JPS6318943Y2 - - Google Patents

Info

Publication number
JPS6318943Y2
JPS6318943Y2 JP1981093490U JP9349081U JPS6318943Y2 JP S6318943 Y2 JPS6318943 Y2 JP S6318943Y2 JP 1981093490 U JP1981093490 U JP 1981093490U JP 9349081 U JP9349081 U JP 9349081U JP S6318943 Y2 JPS6318943 Y2 JP S6318943Y2
Authority
JP
Japan
Prior art keywords
lines
position line
line
display
measuring devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981093490U
Other languages
Japanese (ja)
Other versions
JPS57203317U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981093490U priority Critical patent/JPS6318943Y2/ja
Publication of JPS57203317U publication Critical patent/JPS57203317U/ja
Application granted granted Critical
Publication of JPS6318943Y2 publication Critical patent/JPS6318943Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

【考案の詳細な説明】 この考案はロラン受信機やNNSS等から位置線
を得て、自船の現在位置と演算により自動的に求
める様にした測位装置に関し、特には同測位装置
で求められた現在位置の信頼性の評価に供する、
表示装置に関するものである。
[Detailed explanation of the invention] This invention relates to a positioning device that obtains a position line from a Loran receiver, NNSS, etc., and automatically calculates it based on the current position of the own ship. to evaluate the reliability of the current location.
This invention relates to display devices.

ロラン受信機やNNSS等から得られる位置線
は、様々な誤差要因を含んでいるため、全ての位
置線が一点で交差することはまずあり得ない。例
えばNNSSに於いては、所謂シヨートドツプラ方
式により計測すれば最大40本程度の位置線が得ら
れるが、これらの位置線の交点は、正しい位置を
中心に或る範囲内に於いて複数個散在する。
Position lines obtained from Loran receivers, NNSS, etc. contain various error factors, so it is highly unlikely that all position lines intersect at one point. For example, in NNSS, up to 40 position lines can be obtained by measuring using the so-called shot Doppler method, but the intersections of these position lines are scattered within a certain range around the correct position. .

そこで、従来は全ての位置線を利用して、統計
的手法により、多くは最小2乗法により位置を求
め、また、この様にして求められた位置の信頼性
を評価する尺度として、例えば、位置線の数、人
工衛星の最大仰角、最大仰角に対する位置線の対
称性、或いは最小2乗法による残差等を同時に表
示する様にして、観測者が測位結果の信頼性につ
き間接的に判断出来る様にしていた。
Therefore, in the past, all position lines were used to find the position using a statistical method, often by the least squares method. By simultaneously displaying the number of lines, the maximum elevation angle of the satellite, the symmetry of the position line with respect to the maximum elevation angle, or the residual by the least squares method, observers can indirectly judge the reliability of the positioning results. I was doing it.

しかしながら、従来の評価対象となつていたこ
れらの尺度要素は、信頼性との間の相関性が充分
あるといえず、決定的な評価対象となりえていな
い。例えば、位置線が多く得られても、そのうち
の一部の位置線が推測位置を大きく離れている場
合、一般にはそれらの一部位置線は評価外に置く
べきなのに、位置線の全数を評価対象にするとそ
の様な一部位置線も或る重みを有する評価対象と
して捉えられるからである。
However, these scale elements, which have been conventionally evaluated, cannot be said to have a sufficient correlation with reliability and cannot be used as definitive evaluation targets. For example, even if many position lines are obtained, if some of them are far away from the estimated position, generally those partial position lines should be excluded from evaluation, but the total number of position lines is evaluated. This is because such a partial position line can also be regarded as an evaluation target having a certain weight.

この考案は上記に鑑みて成されたもので、人間
のパターン認識能力を利用して、測位結果の信頼
性判断がより正確となる、測位結果表示装置の提
供を目的とするものである。
This invention was made in view of the above, and aims to provide a positioning result display device that makes use of human pattern recognition ability to more accurately determine the reliability of positioning results.

以下この考案の実施例を図面を参照して説明す
る。
Examples of this invention will be described below with reference to the drawings.

第1図はこの考案の実施例である表示装置のブ
ロツク図である。
FIG. 1 is a block diagram of a display device which is an embodiment of this invention.

同図に於いて、1はNNSS、2はロランCの各
受信機で、これらの測地系の異なる2つの受信機
(位置線測定装置)からの出力データはマイクロ
コンピユータを用いた演算装置3に送られ、ここ
で位置線表示データが形成される。CRT4はそ
の位置線表示データをグラフイツクに表示する表
示手段で、表示制御は表示制御回路5によつて行
われる。
In the figure, 1 is the NNSS receiver, 2 is the Loran C receiver, and the output data from these two receivers (position line measuring devices) with different geodetic systems is sent to the arithmetic unit 3 using a microcomputer. The position line display data is then sent. The CRT 4 is a display means for graphically displaying the position line display data, and display control is performed by a display control circuit 5.

第2図は上記演算装置3によつて実行される手
順を示すフローチヤートである。
FIG. 2 is a flowchart showing the procedure executed by the arithmetic unit 3.

ステツプn1(以下ステツプnxを単にnxという)
で信号の受信があると、n2で受信装置の識別が行
われ、。NNSSであればn3以下で、ロランC信機
であればn11以下でそれぞれの受信装置で得たデ
ータから現在位置の位置線を測定する。
Step n 1 (hereinafter step n x is simply referred to as n x )
When a signal is received at n 2 , the receiving device is identified. The position line of the current position is measured from the data obtained by each receiver using n 3 or less for NNSS and n 11 or less for Loran C transmitter.

先ずn3では、ドツプカウント値から衛星と船ま
での距離差つまり測定位置線D1を計算する。続
いてn4で衛星位置を軌道パラメータから求め、こ
の次元に対応する推測位置をn5で求める。次にn6
で、船の位置の単位移動量当りの位置線変動分を
緯度、経度毎に求め、また、n7にて推測位置線
D2を計算して、これらの値からn8で△Dを算出
するとともにn9で現在位置の位置線を算出する。
First, in n3 , the distance difference between the satellite and the ship, that is, the measured position line D1 , is calculated from the dop count value. Next, the satellite position is determined from the orbit parameters at n4 , and the estimated position corresponding to this dimension is determined at n5 . then n 6
Find the position line variation per unit movement of the ship's position for each latitude and longitude, and use n 7 to calculate the estimated position line.
D2 is calculated, and from these values, ΔD is calculated at n8 , and the position line of the current position is calculated at n9 .

通常上記の手順の実行は20秒〜2分間毎に行わ
れ、受信信号が終了すればn19へ進む。
Normally, the above procedure is executed every 20 seconds to 2 minutes, and when the received signal ends, the process proceeds to n19 .

一方、受信信号がロラン信号であれば、n11
下上記とほぼ同様に手順によつて現在位置の位置
線が求められる。即ち、n11で位置線T1が測定さ
れ、使使用チエーンの局位置からn13で設定した
推測位置の位置線T2がn15で計算される一方、n14
で船の位置の単位の移動量当りの位置線変動分を
緯度、経度毎に求め、これらの値からn16で△T
を算出するとともにn17で現在位置の位置線を求
める。そして全ての位置線測定が終わるとn19
進む。
On the other hand, if the received signal is a Loran signal, the position line of the current position is determined from n11 and below using the same procedure as described above. That is, the position line T 1 is measured at n 11 , and the position line T 2 of the estimated position set at n 13 from the station position of the used chain is calculated at n 15 , while at n 14
Find the position line variation per unit movement of the ship's position for each latitude and longitude, and from these values, calculate △T with n 16
At the same time, calculate the position line of the current position using n17 . When all position line measurements are completed, proceed to n 19 .

n19では上記の様にして得られた位置線全てを
用い、最小2乗法によつて位置を求める。そうし
てn20でその位置を中心にした全ての位置線を
CRT4に表示し各位置線が同時に表示されてい
る状態にして初めに戻る。
At n19 , the position is determined by the method of least squares using all the position lines obtained as described above. Then, with n 20 , all the position lines centered at that position are
Display on CRT4 and return to the beginning with each position line displayed at the same time.

第3図イ,ロは上記の動作によつてCRT4に
得られた表示態様の例を示している。
FIGS. 3A and 3B show examples of display modes obtained on the CRT 4 through the above operations.

同図から明らかな様に、イに示す位置線の分布
パターンはロの分布パターンに比してそのバラツ
キの度合いが大きい。従つて、最小2乗法によつ
て得られた測位結果の信頼性は、同図イよりもロ
に示す場合の方がより高いと判断することが出来
る。
As is clear from the figure, the distribution pattern of the position lines shown in A has a greater degree of variation than the distribution pattern in B. Therefore, it can be determined that the reliability of the positioning results obtained by the least squares method is higher in the case shown in B than in A in the same figure.

以上の様に、この考案によれば、得られた位置
線の分布パターンからその偏り、バラツキ等が定
性的に把握できるため、直観的に測位結果の信頼
性の程度を判断することができる。また位置線測
定装置を測地系の異なる複数の位置線測定装置で
構成しているために、表示される位置線の分布パ
ターンに特定に偏りが生じるのを防ぐことができ
る。さらに、表示されている位置線の中から、推
測位置を大きく離れている位置線を外し、推測位
置に近い位置線のみを抽出して入力キー等により
選択し、再度それらの位置線から最小2乗法によ
る結果を出す様にすれば、全ての位置線の分布パ
ターンの発散が大であつても、誤差の出来るけ小
さくした測位結果を得られる利点がある。
As described above, according to this invention, it is possible to qualitatively understand the bias, variation, etc. of the obtained position line distribution pattern, so that the degree of reliability of the positioning result can be intuitively determined. In addition, since the position line measuring device is constituted by a plurality of position line measuring devices having different geodetic systems, it is possible to prevent the distribution pattern of the displayed position lines from being biased in particular. Furthermore, from among the displayed position lines, remove the position lines that are far away from the estimated position, extract only the position lines that are close to the estimated position, select them using the input keys, etc., and again select at least 2 lines from those position lines. If the results are obtained by multiplication, even if the distribution patterns of all position lines have a large divergence, there is an advantage that positioning results with as small an error as possible can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の実施例である表示装置のブ
ロツク図であり、第2図は同装置の動作内容を示
すフローチヤートである。また、第3図イ,ロは
同装置の表示例をそれぞれ示している。
FIG. 1 is a block diagram of a display device that is an embodiment of this invention, and FIG. 2 is a flowchart showing the operation of the device. Further, FIGS. 3A and 3B show display examples of the same device, respectively.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 測地系の異なる複数の位置線測定装置と、これ
らの各位置線測定装置で得られる複数の位置線を
同一画面上に同時にグラフイツク表示する表示手
段と、を備えてなることを特徴とする測位結果表
示装置。
A positioning result characterized by comprising: a plurality of position line measuring devices with different geodetic systems; and a display means for simultaneously graphically displaying a plurality of position lines obtained by each of these position line measuring devices on the same screen. Display device.
JP1981093490U 1981-06-22 1981-06-22 Expired JPS6318943Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981093490U JPS6318943Y2 (en) 1981-06-22 1981-06-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981093490U JPS6318943Y2 (en) 1981-06-22 1981-06-22

Publications (2)

Publication Number Publication Date
JPS57203317U JPS57203317U (en) 1982-12-24
JPS6318943Y2 true JPS6318943Y2 (en) 1988-05-27

Family

ID=29888455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981093490U Expired JPS6318943Y2 (en) 1981-06-22 1981-06-22

Country Status (1)

Country Link
JP (1) JPS6318943Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069492B2 (en) * 2007-04-13 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ Positioning system, IC chip for positioning, positioning method and positioning program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146006A (en) * 1979-04-27 1980-11-14 Furuno Electric Co Ltd Wake recording unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146006A (en) * 1979-04-27 1980-11-14 Furuno Electric Co Ltd Wake recording unit

Also Published As

Publication number Publication date
JPS57203317U (en) 1982-12-24

Similar Documents

Publication Publication Date Title
JP3273439B2 (en) Relative and absolute combined positioning method and apparatus
US5374936A (en) Security system
Milliken et al. Principle of operation of NAVSTAR and system characteristics
EP0776483B1 (en) Fail-safe/fail-operational differential gps ground station system
US6618670B1 (en) Resolving time ambiguity in GPS using over-determined navigation solution
US5610616A (en) Differential GPS ground station system
JP2008032730A (en) Method and apparatus for determining error estimate in hybrid position determination system
US7277048B2 (en) Asset tracking method
JPH11513112A (en) Differential satellite positioning system ground station with consistency monitoring
US6347549B1 (en) Enhancement of storm location from a single moving platform
KR20150084857A (en) Method for estimating the level of error in satellite geolocation measurements and for monitoring the reliability of said estimations and associated device
US6169957B1 (en) Satellite signal receiver with speed computing integrity control
US6324474B1 (en) Method for establishing coverage area and accuracy of a wide-area differential global positioning system
KR101451203B1 (en) Method and device for the computer-supported creation and/or updating of a reference map for satellite-supported positioning of an object
US9035762B2 (en) Method and system for locating signal emitters using cross-correlation of received signal strengths
CN105866811A (en) Double-star positioning method based on ground cooperation signal
JPS6318943Y2 (en)
JPH0650766A (en) Gps navigation apparatus for vehicle
JPH08297158A (en) Position measuring device and abnormality detecting method for position measuring satellite
EP0661553A2 (en) Method for determining positions on the earth corresponding to an observed rate of change of satellite range
US6208289B1 (en) System and method for monitoring and reporting GPS pseudo range correction data
JPH065169B2 (en) Relative position navigation system
US6172638B1 (en) Satellite signal receiver with detector of incoherence between code phase and carrier frequency measurements
US20060142938A1 (en) Inertia position system
JPS6318942Y2 (en)