JPS63189774A - Method of recovering ar gas - Google Patents

Method of recovering ar gas

Info

Publication number
JPS63189774A
JPS63189774A JP62021547A JP2154787A JPS63189774A JP S63189774 A JPS63189774 A JP S63189774A JP 62021547 A JP62021547 A JP 62021547A JP 2154787 A JP2154787 A JP 2154787A JP S63189774 A JPS63189774 A JP S63189774A
Authority
JP
Japan
Prior art keywords
gas
air
exhaust gas
pure
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62021547A
Other languages
Japanese (ja)
Inventor
神川 博文
田岡 忠嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62021547A priority Critical patent/JPS63189774A/en
Publication of JPS63189774A publication Critical patent/JPS63189774A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/02Multiple feed streams, e.g. originating from different sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Ar使用設備、例えばAr−0s吹諌炉やR
H溶ali真空脱ガス処理設備等におけるAr含有排ガ
スからArガスを回収する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to equipment using Ar, such as Ar-0s blowing furnace and R
The present invention relates to a method for recovering Ar gas from Ar-containing exhaust gas in H-liquid vacuum degassing equipment and the like.

〔従来技術とその問題点〕[Prior art and its problems]

最近、製鋼工程中の精錬過程でArガスを使用すること
が盛んに行なわれている。例えば、(1) Ar−0,
吹錬法は、03と共にAr を溶鋼へ吹込むことにより
、高価なCrを酸化することなく脱炭を可能とするもの
であり、かつ良好な品質が得られるので、高Crg4の
新しい溶鋼法として注目を浴び製錬に採用されている。
Recently, Ar gas has been widely used in the refining process of steel manufacturing. For example, (1) Ar-0,
The blowing method makes it possible to decarburize expensive Cr without oxidizing it by injecting Ar into the molten steel together with 03.It also provides good quality, so it is being used as a new method for producing high Crg4 molten steel. It has attracted attention and is being used in smelting.

(2) 同じく製鋼工程中の精錬過程で脱ガスを目的に
行なわれる溶鋼脱ガス法は、溶鋼を真空にさらすことに
より18aq中の不純物として有害な11゜N、Oガス
を減少させる処理で、その際、溶鋼中に環流ガス及び羽
口冷却ガスとして不活性ガスを流しているが、特に低N
01lの溶製時には不活性ガスとしてA「が用いられる
(2) The molten steel degassing method, which is also carried out for the purpose of degassing during the refining process during the steelmaking process, is a process that reduces harmful 11°N and O gases as impurities in 18aq by exposing molten steel to a vacuum. At that time, an inert gas is passed through the molten steel as a reflux gas and a tuyere cooling gas.
A'' is used as an inert gas when melting 01L.

又、前記Cr含有鋼に限らず普通の精錬に当っても、脱
炭効率を向上させる目的で、Arで溶鋼を撹拌しながら
08精錬する方法が採用されるようになってきた。又、
その使用量も急激に増加している。
In addition, not only for the above-mentioned Cr-containing steel but also for ordinary refining, a method of 08 refining while stirring molten steel with Ar has been adopted for the purpose of improving decarburization efficiency. or,
Its usage is also rapidly increasing.

このArガスの製造は、工業的には空気深冷分Fli装
置から得られるAr含有ガスをAr濃縮装置でさらに濃
縮精製して製造しているが、該Arガスは空気中に僅か
に093%程度しか含まれていない為、今後前記需要に
見合う供給の不足も予想される。又、非常に高価でもあ
る。
Industrially, this Ar gas is manufactured by further concentrating and refining Ar-containing gas obtained from an air cryogenic FLI device using an Ar concentrator. Since this only includes a certain amount, it is expected that there will be a shortage of supply to meet the above demand in the future. It is also very expensive.

そこで、このAr使用量を低減するため使用済A「含有
排ガスからArを分離回収して再利用する試みが種々な
されている。例えば特公昭50−8999号は、Ar 
 O!吹錬炉排ガスからのArガス回収方法において、
炉口より発生する排ガスを大気と遮断して回収し、該排
ガス中のCOをCu−N1t、 錯体で吸収除去し、v
Il量のCOlをアルカリで吸収除去し、Arガスを回
収し再使用する方法である。又、特開昭54−1493
90号は、同じく炉口より発生する排ガスを、O3を使
用して燃焼処理して排ガス中のcoをCO8とする前処
理工程を経た後、減圧吸着法等で吸着分離する方法であ
る。
Therefore, in order to reduce the amount of Ar used, various attempts have been made to separate and recover Ar from the waste gas containing spent A.
O! In a method for recovering Ar gas from blowing furnace exhaust gas,
The exhaust gas generated from the furnace mouth is isolated from the atmosphere and collected, and the CO in the exhaust gas is absorbed and removed with a Cu-N1t complex.
This method involves absorbing and removing COl in an amount of Il using an alkali, and recovering and reusing Ar gas. Also, JP-A-54-1493
No. 90 is a method in which the exhaust gas generated from the furnace mouth is subjected to a pretreatment process in which CO is converted to CO8 by combustion using O3, and then adsorbed and separated using a vacuum adsorption method or the like.

以上、従来の例について記述したが、特公昭50−80
90号では吸収と放散の操作を要するためユーティリテ
ィで難点が生じること、及び排ガス中に混在しているH
z 、 0− 、 N*ガス等を完全に除去することが
難しく、Ar回収率が低下する等の欠点がある。又、特
開昭54−1403Of3号では、排ガス中のcoを炉
口」−でO,ガスにて燃焼せしめているために厖大な■
の排ガスを冷却集塵する高価な集塵:j:を備が必要で
あること、及びCOガスの燃焼に高価な純酸素ガスを大
量に浪費すること等の欠点がある。
The conventional examples have been described above, but
No. 90 requires absorption and dissipation operations, which poses problems for utilities, and the H mixed in the exhaust gas.
It is difficult to completely remove z, 0-, N* gas, etc., and there are drawbacks such as a decrease in Ar recovery rate. In addition, in JP-A-54-1403Of3, the CO in the exhaust gas is combusted with O gas at the furnace opening, which results in a huge
There are drawbacks such as the need for an expensive dust collector to cool and collect the exhaust gas, and the waste of a large amount of expensive pure oxygen gas in the combustion of CO gas.

本発明は、前記の如き欠点を解消するためになされたも
ので、A「含有排ガスを分離回収するに際し、該排ガス
中のCo、 Il、等を除去する為の強制燃焼等による
前処理工程を必要とせず、低コストでしかも回収効率の
高い高濃度のA「を分離回収する方法を提供することを
目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks. The purpose of the present invention is to provide a method for separating and recovering highly concentrated A'' that is not necessary, is low cost, and has high recovery efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るArの回収方法は、Arを使用する設備
から排出されるAr含イf排ガスからΔ「を回収する方
法において、該排ガスを圧力変動吸着法により吸着処理
してAr濃縮ガスとした後、該Ar iQ縮ガスを、空
気深冷分離法における純Ar精製工程に導入して、Ar
 ガスを回収するようにしたことを特徴とするものであ
る。
The Ar recovery method according to the present invention is a method for recovering Δ'' from Ar-containing exhaust gas discharged from equipment using Ar, in which the exhaust gas is adsorbed by a pressure fluctuation adsorption method to form an Ar-enriched gas. After that, the Ar iQ condensed gas is introduced into the pure Ar purification process in the air cryogenic separation method to produce Ar
The feature is that the gas is recovered.

以下、本発明方法を図面に基づいて具体的に説明する。Hereinafter, the method of the present invention will be specifically explained based on the drawings.

第1図は本発明方法の一実施の儂様を示す系統図である
。図において、0)はAr −0−吹N炉やRII真空
脱ガス設備等のAr使用設備であり、該設備(1)より
発生するAr含を排ガスは、01ガス富化等による強制
燃焼をさせることなく誘引送風機(2)により吸引され
、除塵器(3)に送入されてダストが除かれたのち、排
ガスホルダー(4)に貯められる。その後、排ガスは圧
縮機(ωによって5〜10気圧程度に加圧されて、圧力
変動吸着法(以下PSA法という)による吸cIHFa
 (6)に供給される。
FIG. 1 is a system diagram showing one implementation of the method of the present invention. In the figure, 0) is Ar-using equipment such as an Ar-0-blown N furnace or RII vacuum degassing equipment, and the Ar-containing exhaust gas generated from the equipment (1) is forced to burn through 01 gas enrichment, etc. The gas is sucked in by the induced blower (2) without being forced to move, is sent to the dust remover (3) to remove dust, and is then stored in the exhaust gas holder (4). After that, the exhaust gas is pressurized to about 5 to 10 atmospheres by a compressor (ω), and absorbed by pressure fluctuation adsorption method (hereinafter referred to as PSA method).
(6).

P S A 法ニJ、 ル吸u Ha (6) Lt 
、Co、 Cot 、 及ヒN、に対し選択的に吸着す
るゼオライト系(シリカ、アルミナ混合)の吸着剤が充
填された吸C塔(7a)〜(7c)と、真空ポンプ(8
)及び一連の自動切換弁(9)群により構成される。各
吸菅塔(7a)〜(7C)では自動切換弁(9)群の作
動により、例えば、均圧、加圧、吸着、脱着及びパージ
等からなる吸む処理サイクルが繰返されることにより、
 co、 co、 、及びN。
P S A Law J, Le Ha (6) Lt.
, Co, Cot, and N, and a vacuum pump (8
) and a series of automatic switching valves (9). In each suction tower (7a) to (7C), a suction processing cycle consisting of, for example, pressure equalization, pressurization, adsorption, desorption, and purge is repeated by the operation of the automatic switching valve (9) group.
co, co, and N.

が吸着除去されて′I5縮されたArガスが取出される
is adsorbed and removed and 'I5-condensed Ar gas is taken out.

ここで、前記排ガス中のco、 co、 、及びN、は
、出来るだけ吸着除去する方がより高純度なΔr濃縮ガ
スが得られるのであるが、Ntについてはその除去の程
度が大きい程下記式 で表わされるAr収率が低下するという欠点がある。第
2図は、吸着装置(6)により吸着処理してAr10縮
ガスとした後の、該Ar濃縮ガス中のN8濃度(%)と
前記Ar収率(%)との関係を示したグラフである。A
r収率(%)は吸着除去されるN、が多い程、即ちAr
 ρ縮ガス中のN、 6度が小さくなる程Ar収率(%
)は低くなる(悪(なる)ことが分る。
Here, it is better to adsorb and remove CO, CO, and N in the exhaust gas as much as possible to obtain a highly purified Δr concentrated gas, but as for Nt, the greater the degree of removal, the following formula There is a drawback that the Ar yield represented by is reduced. FIG. 2 is a graph showing the relationship between the N8 concentration (%) in the Ar concentrated gas and the Ar yield (%) after it has been adsorbed by the adsorption device (6) to form an Ar10 condensed gas. be. A
The r yield (%) increases as more N is adsorbed and removed, that is, Ar
ρN in the condensed gas, the smaller the 6 degrees, the higher the Ar yield (%
) becomes low (it turns out that it becomes evil).

そこで本発明においては、N、を出来るだけ多く残存さ
せるように前記吸着処理を行い、この残存N、は後述す
る空気深冷分離法における純Ar精製工程に導入するこ
とによって前記吸着処理工程におけるAr収”率を向上
させるものである。
Therefore, in the present invention, the adsorption treatment is performed so that as much N as possible remains, and this residual N is introduced into the pure Ar purification step in the air cryogenic separation method to be described later. This improves the yield rate.

このようにして濃縮されたArガスは、Arガスホルダ
ー〇〇に一旦貯留された後、圧縮機qりにより0.1〜
2kIc/cJ程度に圧縮されて後述する空気1茅冷分
離法における純Ar精製工程(22)に導入される。
The Ar gas thus concentrated is once stored in the Ar gas holder 〇〇, and then compressed by the compressor q
It is compressed to about 2 kIc/cJ and introduced into the pure Ar purification step (22) in the air one-mold cooling separation method described later.

次に、空気z7冷分離法による空気分1t!i ’A 
置について説明する。
Next, 1 ton of air by air z7 cold separation method! i'A
I will explain the location.

q〔は空気深冷分離法による空気分Ii[l装置を示し
、この空気深冷分離法における純Arの製造は下記に示
す(A)〜(+)の工程部分からなる。
q[ indicates an air component Ii[l apparatus by the air cryogenic separation method, and the production of pure Ar in this air cryogenic separation method consists of the process parts (A) to (+) shown below.

(A)  空気を吸入し、バグフィルタ−03により、
空気中の粉塵等を除去する。
(A) Inhale air and use bag filter-03,
Remove dust etc. from the air.

(B)  原料空気を原料空気圧縮機α4により、5k
g/cJ 、に圧縮する。又、必要により原料空気を水
洗塔(図示せず)において水洗及び冷却する。
(B) The raw air is compressed to 5k by the raw air compressor α4.
g/cJ. Further, if necessary, the raw air is washed and cooled in a water washing tower (not shown).

(C)  熱交換器09で原料空気と不純Nl 、純N
、 、 O,を熱交換し、原料空気を低温とすることで
、COl等を固体として分離する。
(C) Heat exchanger 09 exchanges raw air with impure Nl and pure N
By exchanging heat with , , O, and lowering the temperature of the raw material air, CO1 and the like are separated as solids.

(D)  圧縮した原料空気の一部を膨張タービンaQ
により膨張させ、寒冷源とする。
(D) Part of the compressed raw air is expanded into an expansion turbine aQ.
It expands and becomes a cold source.

(E)  空気分離塔G力の下塔下一部より原料空気を
入れ、沸点(液化点)の違いを利用して、空気中のOt
、Nt、Ar に分離する。一方、原料空気に含まれる
炭化水素は炭化水素吸着器(図示せず)によって、又液
体08中に含まれるC、 H,は、C,H。
(E) Feed air is introduced from the lower part of the air separation tower G force, and by utilizing the difference in boiling point (liquefaction point), Ot in the air is
, Nt, and Ar. On the other hand, hydrocarbons contained in the feed air are removed by a hydrocarbon adsorber (not shown), and C, H, contained in the liquid 08 are removed.

吸着器(図示せず)によって吸着される。It is adsorbed by an adsorber (not shown).

(F)  製品Nえは、空気分離塔Q7)の上塔上部よ
り引抜かれ、製品O8は、上塔下部から引抜かれる。又
、上塔中部からは、フィードガスとして、Arの純度が
12%程度で、Nuをほとんど含まないガスを引抜(。
(F) Product N is extracted from the upper part of the upper column of air separation column Q7), and product O8 is extracted from the lower part of the upper column. In addition, from the middle of the upper column, a gas with an Ar purity of about 12% and almost no Nu content is extracted as a feed gas (.

(G)  フィードガスを粗Ar塔(leで、前記空気
分離塔aD同様の原理で分離し、96%程度の粗A「を
分離する。
(G) The feed gas is separated in a crude Ar column (le) using the same principle as the air separation column aD, and about 96% of the crude A is separated.

(H)  粗Ar中のOlを常温Ar精製装a (1!
IBで、N2と反応させて水とし、脱湿器(至)で脱湿
して01分を除去する。
(H) Ol in crude Ar is purified by room temperature Ar purifier a (1!
In IB, it is reacted with N2 to form water, and dehumidified in a dehumidifier (to) to remove 01 minutes.

(夏)高純Ar塔(21)で、N□及び過剰に加えたH
z8″分離して精製Arを採取する。
(Summer) In the high-purity Ar tower (21), N□ and excess H were added.
z8'' is separated to collect purified Ar.

以上、(^)〜(+>の工程によって空気から高純度A
rを連続的に取出すことが出来る。
As described above, high purity A is obtained from air through the steps (^) to (+>).
r can be extracted continuously.

ところで、前述のPSA法によりAr含を排ガスを吸着
処理して得られるAr6縮ガス中には、分離されないN
2.−01及び1〜2%程度に残存したN、が混存して
いる。本発明は、この分離されないHz、Om及び残存
N、を、前記(11)、(+)の空気深冷分離法におけ
る純Ar精製工程(22)に4人して除去することによ
って高純11fArを回収するものである。堂蟲Ar精
製装置03では、前記工程(l()に示した様に、Hz
m加が行なわれ、被処理ガス中の0、と反応して水分と
なり、後段の脱湿器(至)にて吸着除去される。従って
、PSA法による吸着装置(6)の前処理として行われ
るN2及びOlの燃焼除去工程が不要となり、設備が簡
略化される。次に、高純Ar塔(21)では、前記工程
(1)に示した様にN、が分離除去されて高純度Arが
得られる。ここで、高純度Arを効率よく採取するため
には、該高純Ar塔(21)に4人されるAr濃縮ガス
中のN8は通常2%までの混在が許容されるので、前述
のPSA法による吸着処理はN1が最大2%となる様に
、例えばAre縮ガス流量を調節弁(23)にてwJ節
して吸着処理を行ない、しかる後に純Ar精製工程に4
人する。これにより、前記吸着処理工程におけるAr回
収率を上げて、しかも純度の高いArを効率よく採取す
ることができる。
By the way, the Ar6 condensed gas obtained by adsorbing Ar-containing exhaust gas by the above-mentioned PSA method contains unseparated N.
2. -01 and N remaining at about 1 to 2% coexist. The present invention produces high-purity 11fAr by removing the unseparated Hz, Om, and residual N in the pure Ar purification step (22) in the air cryogenic separation method (11) and (+). The purpose is to collect In Domu Ar purifier 03, as shown in the step (l()), Hz
The water is added to water, reacts with 0 in the gas to be processed, becomes water, and is adsorbed and removed in a subsequent dehumidifier. Therefore, the process of burning and removing N2 and Ol, which is performed as a pretreatment for the adsorption device (6) using the PSA method, becomes unnecessary, and the equipment is simplified. Next, in the high-purity Ar column (21), N is separated and removed as shown in step (1) above to obtain high-purity Ar. Here, in order to efficiently collect high-purity Ar, N8 in the Ar concentrated gas fed to the high-purity Ar column (21) is usually allowed to be mixed in an amount of up to 2%, so the above-mentioned PSA In the adsorption process using the method, the flow rate of the Ar condensed gas is adjusted to wJ using the control valve (23) so that N1 is at most 2%, and then the pure Ar purification process is performed with 4%.
people Thereby, the Ar recovery rate in the adsorption treatment step can be increased, and highly pure Ar can be efficiently collected.

〔発明の実施例〕[Embodiments of the invention]

実施例1゜ RH真空脱ガス設備により第1表に示す操業条件で脱ガ
ス処理し、その時排気された第2表に示すAr含存排ガ
スを排ガスホルダーに貯えた後、PSA法による吸着装
置にてAr回収した結果、第3表に示す組成のArQ縮
ガスが収率的75%で得られた。
Example 1 Degassing was performed using the RH vacuum degassing equipment under the operating conditions shown in Table 1, and the exhausted Ar-containing exhaust gas shown in Table 2 was stored in an exhaust gas holder, and then transferred to an adsorption device using the PSA method. As a result of Ar recovery, ArQ condensed gas having the composition shown in Table 3 was obtained with a yield of 75%.

(以下余白) 第1表 第2表 第3表 次にこのAre縮ガス100 Nr+?/Hを、粗Ar
塔から得られる粗Ar ガス500 Nr+t’/Hと
混合して純Ar精製工程に供した結果、99.999%
の高純度Arが安定して得られた。
(Left below) Table 1 Table 2 Table 3 Next, this Are condensed gas 100 Nr+? /H, crude Ar
As a result of mixing with 500 Nr+t'/H of crude Ar gas obtained from the column and subjecting it to a pure Ar purification process, the purity was 99.999%.
High purity Ar was stably obtained.

実施例2 Ar−0,吹錬炉により第4表に示す操業条件でfl’
i錬し、その時排気された第5表に示すAr含有排ガス
を、排ガスホルダーに貯えた後、PSA法による吸着装
置にてAr回収した結果、第6表に示す組成のAr f
5縮ガスが収率的75%で得られた。
Example 2 Ar-0, fl' was produced in a blowing furnace under the operating conditions shown in Table 4.
The Ar-containing exhaust gas shown in Table 5 that was exhausted at that time was stored in an exhaust gas holder, and then Ar was recovered using an adsorption device using the PSA method.
5 condensed gases were obtained with a yield of 75%.

第4表 m5表 第6表 次にとのAr濃縮ガス100N♂/Hを、粗Ar塔から
得られる粗Ar ガス 500 NJ/Hと混合して純
Ar精製工程に供した結果、99゜989%の高純度A
「が安定して得られた。
Table 4 m5 Table 6 Table 6 As a result of mixing 100 N♂/H of Ar concentrated gas with the crude Ar gas 500 NJ/H obtained from the crude Ar column and subjecting it to a pure Ar purification process, the result was 99°989 % high purity A
``was obtained stably.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、 この発明方法によればAr含有
排ガス中のCo、 H,等を除去する為の強制燃焼等に
よる前処理工程を必要とせず、又、該排ガス中の分離困
難なN、については、PSA法による吸着処理工程と空
気a冷分離法における純Ar精製工程の2つの工程で分
離除去するように構成したことにより、回収効率の高い
しかも高純度のArガスを低コストで分離回収すること
ができる。
As explained above, according to the method of the present invention, there is no need for a pretreatment step such as forced combustion to remove Co, H, etc. from the Ar-containing exhaust gas, and N, which is difficult to separate, from the exhaust gas is removed. By separating and removing the gas in two steps: the adsorption treatment process using the PSA method and the pure Ar purification process using the air-a cold separation method, it is possible to separate high-purity Ar gas with high recovery efficiency and at low cost. It can be recovered.

【図面の簡単な説明】[Brief explanation of the drawing]

21¥1図は本発明方法の一実施例を示す概略説明図、
第2図はPSA法におけるAr濃縮ガス中のN、濃度と
Ar回収率との関係を示す図である。 l・・・Ar使用設W    2・・・誘引送風機3・
・・除FI4機4・・・排ガスホルダーへ12・・・圧
縮a     6・・・吸着装置7為〜7C・・・吸着
塔    8・・・真空ポンプ9・・・自動切換弁  
  10・・・空気分子11装置■・・・Arガスホル
ダー 13・・・フィルター14・・・原料空気圧縮機
  ■5・・・熱交換器16・・・膨張タービン   
17・・・空気分離塔18・・・粗ArkM     
 19・・・常潟Ar精製装置20・・・脱湿器   
   21・・・高純Ar塔22・・・純Ar精製工程
21¥1 Figure is a schematic explanatory diagram showing one embodiment of the method of the present invention,
FIG. 2 is a diagram showing the relationship between the N concentration in the Ar enriched gas and the Ar recovery rate in the PSA method. l... Ar usage setting W 2... Induced blower 3.
・・FI removal 4 machine 4・・To exhaust gas holder 12・・Compression a 6・・Adsorption device 7~7C・・Adsorption tower 8・Vacuum pump 9・・Automatic switching valve
10... Air molecules 11 device ■... Ar gas holder 13... Filter 14... Raw air compressor ■5... Heat exchanger 16... Expansion turbine
17... Air separation column 18... Crude ArkM
19... Tokogata Ar purifier 20... Dehumidifier
21...High purity Ar tower 22...Pure Ar purification process

Claims (1)

【特許請求の範囲】[Claims] Arを使用する設備から排出されるAr含有排ガスから
Arガスを回収する方法において、該排ガスを圧力変動
吸着法により吸着処理してAr濃縮ガスとした後、該A
r濃縮ガスを、空気深冷分離法における純Ar精製工程
に導入してArガスを回収するようにしたことを特徴と
するArガスの回収方法。
In a method for recovering Ar gas from Ar-containing exhaust gas discharged from equipment that uses Ar, after the exhaust gas is adsorbed by a pressure fluctuation adsorption method to form an Ar-enriched gas, the
A method for recovering Ar gas, characterized in that the concentrated gas is introduced into a pure Ar purification step in an air cryogenic separation method to recover Ar gas.
JP62021547A 1987-01-30 1987-01-30 Method of recovering ar gas Pending JPS63189774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62021547A JPS63189774A (en) 1987-01-30 1987-01-30 Method of recovering ar gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021547A JPS63189774A (en) 1987-01-30 1987-01-30 Method of recovering ar gas

Publications (1)

Publication Number Publication Date
JPS63189774A true JPS63189774A (en) 1988-08-05

Family

ID=12058011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021547A Pending JPS63189774A (en) 1987-01-30 1987-01-30 Method of recovering ar gas

Country Status (1)

Country Link
JP (1) JPS63189774A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547492A (en) * 1994-04-12 1996-08-20 Korea Institute Of Energy Research Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor
US5829309A (en) * 1994-03-01 1998-11-03 Mercedes-Benz Ag Motor vehicle with automatic change-speed gearbox and mechanical for reverse gear
WO1999011437A1 (en) 1997-09-04 1999-03-11 Air Liquide Japan, Ltd. Method and apparatus for purification of argon
JP2012140254A (en) * 2010-12-28 2012-07-26 Covalent Materials Corp Inert gas recovery apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829309A (en) * 1994-03-01 1998-11-03 Mercedes-Benz Ag Motor vehicle with automatic change-speed gearbox and mechanical for reverse gear
US5547492A (en) * 1994-04-12 1996-08-20 Korea Institute Of Energy Research Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor
WO1999011437A1 (en) 1997-09-04 1999-03-11 Air Liquide Japan, Ltd. Method and apparatus for purification of argon
US6123909A (en) * 1997-09-04 2000-09-26 Air Liquide Japan, Ltd. Method and apparatus for purification of argon
JP2012140254A (en) * 2010-12-28 2012-07-26 Covalent Materials Corp Inert gas recovery apparatus

Similar Documents

Publication Publication Date Title
RU2166546C1 (en) Method of combination of blast furnace and direct reduction reactor with use of cryogenic rectification
JP3092101B2 (en) Recovery and purification of impure argon
JPH1183309A (en) Argon refining method and argon refining device
JPH01172204A (en) Recovery of gaseous co2 from gaseous mixture by adsorption
JP3020842B2 (en) Argon purification method and apparatus
WO2023241231A1 (en) System for recovering argon from single crystal furnace
CN1059707C (en) Steel-making method and plant
JPS63189774A (en) Method of recovering ar gas
CN210915955U (en) Device for increasing combustion heat value of blast furnace gas
JP2782356B2 (en) Argon recovery method
CN115138203A (en) Method and device for purifying tail gas of single crystal furnace
JP2638897B2 (en) Ar gas recovery method
CN210150733U (en) Combined recovery device for carbon dioxide, nitrogen and oxygen in flue gas
CN109470062B (en) Argon-containing tail gas treatment system for producing graphite for diamond by high-temperature furnace dry method
CN109289342B (en) System and method for separating and recovering high-temperature furnace tail gas
JP2012254421A (en) Siloxane removal method and methane recovery method
JPH02272288A (en) Recovering method for argon
JP2789113B2 (en) Argon recovery method
JPS58120502A (en) Production of high purity hydrogen from gas generated in iron manufacturing
JPS62136513A (en) Refining method by top and bottom blowing in converter
CN109470061B (en) Argon-containing tail gas treatment method for dry-method graphite production by high-temperature furnace
CN218422032U (en) Single crystal furnace tail gas purification device
JP2581944B2 (en) Method for recovering specific gas components from mixed gas
JPS60239310A (en) Process for recovering argon from smelting waste gas using argon-oxygen mixture
JPH0545051A (en) Apparatus for liquefaction-separation for air and method for collecting argon therein