向角0=−10c′、(b)
がθ=00、(c)がθ=10’の時の子午光束の結像
状態を示す図、第4図(a)(A)(C)は同様に球欠
光束の結像状態を示す図で第7図、第8図と同じ形式で
描かれて−る。
(Numerical example) 8g Tables 1 to 3 show the optical parameters of an embodiment of the optical system of the present invention. The symbols of the surfaces in Table 1 are as shown in Figure 1 (b).
Table 1 shows the lens parameters of the two-piece face tilt corrected cylindrical lens after collimation, and Table 2 shows the lens parameters of the fθ lens. In addition, Table 3 shows the parameters related to the arrangement of the rotating polygon mirror. Table 1 shows the characteristics of the optical system shown in Table 1.
(b) is an aberration diagram showing field curvature aberration and astigmatism, and (b) is distortion aberration (scanning linearity). Also, Figure 5 (α) (A) (
C) are respectively (α〉 is the deflection angle 0 = -10c', (b)
is a diagram showing the imaging state of the meridional ray when θ = 00 and (c) is θ = 10', and Figure 4 (a), (A), and (C) similarly show the imaging state of the spherical ray. The figure is drawn in the same format as FIGS. 7 and 8.

このように本実施例つ光学系は本来走査光学系のfθレ
ンズの有する像面の平担性、走査の直線性はもちろんの
こと、面倒れ補正光学系から生じる球面収差によるスポ
ット形状の乱れもなく15μrIL×15μmと−うき
わめて微小なスポットを走査できる走査光学系が実現さ
れてφる。
In this way, the optical system of this embodiment not only has the flatness of the image plane and the linearity of scanning which the fθ lens of the scanning optical system has, but also the disturbance of the spot shape due to the spherical aberration caused by the surface tilt correction optical system. A scanning optical system capable of scanning an extremely small spot of 15 .mu.rIL x 15 .mu.m has been realized.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、@転多面鏡面に
線状結像することによって多面鏡面の面倒れ誤差の補正
を行う走査光学系が、回転多面鏡面に線状結像する円筒
レンズ系でその円筒レンズ系は少くとも正の屈折力を有
するレンズと負の屈折力を有するレンズの2枚で構成さ
れていることによりfθレンズ系の有する球欠光束の球
面収差を補正するので、fθレンズが複雑、高価になる
ことなく極めて小さな径の結像スポットが得られ、高精
度かつ高解像度でかつ簡単で低コストの光走査装置を提
供できるという効果を有する。
As described above, according to the present invention, the scanning optical system that corrects the surface tilt error of the polygonal mirror by linearly forming an image on the rotating polygonal mirror is a cylindrical lens that forms a linear image on the rotating polygonal mirror. In the system, the cylindrical lens system is composed of at least two lenses, one with positive refractive power and the other with negative refractive power, so that the spherical aberration of the spherical beam of the fθ lens system is corrected. This has the effect that an imaging spot with an extremely small diameter can be obtained without making the fθ lens complicated or expensive, and that a simple and low-cost optical scanning device with high precision and high resolution can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学系の構成を示す光路図で学系の構
成を示す斜視図、第6へは従来の面倒れ状を示す図であ
る。 1・・・・・・・・・回転多面鏡 11・・・・・・回転多面鏡面 3・・・・・・・・・fθレンズ 4・・・・・・・・・コリメータレンズ5・・・・・・
・・・半導体レーザ 6・・・・・・・・・感光ドラム 7・・・・・・・・・面倒れ補正用円筒レンズ71・・
・・・・正の屈折力を有する補正用円筒レンズ72・・
・・・・負の屈折力を有する補正用円筒レンズ以  上 出願人 セイコーエプソン株式会社 代理人 弁理士最上筋(他1名) 3fθレンズ 4 プリメータしン又゛ 第1図 イ良l!l考&収蒐                
 L4辷1L線引1作点に先 <a+             Ibl第2図 第3図 第4図 第6図
FIG. 1 is an optical path diagram showing the structure of the optical system of the present invention, and is a perspective view showing the structure of the optical system, and FIG. 6 is a diagram showing the conventional surface tilt shape. 1...Rotating polygon mirror 11...Rotating polygon mirror 3...Fθ lens 4...Collimator lens 5...・・・・・・
... Semiconductor laser 6 ... Photosensitive drum 7 ... Cylindrical lens for surface tilt correction 71 ...
...Correction cylindrical lens 72 having positive refractive power...
...Corrective cylindrical lens with negative refractive power or more Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Mogami (and 1 other person) 3fθ lens 4 Premeter lens (see Figure 1) Thoughts & collections
L4 length 1L line drawing 1 crop point ahead <a+ Ibl Fig. 2 Fig. 3 Fig. 4 Fig. 6

Claims (2)

【特許請求の範囲】[Claims] (1)レーザービームを出射するレーザー光源と、該レ
ーザービームを偏向走査する光偏向装置と、前記光偏向
装置と被走査平面との間にあってレーザービームを被走
査平面上に結像する走査レンズと、前記レーザー光源と
前記光偏向装置との間にあってレーザービームを光偏向
装置の偏向面に偏向方向と平行な方向に線状結像しかつ
前記偏向レンズの有する球面収差を補正する如く構成さ
れた補正レンズとを具備することを特徴とする光走査装
置。
(1) A laser light source that emits a laser beam, an optical deflection device that deflects and scans the laser beam, and a scanning lens that is located between the optical deflection device and the scanned plane and forms an image of the laser beam on the scanned plane. , located between the laser light source and the optical deflection device, configured to form a linear image of the laser beam on the deflection surface of the optical deflection device in a direction parallel to the deflection direction, and to correct the spherical aberration of the deflection lens. An optical scanning device characterized by comprising a correction lens.
(2)前記補正レンズは少なくとも正の屈折力を有する
円筒レンズと負の屈折力を有する円筒レンズの2枚で構
成されていることを特徴とする特許請求の範囲第1項記
載の光走査装置。
(2) The optical scanning device according to claim 1, wherein the correction lens is composed of at least two lenses, a cylindrical lens having a positive refractive power and a cylindrical lens having a negative refractive power. .
JP2201187A 1987-02-02 1987-02-02 Optical scanning device Pending JPS63189822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2201187A JPS63189822A (en) 1987-02-02 1987-02-02 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2201187A JPS63189822A (en) 1987-02-02 1987-02-02 Optical scanning device

Publications (1)

Publication Number Publication Date
JPS63189822A true JPS63189822A (en) 1988-08-05

Family

ID=12071058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201187A Pending JPS63189822A (en) 1987-02-02 1987-02-02 Optical scanning device

Country Status (1)

Country Link
JP (1) JPS63189822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118619A (en) * 1990-09-10 1992-04-20 Hitachi Koki Co Ltd Optical scanner
US7969460B2 (en) 2008-06-23 2011-06-28 Ricoh Company, Ltd. Optical scanning device and image forming apparatus
CN110297316A (en) * 2019-06-30 2019-10-01 瑞声科技(新加坡)有限公司 Camera optical camera lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636622A (en) * 1979-09-04 1981-04-09 Canon Inc Scanning optical system having inclination correcting function
JPS60233616A (en) * 1984-05-07 1985-11-20 Canon Inc Optical scanning device
JPS62240921A (en) * 1986-04-11 1987-10-21 Matsushita Electric Ind Co Ltd Light beam scanner
JPS6378120A (en) * 1986-09-22 1988-04-08 Matsushita Electric Ind Co Ltd Light beam scanning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636622A (en) * 1979-09-04 1981-04-09 Canon Inc Scanning optical system having inclination correcting function
JPS60233616A (en) * 1984-05-07 1985-11-20 Canon Inc Optical scanning device
JPS62240921A (en) * 1986-04-11 1987-10-21 Matsushita Electric Ind Co Ltd Light beam scanner
JPS6378120A (en) * 1986-09-22 1988-04-08 Matsushita Electric Ind Co Ltd Light beam scanning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118619A (en) * 1990-09-10 1992-04-20 Hitachi Koki Co Ltd Optical scanner
US7969460B2 (en) 2008-06-23 2011-06-28 Ricoh Company, Ltd. Optical scanning device and image forming apparatus
CN110297316A (en) * 2019-06-30 2019-10-01 瑞声科技(新加坡)有限公司 Camera optical camera lens

Similar Documents

Publication Publication Date Title
JP3072061B2 (en) Optical scanning device
JPH0115046B2 (en)
US4796962A (en) Optical scanner
JP2563260B2 (en) Optical beam scanning device
JPS61175616A (en) Lens system for deflected light beam
US5247383A (en) Scanner with a post facet lens system
KR100335624B1 (en) Laser beam scanning apparatus
JP2804647B2 (en) Optical beam scanning optical device
JPH0727123B2 (en) Surface tilt correction scanning optical system
JP2673591B2 (en) fθ lens and laser scanning optical system using the same
JPS61117516A (en) Optical laser beam deflector
JPS63189822A (en) Optical scanning device
JP2945097B2 (en) Telecentric fθ lens
JPH08248345A (en) Optical scanner
JPH11281911A (en) Optical scanning optical system
JP2511904B2 (en) Optical beam scanning device
JPH05307151A (en) Method and device for deflection scanning
JPH1184304A (en) Optical scanner
JP2626708B2 (en) Scanning optical system
JP2716428B2 (en) Surface tilt correction scanning optical system
JPH04107517A (en) Light source unit and lens used for same
SU1767467A1 (en) Optical scanning system of laser printer
JP2743176B2 (en) Optical scanning device
JPS6321619A (en) Scanning optical system with correction for surface tilt
JPH0670689B2 (en) Scanning optical system of image scanning recorder