JPS6318967B2 - - Google Patents

Info

Publication number
JPS6318967B2
JPS6318967B2 JP983881A JP983881A JPS6318967B2 JP S6318967 B2 JPS6318967 B2 JP S6318967B2 JP 983881 A JP983881 A JP 983881A JP 983881 A JP983881 A JP 983881A JP S6318967 B2 JPS6318967 B2 JP S6318967B2
Authority
JP
Japan
Prior art keywords
parts
resin
acid
acid value
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP983881A
Other languages
Japanese (ja)
Other versions
JPS56125450A (en
Inventor
Morio Take
Nobuyuki Ikeguchi
Hidenori Kanehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP983881A priority Critical patent/JPS56125450A/en
Publication of JPS56125450A publication Critical patent/JPS56125450A/en
Publication of JPS6318967B2 publication Critical patent/JPS6318967B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、衚面硬床が高く、か぀可撓性があ
り、耐氎性・耐薬品性・耐熱性にすぐれた硬化可
胜な組成物に関し、ずくに基材䟋えば鋌板ず
の密着性が良奜であり、高性胜の焌付型塗料ずし
お甚いるに奜適なものである。 埓来、焌付型の被芆甚組成物ずしお甚いられる
アルキツド暹脂は、䞀般には反応性基ずしおの氎
酞基を倚く残し、酞䟡を出来るだけ小さくした暹
脂が甚いられ、架橋剀ずしおメラミンホルムアル
デヒド暹脂、その倉性暹脂が䜿甚されおいる。し
かし、メラミンホルムアルデヒド暹脂等を架橋剀
ずしお甚いた堎合には焌付時に有害で刺激臭のあ
るホルムアルデヒドが発生し、䜜業䞊あるいは環
境衛生䞊奜たしくなく、皮々の問題がある。この
ようなホルムアルデヒドを発生せずか぀、すぐれ
た耐氎性、耐薬品性、衚面硬床、耐熱性などを有
する塗膜を䞎える被芆甚組成物が望たれおいる。 本発明者らは、䞊蚘の劂き有害で刺激臭のある
ホルムアルデヒドを発生せずか぀充分にすぐれた
塗膜性胜を有する塗膜を䞎える被芆甚組成物に぀
いお怜蚎を行぀た結果、分子䞭に少なくずも
個以䞊のシアナヌト基を有する倚官胜性シアン酞
゚ステル類ずビスマレむミドもしくはトリスマレ
むミド類ずからなる混合物もしくは反応物に、分
子の偎鎖たたは末端に遊離のカルボキシル基を有
する高酞䟡のアルキツド暹脂、たたはこれらの倉
性暹脂を組合せるこずにより、有害で刺激臭のあ
るホルムアルデヒドの発生がなく、硬床が高く、
可撓性、密着性、耐熱性等に富む被膜が埗られる
こずを芋出し本発明を達成した。 すなわち、本発明は () 倚官胜性シアン酞゚ステル、該シアン酞
゚ステルのプレポリマヌ或いは該シアン酞゚
ステルずアミンずのプレポリマヌず  ビスマレむミドもしくはトリスマレむミ
ド、該マレむミドのプレポリマヌ或いは該マ
レむミドずアミンずのプレポリマヌ ずの混合物たたは反応物ず () 酞䟡20〜150の高酞䟡型アルキツド暹脂 よりなる硬化性暹脂組成物である。 本発明の成分()の倚官胜性シアン酞゚ステ
ルずは、分子䞭に少なくずも個以䞊のシアナヌ
ト基を有する䞋蚘䞀般匏で瀺される有機シアン酞
゚ステルである。 匏 OC≡ 匏䞭、はベンれン、ビプニル、ナフタレン
からなる矀から遞ばれた芳銙族炭化氎玠から誘導
された芳銙栞を有する残基二個以䞊のベンれン
環が
The present invention relates to a curable composition that has high surface hardness, flexibility, and excellent water resistance, chemical resistance, and heat resistance, and particularly has good adhesion to a base material (for example, a steel plate). It is suitable for use as a high-performance baking paint. Conventionally, alkyd resins used as baking-type coating compositions generally have a large number of hydroxyl groups as reactive groups and have as low an acid value as possible, and melamine formaldehyde resins and modified resins thereof are used as crosslinking agents. is used. However, when melamine formaldehyde resin or the like is used as a crosslinking agent, formaldehyde, which is harmful and has an irritating odor, is generated during baking, which is undesirable in terms of work and environmental hygiene, and causes various problems. A coating composition that does not generate such formaldehyde and provides a coating film having excellent water resistance, chemical resistance, surface hardness, heat resistance, etc. is desired. The present inventors have investigated coating compositions that do not generate formaldehyde, which has a harmful and irritating odor as described above, and which provide a coating film with sufficiently excellent coating performance. 2
A high acid value alkyd resin having a free carboxyl group at the side chain or end of the molecule in a mixture or reaction product consisting of a polyfunctional cyanate ester having at least three cyanate groups and a bismaleimide or trismaleimide; Alternatively, by combining these modified resins, there is no generation of formaldehyde, which has a harmful and pungent odor, and the hardness is high.
The present invention was accomplished by discovering that a film with high flexibility, adhesion, heat resistance, etc. can be obtained. That is, the present invention provides (a) a polyfunctional cyanate ester, a prepolymer of the cyanate ester, or a prepolymer of the cyanate ester and an amine, and (b) bismaleimide, trismaleimide, a prepolymer of the maleimide, or the maleimide. It is a curable resin composition consisting of a mixture or reactant of an amine with a prepolymer and () a high acid value type alkyd resin with an acid value of 20 to 150. The polyfunctional cyanate ester of component (a) of the present invention is an organic cyanate ester represented by the following general formula having at least two or more cyanate groups in the molecule. Formula R(OC≡N)m (wherein, R is a residue having an aromatic nucleus derived from an aromatic hydrocarbon selected from the group consisting of benzene, biphenyl, and naphthalene; two or more benzene rings

【匏】R1、R2は同䞀たたは異な぀おも よく、氎玠たたは炭玠数〜のアルキル基、−
−、−CH2OCH2−、−−、
[Formula] (R 1 and R 2 may be the same or different and are hydrogen or an alkyl group having 1 to 4 carbon atoms), -
O-, -CH2OCH2- , -S-,

【匏】【formula】

【匏】【formula】 【匏】【formula】

【匏】及び[Formula] and

【匏】からなる矀から遞ばれた橋状郚に よ぀お結合された化合物から誘導された芳銙栞を
有する残基ノボラツク型たたはレゟヌル型プ
ノヌル暹脂骚栌からプノヌル性氎酞基を陀去し
お埗られる芳銙栞を有する残基ビスプノヌル
から誘導されるポリカヌボネヌト骚栌の末端氎酞
基を陀去しお埗られる芳銙栞を有する残基から
遞ばれた残基である。これらの芳銙栞には炭玠数
〜のアルキル基、アルコキシ基、クロル、ブ
ロムの眮換基によ぀お眮換されおもよい。は
〜10の数であり、か぀シアナヌト基は垞に芳銙栞
に盎接結合されおいる。 このような化合物を具䜓的に䟋瀺すれば、
―たたは―ゞシアナヌトベンれン、
―トリシアナヌトベンれン、―、
―、―、―、―たたは
―ゞシアナヌトナフタレン、―
トリシアナヌトナフタレン、4′―ゞシアナヌ
トビプニル、ビス―シアナヌトプニル
メタン、―ビス―シアナヌトプニ
ルプロパン、―ビス―ゞクロロ
――シアナヌトプニルプロパン、―
ビス―ゞブロモ――ゞアナヌトプニ
ルプロパン、ビス―シアナヌトプニル
゚ヌテル、ビス―シアナヌトプニルチオ
゚ヌテル、ビス―シアナヌトプニルスル
ホン、トリス―シアナヌトプニルホスフ
アむト、トリス―シアナヌトプニルホス
プヌト、などである。これらのものの他に特公
昭46−4112号たたは特公昭44−4791号に蚘茉され
おいるシアン酞゚ステルが甚いられる。たた、こ
れらシアン酞゚ステルのシアナヌト基の䞉量化に
よ぀お圢成されるトリアゞン環を有する分子量
400〜6000のプレポリマヌも䜿甚される。このプ
レポリマヌは䞊蚘のシアン酞゚ステルを、たずえ
ば鉱酞、ルむス酞などの酞氎酞化ナトリりム、
ナトリりムアルコラヌト、第䞉玚アミン類などの
塩基炭酞ナトリりム、塩化リチりムなどの塩な
どを觊媒ずしお重合させるこずにより埗られる。 倚官胜性シアン酞゚ステルは、モノマヌずプレ
ポリマヌずの混合物の圢で䜿甚するこずもでき
る。䟋えば、商業的に入手し埗るビスプノヌル
ずハロゲン化シアンずからのシアン酞゚ステル
の倚くは、シアン酞゚ステルモノマヌずプレポリ
マヌずの混合物の圢態をしおいる堎合があり、こ
のような原料は本発明の甚途に十分䜿甚し埗る。 曎に、埌蚘する劂くアミンずの反応物も奜適に
甚いられる。 本発明に䜿甚する䞊蚘成分()のビスマレむ
ミドもしくはトリスマレむミドは、無氎マレむン
酞ず倚䟡アミンずから誘導されるマレむミド基を
個又は個有する任意の有機化合物であ぀お、
本発明に奜適に䜿甚し埗るビスマレむミドもしく
はトリスマレむミドは、䞋蚘䞀般匏 匏䞭、は䟡又は䟡の芳銙族又は脂環族性
有機基であり、X1、X2は氎玠、ハロゲン、たた
はアルキル基であり、はたたはである。 で衚わされる。䞊匏で衚わされるマレむミド類は
無氎マレむン酞類ず䟡又は䟡のアミン類ずを
反応させおマレアミド酞を調補し、次いでマレア
ミド酞を脱氎環化させるそれ自䜓公知の方法で補
造するこずができる。甚いる倚䟡アミン類は芳銙
族アミンであるこずが最終暹脂の耐熱性等の点で
奜たしいが、暹脂の可撓性や柔軟性が望たしい堎
合には、脂環族アミンを単独或いは組合せで䜿甚
しおもよい。たた、倚䟡アミン類は第玚アミン
であるこずが反応性の点で特に望たしいが、第
玚アミンも䜿甚するこずが可胜である。これらの
マレむミド類は、単独でもあるいは皮以䞊組合
せお䜿甚するこずもできる。たた無觊媒䞋あるい
は觊媒存圚䞋に加熱しおプレポリマヌ化したもの
も奜適に甚いるこずができる。 曎に䞊蚘の倚官胜性シアン酞゚ステルおよびビ
スマレむミドもしくはトリスマレむミドはそれぞ
れアミン類で倉性したものも䜿甚できる。これら
のアミン類ずしおは、メタプニレンゞアミン、
メタ又はパラ―キシリレンゞアミン、―シ
クロヘキサンゞアミン、ヘキサヒドロキシリレン
ゞアミン、4′―ビスアミノプニルメタン、
4′―ビスアミノプニルスルホン、ビス
―アミノ――メチルプニルメタン
MDT、ビス―アミノ――ゞメチル
プニルメタンMDX、4′―ビスアミノ
プニルシクロヘキサン、4′―ビスアミノフ
゚ニル゚ヌテル、―ビス4′―アミノプ
ニルプロパン、―ビス―アミノ―
―メチルプニルメタン、αα―ビス―
アミノプニルプニルメタン等が䟋瀺され
る。 以䞊説明した本発明の成分()の、の組成
比は、特に限定されるものではないがずずの
重量比で2080〜95の範囲であるこずが奜た
しい。 本発明組成物における成分()の高酞䟡型アル
キツド暹脂は平均分子量500〜3000を有し、酞䟡
20〜150、奜たしくは40〜100のものが䜿甚され
る。この様なアルキツド暹脂は高酞䟡型アルキツ
ド暹脂を埗る埓来の方法が適甚されるが、倚䟡カ
ルボン酞の皮以䞊ず倚䟡アルコヌルの皮以䞊
ずを、倚䟡アルコヌル過剰の状態で酞䟡が20以䞋
になるたで反応させたのち、倚官胜の倚䟡カルボ
ン酞たずえば無氎トリメリツト酞を反応させ
るずい぀たように段階的に反応させる方法が所望
の高酞䟡型アルキツド暹脂を容易に合成できるの
で奜たしい方法である。 䞊蚘アルキツド暹脂の補造に甚いられる倚䟡カ
ルボン酞及び倚䟡アルコヌルは埓来のアルキツド
暹脂を補造するに甚いられるものであ぀お、倚䟡
カルボン酞ずしおは、たずえば無氎フタル酞、む
゜フタル酞、テレフタル酞、たたはこれらの䜎玚
アルキル゚ステル、テトラヒドロ無氎フタル酞、
ヘキサヒドロ無氎フタル酞、テトラブロム無氎フ
タル酞、テトラクロル無氎フタル酞、無氎ヘツト
酞、―゚ンドメチレン―△4無氎フタル酞、
無氎マレむン酞、テトラヒドロ無氎マレむン酞、
フマル酞、むタコン酞、コハク酞、無氎コハク
酞、アゞピン酞、アれラむン酞、セバシン酞、な
どの二䟡カルボン酞類、無氎トリメリツト酞、ト
リメリツト酞、メチルシクロヘキセントリカルボ
ン酞、などの䞉䟡カルボン酞類、無氎ピロメリツ
ト酞、等が䟋瀺される。たた倚䟡アルコヌルずし
おは、たずえば、゚チレングリコヌル、プロピレ
ングリコヌル、―ブチレングリコヌル、
―ヘキサンゞオヌル、ゞ゚チレングリコヌ
ル、ゞプロピレングリコヌル、ネオペンチルグリ
コヌル、トリ゚チレングリコヌル、などの二䟡ア
ルコヌル類、グリセリン、トリメチロヌル゚タ
ン、トリメチロヌルプロパン、トリスヒドロキシ
メチルアミノメタンなどの䞉䟡アルコヌル類、ペ
ンタ゚リスリトヌル、ゞペンタ゚リスリトヌル、
等が䟋瀺される。さらに、堎合によ぀おは、アマ
ニ油、桐油、脱氎ヒマシ油、倧豆油、サフラワヌ
油、ダシ油、ヒマシ油、などの油や、アマニ油脂
肪酞、ダシ油脂肪酞、トヌル油脂肪酞などの脂肪
酞を甚いお油倉性ずするこずもできる。その他ロ
ゞン、プノヌル類、゚ポキシ化合物、ビニル化
合物などで倉性した倉性アルキツド暹脂も䜿甚で
きる。たた本発明に䜿甚されるアルキツド暹脂
は、先に蚘茉したように通垞のアルキツド暹脂ず
は異なり酞䟡が20〜150である高酞䟡型アルキツ
ド暹脂であるがアルキツド暹脂においおは遊離の
氎酞基を有しない様にするこず、すなわち氎酞基
䟡を零ずするこずは殆んど䞍可胜であり、本発明
で䜿甚される高酞䟡型アルキツド暹脂では氎酞基
䟡は50以䞋であるこずが望たしく、さらには40以
䞋であるこずがより奜適である。 本発明に斌ける䞊述の成分()ず()ずの組成
比は、特に限定されるものではなく重量比で
99〜99の範囲で、奜たしくは95〜95
の範囲で䜿甚できるものであり、組成物の甚途、
䜿甚目的、さらには適性な塗膜性胜を付䞎するた
めに最も適した原料成分の組合せ、組成成分の割
合は䟋えば、耐熱性がより芁求される堎合には成
分()をより倚く甚いるなどなど適宜遞択され
る。 本発明組成物を基材たずえば鋌板に被芆す
るに圓぀おは、スプレヌ、浞挬、はけ塗りなど公
知の方法によ぀お塗装される。これら塗装方法、
あるいは目的によ぀おも異なるが䞀般には垌釈溶
剀によ぀お適圓な塗装粘床に調敎される。この垌
釈溶剀ずしおは、たずえば、トル゚ン、キシレン
などの芳銙族炭化氎玠類、酢酞゚チル、酢酞ブチ
ルなどの゚ステル類、メチル゚チルケトン、メチ
ルむ゜ブチルケトン、シクロヘキサノンなどのケ
トン類、アセト酢酞゚チル、アセト酢酞ブチル、
アセチルアセトン、などのケト・゚ノヌル型互倉
異性化合物、ゞアセトンアルコヌル、ゞオキサ
ン、゚チレングリコヌルモノメチル゚ヌテル、゚
チレングリコヌルモノ゚チル゚ヌテル、゚チレン
グリコヌルモノブチル゚ヌテルアセテヌト、ミネ
ラルスピリツトなどが䟋瀺され、これらの皮た
たは皮以䞊の混合物ずしお甚いられる。これら
の垌釈溶剀のうち、アセト酢酞゚チルが特に奜適
である。 又、本発明の暹脂組成物はそれ自䜓加熱により
結合し網状化しお耐熱性暹脂ずなる性質を有しお
いるが、䞊述した架橋網状化を促進する目的で、
組成物䞭に觊媒を含有させるこずができる。この
ような觊媒ずしおは、有機塩基、䟋えば―
ゞメチルアニリン、―ゞメチルトルむゞ
ン、―ゞメチル――アニシゞン、―ハ
ロゲノ――ゞメチルアニリン、――゚
チルアニリノ゚タノヌル、トリ――ブチルアミ
ン、ピリゞン、キノリン、―メチルモルホリ
ン、トリ゚タノヌルアミン等の第玚アミン類
むミダゟヌル、ベンツむミダゟヌル等のむミダゟ
ヌル類プノヌル、クレゟヌル、キシレノヌ
ル、レゟルシン、フロログルシン等のプノヌル
類有機金属塩、䟋えばナフテン酞鉛、ステアリ
ン酞鉛、ナフテン酞亜鉛、オレむン酞スズ、ゞブ
チル錫マレ゚ヌト、ナフテン酞マンガン、ナフテ
ン酞コバルト、暹脂酞鉛、SnCl4、ZnCl2、AlCl3
等の塩化物等が適圓である。これらの觊媒の量
は、觊媒の皮類や甚途や硬化条件等によ぀おも著
しく盞違し、䞀抂に芏定し埗ないが、䞀般的な意
味での觊媒量、党暹脂固圢成分に察しお䟋えば
重量以䞋の量で䜿甚するのがよい。 本発明の硬化性暹脂組成物には、たた、最終的
な塗膜、接着剀局、暹脂成圢品等における暹脂の
性質を改善する目的で、所望に応じ顔料、充填
剀、難燃剀、塗膜改良剀などの添加剀、皮々の倩
然、半合成或いは合成暹脂類を配合するこずがで
きる。 䟋えば、接着性をさらに増加さす目的で゚ポキ
シ化合物を甚いたり、屈曲性を増加さす目的で合
成雲母を甚いるこずなどである。 本発明の硬化性暹脂組成物は、塗料ずしおずく
に奜適なものであり、この堎合の基䜓ずしおはセ
ラミツクス、熱硬化性暹脂、金属などが挙げられ
る。 硬化は、通垞80〜300℃、奜たしくは100〜250
℃の枩床で加熱硬化させる方法や、その他光など
を甚いる方法がある。 以䞊の劂くである本発明の硬化性暹脂組成物
は、特に塗料ずしお甚いた堎合に、耐熱性、衚面
硬床が高く、か぀可撓性、耐氎性、耐薬品性など
にすぐれた塗膜をあたえるものであり、高性胜の
焌付型塗料ずしお甚いるに奜適なものである。 以䞋、実斜䟋および比范䟋により本発明をさら
に具䜓的に説明する。なお実斜䟋䞭の「郚」は重
量郚を、「」は重量を瀺す。 実斜䟋  枩床蚈、熱電察、撹拌棒、窒玠ガス導入口、瞮
合氎取出し甚コンデンサヌを付した反応噚にネオ
ペンチルグリコヌル348郚、トリメチロヌルプロ
パン112郚、む゜フタル酞489郚、アゞピン酞143
郚を仕蟌み、窒玠ガス気流䞋、反応噚内の枩床を
埐々に昇枩する。240℃に昇枩埌、同枩床で窒玠
ガス雰囲気䞋反応させ、反応物の酞䟡が20以䞋に
達したら容噚内の枩床を180℃以䞋に降枩したの
ち、無氎トリメリツト酞44郚を加える。無氎トリ
メリツト酞添加埌、再び180℃で玄30分反応させ、
暹脂酞䟡40〜45を有するオむルフリヌアルキド暹
脂を埗た。この暹脂は蒞気圧法で枬定し、数平均
分子量1840であ぀た。該暹脂を固圢分濃床70ず
なるように゚チレングリコヌルモノメチル゚ヌテ
ルを甚いお垌釈しガヌドナヌ気泡粘床Z4―Z5、ガ
ヌドナヌ色数のワニスずした。 次に該アルキド暹脂固圢分80郚に察し、
―ビス―シアナヌトプニルプロパン20郚
及びビス―マレむミドプニルメタン20郚
を加えたあず、アセト酢酞゚チル134郚で垌釈し、
粘床がフオヌドカツプで19秒、䞍揮発分38
の透明なワニスを埗た。 このワニスをボンテラむト144凊理鋌板0.5
mm厚およびアルミニりム箔にそれぞれ塗膜厚が
20〜30になるようにスプレヌ塗装したのち、160
℃で20分間焌付し、平滑で倖芳が良奜な塗膜を埗
た。塗膜性胜は第衚に瀺す。 実斜䟋  (A) 実斜䟋に甚いたず同様の反応噚を甚い、こ
れにネオペンチルグリコヌル391郚、む゜フタ
ル酞114郚、アゞピン酞100郚、無氎トリメリツ
ト酞225郚を仕蟌み、窒玠ガス気流䞋で反応噚
内の枩床を220℃に昇枩する。この枩床で玄30
分反応させ、暹脂酞䟡が95ずな぀たずころで反
応を䞭止し降枩する。 (B) 別に、他の反応噚を甚い、これにむ゜プロピ
ルアルコヌル127郚を仕蟌み、窒玠ガス気流䞋
で反応噚内の枩床を80℃に昇枩する。これにあ
らかじめ別の容噚に秀取したメチルメタクリレ
ヌト69郚、ブチルアクリレヌト131郚、ゞ゚チ
ルアミノ゚チルメタクリレヌト12郚、アクリル
酾32郚、アゟビスむ゜ブチロニトリル郚、
―ドデシルメルカブタン郚からなる混合物を
滎䞋斗から時間を芁しお滎䞋し、枩床80℃
で時間反応させた。 (A)で合成したアルキド暹脂ず(B)で合成したアク
リル暹脂ずを、枩床蚈、熱電察、撹拌棒、窒玠ガ
ス導入口、冷华噚を付した反応噚に仕蟌み、窒玠
ガス気流䞋で埐々に昇枩し溶剀及び生成氎を陀去
する。枩床を180℃に昇枩し、この枩床で暹脂酞
䟡が55になるたで反応させ、アクリル倉性アルキ
ツド暹脂を埗た。この暹脂の平均分子量は、蒞気
圧法で枬定し、1600であ぀た。 埗られたアクリル倉性アルキド暹脂を゚チレン
グリコヌルモノメチル゚ヌテルにお固圢分70に
なるように垌釈し、最終暹脂酞䟡53、粘床Z4〜
Z5、色数の液状暹脂を埗た。 次いで該アクリル倉性アルキド暹脂固圢分80郚
固型分に察し、実斜䟋に甚いたず同様のシ
アン酞゚ステル20郚固圢分及びビスマレむミ
ド20郚固圢分を加えたのち、アセト酢酞゚チ
ル120郚、キシレン40郚からなる混合溶剀にお垌
釈し、粘床がフオヌドカツプで18秒、䞍揮発
分40の透明なワニスが埗られた。このワニスを
実斜䟋ず同様にしお鋌板に塗垃し実斜䟋ず同
䞀条件で焌付けを行぀た。塗膜性胜は第衚に瀺
す。 実斜䟋  実斜䟋で埗られたアルキツド暹脂の固圢分83
郚に察し―ビス―シアナヌトプニ
ルプロパン郚固圢分、ビス―マレむ
ミドプニルメタン郚、およば―マレむミ
ドプニル―3′4′―ゞマレむミドプニルメタ
ンず―マレむミドプニル―2′4′―ゞマレむ
ミドプニルメタンずの混合物郚を加えた以倖
は実斜䟋ず同様にしお塗膜を埗た。塗膜性胜は
第衚に瀺す。 比范䟋  実斜䟋に甚いたず同様の反応噚を甚い、これ
に、ネオペンチルグリコヌル563郚、トリメチロ
ヌルプロパン363郚、アゞピン酞419郚、無氎フタ
ル酞637郚を仕蟌み、窒玠ガス気流䞋で埐々に昇
枩し、240℃を保持した。240℃で玄10時間反応さ
せるず、酞䟡10の暹脂を埗た。反応を䞭止し、降
枩埌䞍揮発分が65になるようにキシレンブチ
ルセロ゜ルブ重量比の混合溶剀で垌
釈した。埗られたアルキド暹脂は、粘床ガヌド
ナヌ気泡粘床―、色数ガヌドナヌ、
数平均分子量1480VPO、酞䟡10固圢分、氎
酞基䟡137であ぀た。 次いで、埗られた氎酞基含有アルキド暹脂固圢
分80郚に実斜䟋で甚いたず同様のシアン酞゚ス
テル20郚及びビスマレむミド20郚を加えたあず、
アセト酢酞゚チル120郚及びゞメチルホルムアミ
ド26郚で垌釈するず、ワニスが埗られた。 焌付け条件を140℃で20分間(A)、たたは160℃で
20分間(B)ずする以倖は実斜䟋ず同䞀条件で焌付
け塗膜を圢成した。 塗膜性胜を第衚に瀺す。
A residue having an aromatic nucleus derived from a compound bonded by a bridge selected from the group consisting of [Formula]; aroma obtained by removing the phenolic hydroxyl group from a novolak type or resol type phenolic resin skeleton The residue is selected from a residue having a nucleus; a residue having an aromatic nucleus obtained by removing the terminal hydroxyl group of a polycarbonate skeleton derived from bisphenol. These aromatic nuclei may be substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group, chloro, or bromine substituent. m is 2
~10, and the cyanate group is always bonded directly to the aromatic nucleus. ) Specific examples of such compounds include 1,
3- or 1,4-dicyanatobenzene, 1,
3,5-tricyanatobenzene, 1,3-,
1,4-, 1,6-, 1,8-, 2,6- or 2,7-dicyanatonaphthalene, 1,3,6-
Tricyanatonaphthalene, 4,4'-dicyanatobiphenyl, bis(4-cyanatophenyl)
Methane, 2,2-bis(4-cyanatophenyl)propane, 2,2-bis(3,5-dichloro-4-cyanatophenyl)propane, 2,2-
Bis(3,5-dibromo-4-dianatophenyl)propane, bis(4-cyanatophenyl)
ether, bis(4-cyanatophenyl) thioether, bis(4-cyanatophenyl) sulfone, tris(4-cyanatophenyl) phosphite, tris(4-cyanatophenyl) phosphate, and the like. In addition to these, cyanic acid esters described in Japanese Patent Publication No. 46-4112 or Japanese Patent Publication No. 44-4791 can be used. In addition, the molecular weight of these cyanate esters has a triazine ring formed by trimerization of the cyanate group.
400-6000 prepolymers are also used. This prepolymer can contain the above-mentioned cyanate esters, for example, mineral acids, Lewis acids, and other acids; sodium hydroxide;
It can be obtained by polymerization using a base such as sodium alcoholate or tertiary amines; or a salt such as sodium carbonate or lithium chloride as a catalyst. Polyfunctional cyanate esters can also be used in the form of mixtures of monomers and prepolymers. For example, many of the commercially available cyanate esters from bisphenol A and cyanogen halides may be in the form of mixtures of cyanate ester monomers and prepolymers; such raw materials It can be fully used for the purpose of the present invention. Furthermore, as described later, reactants with amines are also suitably used. The bismaleimide or trismaleimide of component ()b used in the present invention is any organic compound having two or three maleimide groups derived from maleic anhydride and a polyvalent amine, and
Bismaleimide or trismaleimide that can be suitably used in the present invention has the following general formula: (In the formula, R is a divalent or trivalent aromatic or alicyclic organic group, X 1 and X 2 are hydrogen, halogen, or an alkyl group, and n is 2 or 3.) expressed. Maleimides represented by the above formula can be produced by a method known per se, in which maleic anhydride and divalent or trivalent amines are reacted to prepare maleamic acid, and then maleamic acid is cyclodehydrated. . The polyvalent amines used are preferably aromatic amines in terms of the heat resistance of the final resin, but if flexibility and flexibility of the resin are desired, alicyclic amines may be used alone or in combination. It's okay. In addition, it is particularly desirable that the polyvalent amines be primary amines in terms of reactivity, but secondary
It is also possible to use grade amines. These maleimides can be used alone or in combination of two or more. Moreover, those obtained by heating without a catalyst or in the presence of a catalyst to form a prepolymer can also be suitably used. Furthermore, the polyfunctional cyanate ester and bismaleimide or trismaleimide each modified with an amine can also be used. These amines include metaphenylenediamine,
Meta- or para-xylylenediamine, 1,4-cyclohexanediamine, hexahydroxylylenediamine, 4,4'-bisaminophenylmethane,
4,4′-bisaminophenyl sulfone, bis(4
-amino-3-methylphenyl)methane (MDT), bis(4-amino-3,5-dimethylphenyl)methane (MDX), 4,4'-bisaminophenylcyclohexane, 4,4'-bisaminophenyl enyl ether, 2,2-bis(4'-aminophenyl)propane, 2,2-bis(4-amino-3
-methylphenyl)methane, α,α-bis(4-
Examples include aminophenyl) phenylmethane. The composition ratio of a and b in the component () of the present invention described above is not particularly limited, but it is preferably in the range of 20:80 to 95:5 in weight ratio of a and b. The high acid value type alkyd resin as component () in the composition of the present invention has an average molecular weight of 500 to 3000, and has an acid value of
20-150, preferably 40-100 are used. Conventional methods for obtaining high acid value type alkyd resins are applied to such alkyd resins, but one or more polyhydric carboxylic acids and one or more polyhydric alcohols are mixed with an acid in an excess amount of polyhydric alcohol. The desired high acid value type alkyd resin can be easily produced by a stepwise reaction method, such as reacting until the value is 20 or less, and then reacting with a polyfunctional polycarboxylic acid (for example, trimellitic anhydride). This is a preferred method because it can be synthesized into The polyhydric carboxylic acids and polyhydric alcohols used in the production of the above-mentioned alkyd resins are those used in the production of conventional alkyd resins, and the polyhydric carboxylic acids include, for example, phthalic anhydride, isophthalic acid, terephthalic acid, or lower alkyl esters thereof, tetrahydrophthalic anhydride,
Hexahydrophthalic anhydride, tetrabromo phthalic anhydride, tetrachlorophthalic anhydride, hexic anhydride, 3,6-endomethylene-△ 4 phthalic anhydride,
maleic anhydride, tetrahydromaleic anhydride,
Divalent carboxylic acids such as fumaric acid, itaconic acid, succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, trivalent carboxylic acids such as trimellitic anhydride, trimellitic acid, methylcyclohexenetricarboxylic acid, pyromellitic anhydride Examples include acids. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, 1,3-butylene glycol,
Dihydric alcohols such as 1,6-hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, triethylene glycol, trihydric alcohols such as glycerin, trimethylolethane, trimethylolpropane, trishydroxymethylaminomethane, pentaerythritol, dipentaerythritol,
etc. are exemplified. Additionally, in some cases, oils such as linseed oil, tung oil, dehydrated castor oil, soybean oil, safflower oil, coconut oil, and castor oil, and fatty acids such as linseed oil fatty acids, coconut oil fatty acids, tall oil fatty acids, etc. It can also be used for oil modification. In addition, modified alkyd resins modified with rosin, phenols, epoxy compounds, vinyl compounds, etc. can also be used. Furthermore, as described above, the alkyd resin used in the present invention is a high acid value type alkyd resin with an acid value of 20 to 150, unlike ordinary alkyd resins, but the alkyd resin has free hydroxyl groups. In other words, it is almost impossible to reduce the hydroxyl value to zero, and it is desirable that the hydroxyl value of the high acid value type alkyd resin used in the present invention is 50 or less, and more preferably 40. It is more preferable that it is the following. The composition ratio of the above-mentioned components () and () in the present invention is not particularly limited, and the weight ratio is 1:
In the range of 99-99:1, preferably 5:95-95:5
It can be used within the following range, and the use of the composition,
The most suitable combination of raw materials and composition ratios for the purpose of use and for imparting suitable coating performance can be determined as appropriate, such as using more component () if higher heat resistance is required. selected. When coating a substrate (for example, a steel plate) with the composition of the present invention, it is applied by a known method such as spraying, dipping, or brushing. These painting methods,
Alternatively, the coating viscosity is generally adjusted to an appropriate coating viscosity using a diluting solvent, although this varies depending on the purpose. Examples of the diluting solvent include aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ethyl acetoacetate, butyl acetoacetate,
Examples include keto-enol type tautomeric compounds such as acetylacetone, diacetone alcohol, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether acetate, and mineral spirits. Used as a mixture of more than one species. Among these diluting solvents, ethyl acetoacetate is particularly preferred. In addition, the resin composition of the present invention itself has the property of becoming a heat-resistant resin by being bonded and reticulated by heating, but for the purpose of promoting crosslinking and reticulation as described above,
A catalyst can be included in the composition. Such catalysts include organic bases such as N,N-
Dimethylaniline, N,N-dimethyltoluidine, N,N-dimethyl-p-anisidine, P-halogeno-N,N-dimethylaniline, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline, Tertiary amines such as N-methylmorpholine and triethanolamine;
Imidazoles such as imidazole and benzimidazole; Phenols such as phenol, cresol, xylenol, resorcinol, and phloroglucin; Organic metal salts such as lead naphthenate, lead stearate, zinc naphthenate, tin oleate, dibutyltin maleate, naphthenic acid Manganese, cobalt naphthenate, lead resinate, SnCl 4 , ZnCl 2 , AlCl 3
Chlorides, etc., are suitable. The amount of these catalysts varies significantly depending on the type of catalyst, use, curing conditions, etc., and cannot be unconditionally defined, but in a general sense, the amount of catalyst, for example, 5% based on the total resin solid component.
It is preferable to use it in an amount of % by weight or less. The curable resin composition of the present invention may also contain pigments, fillers, flame retardants, coating film, etc., as desired, for the purpose of improving the properties of the resin in the final coating film, adhesive layer, resin molded product, etc. Additives such as modifiers and various natural, semi-synthetic or synthetic resins can be blended. For example, an epoxy compound may be used to further increase adhesiveness, or a synthetic mica may be used to increase flexibility. The curable resin composition of the present invention is particularly suitable as a coating material, and examples of the substrate in this case include ceramics, thermosetting resins, and metals. Curing is usually 80-300℃, preferably 100-250℃
There are methods of curing by heating at a temperature of °C and other methods using light. The curable resin composition of the present invention as described above provides a coating film with high heat resistance, high surface hardness, and excellent flexibility, water resistance, chemical resistance, etc., especially when used as a paint. It is suitable for use as a high-performance baking paint. Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In the examples, "part" indicates part by weight, and "%" indicates weight %. Example 1 348 parts of neopentyl glycol, 112 parts of trimethylolpropane, 489 parts of isophthalic acid, and 143 parts of adipic acid were placed in a reactor equipped with a thermometer, thermocouple, stirring bar, nitrogen gas inlet, and condenser for taking out condensed water.
The temperature inside the reactor was gradually raised under a nitrogen gas flow. After raising the temperature to 240°C, react at the same temperature under a nitrogen gas atmosphere, and when the acid value of the reactant reaches 20 or less, lower the temperature inside the container to 180°C or less, and then add 44 parts of trimellitic anhydride. After adding trimellitic anhydride, react again at 180℃ for about 30 minutes,
An oil-free alkyd resin having a resin acid value of 40-45 was obtained. This resin had a number average molecular weight of 1840 as measured by vapor pressure method. The resin was diluted with ethylene glycol monomethyl ether to a solid concentration of 70% to obtain a varnish having a Gardner bubble viscosity of Z 4 -Z 5 and a Gardner color number of 2. Next, for 80 parts of the solid content of the alkyd resin, 2,2
-After adding 20 parts of bis(4-cyanatophenyl)propane and 20 parts of bis(4-maleimidophenyl)methane, diluted with 134 parts of ethyl acetoacetate,
Viscosity is 19 seconds in food cup #4, non-volatile content is 38%
obtained a transparent varnish. This varnish is applied to Bonterite #144 treated steel plate (0.5
mm thickness) and aluminum foil, respectively.
After spray painting to 20-30, 160
After baking at ℃ for 20 minutes, a smooth coating film with a good appearance was obtained. The coating performance is shown in Table 1. Example 2 (A) Using a reactor similar to that used in Example 1, 391 parts of neopentyl glycol, 114 parts of isophthalic acid, 100 parts of adipic acid, and 225 parts of trimellitic anhydride were charged and heated under a nitrogen gas stream. Raise the temperature inside the reactor to 220°C. Approximately 30 at this temperature
The reaction was allowed to proceed for several minutes, and when the resin acid value reached 95, the reaction was stopped and the temperature was lowered. (B) Separately, use another reactor, charge it with 127 parts of isopropyl alcohol, and raise the temperature inside the reactor to 80°C under a nitrogen gas stream. To this, 69 parts of methyl methacrylate, 131 parts of butyl acrylate, 12 parts of diethylaminoethyl methacrylate, 32 parts of acrylic acid, 5 parts of azobisisobutyronitrile, n
- A mixture consisting of 5 parts of dodecyl mercabutane was added dropwise from a dropping funnel over a period of 3 hours, and the temperature was 80°C.
The mixture was allowed to react for 4 hours. The alkyd resin synthesized in (A) and the acrylic resin synthesized in (B) were charged into a reactor equipped with a thermometer, thermocouple, stirring rod, nitrogen gas inlet, and cooler, and gradually heated under a nitrogen gas stream. The solvent and produced water are removed. The temperature was raised to 180°C, and the reaction was carried out at this temperature until the resin acid value reached 55 to obtain an acrylic modified alkyd resin. The average molecular weight of this resin was 1600 as measured by vapor pressure method. The obtained acrylic modified alkyd resin was diluted with ethylene glycol monomethyl ether to a solid content of 70%, and the final resin acid value was 53 and the viscosity was Z 4 ~
A liquid resin of Z 5 and 3 colors was obtained. Next, to 80 parts (solid content) of the acrylic modified alkyd resin, 20 parts (solid content) of the same cyanate ester and 20 parts (solid content) of bismaleimide as used in Example 1 were added, and then acetate was added. It was diluted with a mixed solvent consisting of 120 parts of ethyl acetate and 40 parts of xylene to obtain a transparent varnish with a viscosity of 18 seconds in a #4 food cup and a non-volatile content of 40%. This varnish was applied to a steel plate in the same manner as in Example 1, and baked under the same conditions as in Example 1. The coating performance is shown in Table 1. Example 3 Solid content of alkyd resin obtained in Example 1: 83
7 parts (solid content) of 2,2-bis(4-cyanatophenyl)propane, 8 parts of bis(4-maleimidophenyl)methane, and 4-maleimidophenyl-3',4'-di A coating film was obtained in the same manner as in Example 1, except that 2 parts of a mixture of maleimidophenylmethane and 4-maleimidophenyl-2',4'-dimaleimidophenylmethane were added. The coating performance is shown in Table 1. Comparative Example 1 Using a reactor similar to that used in Example 1, 563 parts of neopentyl glycol, 363 parts of trimethylolpropane, 419 parts of adipic acid, and 637 parts of phthalic anhydride were charged, and the mixture was gradually heated under a stream of nitrogen gas. The temperature was raised to 240°C and maintained at 240°C. After reacting at 240°C for about 10 hours, a resin with an acid value of 10 was obtained. The reaction was stopped, and after the temperature was lowered, the mixture was diluted with a mixed solvent of xylene/butyl cellosolve=9/1 (weight ratio) so that the nonvolatile content was 65%. The obtained alkyd resin has a viscosity (Gardner bubble viscosity) UV, a color number (Gardner) 2,
The number average molecular weight was 1480 (VPO), the acid value was 10 (solid content), and the hydroxyl value was 137. Next, 20 parts of the same cyanate ester and 20 parts of bismaleimide as used in Example 1 were added to 80 parts of the obtained hydroxyl group-containing alkyd resin solid content, and then
Dilution with 120 parts of ethyl acetoacetate and 26 parts of dimethylformamide gave a varnish. Baking conditions: 140℃ for 20 minutes (A) or 160℃
A baked coating film was formed under the same conditions as in Example 1 except for 20 minutes (B). The coating performance is shown in Table 1.

【衚】  鉛筆硬床詊隓機
 デナポン匏耐衝撃詊隓機
 剥離したフむルムを倧過剰のアセトンに浞挬
し、時間沞隰させたあずの抜出残分
実斜䟋  実斜䟋で埗た高酞䟡型アクリル倉性アルキツ
ド暹脂を固圢分ずしお20郚、―ビス―
シアナトプニルプロパン40郚、ビス―マ
レむミドプニルメタン60郚、曎に觊媒ずしお
オクチル酞亜鉛0.05郚およびゞメチルベンゞルア
ミン郚を加えた埌、アセト酢酞゚チル60郚およ
び―ゞメチルホルムアミド100郚で垌釈し
おワニスを埗た。 このワニスを実斜䟋ず同様の鋌板およびアル
ミニりム箔に塗膜厚が20〜30Όになるように塗装
したのち180℃で30分間焌付し、平滑で倖芳が良
奜な塗膜を埗た。塗膜硬床は6Hずな぀た。その
他はクロスカツト100100、mmφ折り曲げ、
inchα500衝撃倀20cmであ぀た。
[Table] *1 Pencil hardness tester *2 Dupont impact tester *3 % extraction residue after immersing the peeled film in a large excess of acetone and boiling it for 7 hours
Example 4 20 parts of the high acid value type acrylic modified alkyd resin obtained in Example 2 as solid content, 2,2-bis(4-
After adding 40 parts of cyanatophenyl)propane, 60 parts of bis(4-maleimidophenyl)methane, and 0.05 part of zinc octylate and 1 part of dimethylbenzylamine as a catalyst, 60 parts of ethyl acetoacetate and 100 parts of N,N-dimethylformamide. A varnish was obtained by diluting it with 50%. This varnish was applied to the same steel plate and aluminum foil as in Example 2 to a coating thickness of 20 to 30 ÎŒm, and then baked at 180° C. for 30 minutes to obtain a smooth coating with a good appearance. The coating hardness was 6H. Others are cross cut 100/100, 2mmφ bent A,
1/2 inch α500g impact value was 20cm.

Claims (1)

【特蚱請求の範囲】  () 倚官胜性シアン酞゚ステル、該シア
ン酞゚ステルのプレポリマヌ或いは該シアン
酞゚ステルずアミンずのプレポリマヌず  ビスマレむミドもしくはトリスマレむミ
ド、該マレむミドのプレポリマヌ或いは該マ
レむミドずアミンずのプレポリマヌ ずの混合物たたは反応物ず () 酞䟡20〜150の高酞䟡型アルキツド暹脂 よりなる硬化性暹脂組成物。
[Scope of Claims] 1 ()a A polyfunctional cyanate ester, a prepolymer of the cyanate ester, or a prepolymer of the cyanate ester and an amine, and b bismaleimide or trismaleimide, a prepolymer of the maleimide, or A curable resin composition comprising a mixture or reactant of a prepolymer of maleimide and an amine, and () a high acid value alkyd resin having an acid value of 20 to 150.
JP983881A 1981-01-26 1981-01-26 Curable resin composition Granted JPS56125450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP983881A JPS56125450A (en) 1981-01-26 1981-01-26 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP983881A JPS56125450A (en) 1981-01-26 1981-01-26 Curable resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP500778A Division JPS5499200A (en) 1978-01-20 1978-01-20 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS56125450A JPS56125450A (en) 1981-10-01
JPS6318967B2 true JPS6318967B2 (en) 1988-04-20

Family

ID=11731263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP983881A Granted JPS56125450A (en) 1981-01-26 1981-01-26 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS56125450A (en)

Also Published As

Publication number Publication date
JPS56125450A (en) 1981-10-01

Similar Documents

Publication Publication Date Title
CN101305063A (en) Epoxy based coatings
JPS62270553A (en) Colorless ketimine, manufacture and bridging agent
US4322324A (en) Ampho-ionic group-containing alkyd resins
NO784109L (en) REACTIVE CURTABLE POLYMER MIXTURE AND PROCEDURE FOR THE PRODUCTION OF CUREDED PRODUCTS
US4271062A (en) Pigment-containing coating composition having a high solids content
KR102249696B1 (en) Silane coupling agent and method for preparing the same, primer composition, and coating composition
JP2004522822A (en) Coating composition and coated substrate having good thermal stability and color
JPS60262873A (en) Metal-containing phenol resin paint composition
JPH0331362A (en) Thermally curable compound and manufacture of covering using said compound
JPH0116275B2 (en)
JPS6036237B2 (en) Method for producing reactive curable binder mixtures and cured articles
JPS6318967B2 (en)
JP4216906B2 (en) Polyester resin composition, cured resin and paint
KR102173750B1 (en) Powder coating composition
KR102175052B1 (en) Powder coating composition
JPS648647B2 (en)
TWI242025B (en) Acetoacetylated polyvinyl polymers and curable coating compositions made therefrom
JPS585926B2 (en) Composition
KR102173748B1 (en) Powder coating composition
KR102215874B1 (en) Powder coating composition
KR102173749B1 (en) Powder coating composition
JPH07216295A (en) Preparation of flat epoxide and hybrid powder coating materials
JPS60156707A (en) Preparation of aqueous resin
JPH09194574A (en) Curing agent composition for epoxy resin
JPS6159353B2 (en)