JPS6318930B2 - - Google Patents

Info

Publication number
JPS6318930B2
JPS6318930B2 JP7543281A JP7543281A JPS6318930B2 JP S6318930 B2 JPS6318930 B2 JP S6318930B2 JP 7543281 A JP7543281 A JP 7543281A JP 7543281 A JP7543281 A JP 7543281A JP S6318930 B2 JPS6318930 B2 JP S6318930B2
Authority
JP
Japan
Prior art keywords
opa
reaction
distillation column
reactive distillation
dimethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7543281A
Other languages
Japanese (ja)
Other versions
JPS57192334A (en
Inventor
Shoji Kizaki
Akyuki Ninomya
Yasushi Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP7543281A priority Critical patent/JPS57192334A/en
Publication of JPS57192334A publication Critical patent/JPS57192334A/en
Publication of JPS6318930B2 publication Critical patent/JPS6318930B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は2,2−ジメチル−3−ヒドロキシプ
ロパナール(以下OPAと称する)を自己縮合さ
せ、熱安定性にすぐれた2,2−ジメチル−1,
3−プロパンジオール・ヒドロキシピバリン酸モ
ノエステル(以下EDOと称する)を短時間の間
に高収率で製造する方法に関する。 EDOはネオ構造を有する一種のエステルグリ
コールであり、主としてポリエステル、ポリウレ
タン、可塑性、潤滑油などに用いられることか
ら、すぐれた熱安定性、透明度および耐加水分解
性などが要求される。 従来OPAを自己縮合させてEDOを製造する方
法としてOPAを触媒の非存在下加熱する方法が
知られている(米国特許第3057911号)。しかし
OPAを単に加熱しただけでは反応速度が遅く工
業的に実用化し得ず、この為種々の触媒の存在下
反応させる方法が数多く提案されている(特公昭
46−41888、特開昭49−51218その他)。しかし触
媒存在下に反応させてもその反応速度は必らずし
も十分でなく、しかも得られる反応生成物は熱分
解反応により着色したり目的とするEDOの収率
を著しく損なつたりする。特に触媒としてアミン
化合物を使用するときはハーゼン色数400という
着色したEDOが得られることがあり、このよう
な原料を基に得られた不飽和ポリエステル樹脂は
微黄色に着色し商品価値は著しく低下したものと
なる。更にこの様に着色したEDOを製造し脱色
する方法も検討されているが、いずれも操作が複
雑であるにも拘らずその効果は十分でなく、すぐ
れた品質のEDOを短時間で高収率に製造する方
法が望まれていた。本発明はかゝる欠点を解消す
るもので、OPAを触媒の非存在下、絶対圧8〜
43mmHg、温度200℃以下において自己縮合させ、
生成せるEDOを反応蒸留法により連続的又は間
欠的に反応系より抜き出しつゝ反応を行なう方法
である。 本発明における触媒の非存在下とは反応に際し
触媒を添加しないのみでなく、原料として使用す
るOPAの製造工程において使用するアミン、炭
酸カリウムその他の塩基性物質を原料中からあら
かじめ除去しておく事を包含する。原料OPAの
精製法としては公知は蒸留、溶剤抽出、再結晶法
等の手段が適用出来る。 自己縮合反応の温度は200℃以下とする。200℃
以上では生成したEDOの熱分解により副反応生
成物の生成量が増加しEDOが着色したり、収率
が減少したりする。 本発明においては、反応蒸留法で生成する
EDOを連続的又は間欠的に反応系外へ抜き出し
つゝ反応を行なう事により高濃度のEDOの非存
在下にOPAを自己縮合させることが出来、絶え
ず初速度の速さで反応を行なう事となつて、その
結果短時間で反応は終了する。又長時間EDOを
加熱下にさらす事がないため副反応物の生成がな
く、高収率でEDOを得る事が出来る。 ここで反応蒸留法とはOPAよりも低沸点の物
質(溶媒、水その他不純物)を蒸留により留出除
去しながらOPAを蒸留塔内部で選択的に自己縮
合させると、生成したEDOはOPAとの沸点差か
ら塔底部に滞留してくるので、これを連続的又は
間欠的に抜き出すという方法である。 この反応蒸留法は連続式、半連続式、回分式の
いずれの方法でも行なう事が出来、操作圧は
OPAの濃度が最も高い部分(連続式蒸留塔にお
いては塔底部)の温度が160〜200℃の範囲に維持
される範囲で減圧下に保つ必要があり、これは8
〜43mmHg(絶対圧)に相当する。 反応蒸留装置の内部構造は或る程度の精留効果
を有するものであればいずれでも良く、たとえば
充填塔型式、バツフルトレー型式、バブルキヤツ
プ型式、シーブトレー型式等一般的蒸留塔構造が
そのまゝ使用出来る。又加熱方式は原料の予熱及
び塔底部のリボイラーで行なう事が出来る。 本発明によれば簡単な手段で高収率且つ高い反
応速度で純度の高いEDOを得る事が出来、しか
も得られたEDOは触媒の除去工程も不要であり、
そのまゝ又は簡単な過のみで製品とする事が出
来る。 次に実施例を示して本発明をされに具体的に説
明する。 実施例及び比較例において「%」および「部」
に特にことわらない限り「重量%」および「重量
部」を各々意味するものである。 実施例 1 イソブチルアルデヒドとホルムアルデヒドから
トリエチルアミンを触媒として製造し水から再結
晶しトリエチルアミンを除いて得たOPA96.3%、
2,2−ジメチル−1,3−プロパンジオール
0.1%、および水3.5%の組成を持つ未乾燥のOPA
を95℃に加熱溶融し、1410部/時の供給速度で反
応蒸留塔の塔中央部に供給した。 反応蒸留塔では塔頂圧力18〜20mmHg、塔頂部
温度、塔中央部温度および塔底部温度は各々55〜
60℃、165〜168℃および175〜180℃で操作され
た。 反応蒸留塔の塔頂から59部/時の留出速度で水
を主成分とする留分を連続的に抜き出し、反応蒸
留塔の底部からは1351部/時の自己縮合反応生成
液を連続的に抜き出した。このとき反応蒸留塔内
の平均滞留時間は0.84時間であつた。又この反応
生成液の組成は次の通りであつた。 OPA 0.05%以下 2,2−ジメチル−1,3−プロパンジオール
0.28% 2,2−ジメチル−1,3−プロパンジオール
イソ酪酸モノ・エステル 0.11% EDO 98.9% 水 0.01% その他不明分 0.65% またこの反応液色はハーゼン色数10以下であつ
た。 実施例 2 イソブチルアルデヒドとホルムアルデヒドから
トリエチルアミンを触媒として製造し、トルエン
で抽出しトリエチルアミンを除いて得た
OPA50.4%、2,2−ジメチル−1,3−プロ
パンジオール0.8%、水4.3%およびトルエン44.2
%の組成のOPA抽出液を60℃に加熱し、2460
部/時の供給速度で反応蒸留塔の塔中央部に連続
的に供給した。 反応蒸留塔では塔頂圧力18〜20mmHg、塔頂部
温度、塔中央部温度および塔底部温度は各々55〜
60℃、165〜168℃および175〜183℃で操作され
た。 反応蒸留塔の塔頂から1288部/時のトルエンを
主成分とする留分が抜き出され、反応蒸留塔底部
からは1172部/時の自己縮合反応生成液を連続的
に抜き出した。このときの反応蒸留塔内の平均滞
留時間は0.97時間であつた。又この反応生成液の
組成は次の通りであつた。 OPA 0.05%以下 2,2−ジメチル−1,3−プロパンジオール
0.46% 2,2−ジメチル−1,3−プロパンジオール
イソ酪酸モノ・エステル 0.10% EDO 98.9% その他不明分 0.49% また、この反応液色はハーゼン色数10であつ
た。 実施例 3 イソブチルアルデヒドとホルムアルデヒドから
トリエチルアミンを触媒として製造し、減圧蒸留
で精製しトリエチルアミンを除いて得た
OPA96.8%、2,2−ジメチル−1,3−プロ
パンジオール1.4%、EDO1.8%の組成をもつOPA
を1500部/時の供給速度で反応蒸留塔の塔中央部
に連続的に供給した。 反応蒸留塔は塔頂部圧力25〜26mmHg、塔頂部
温度、塔中央部温度および塔底部温度は各々70〜
73℃、176〜183℃および188〜190℃ぜ操作され
た。 反応蒸留塔の底部からは1498部/時の自己縮合
反応生成液を連続的に抜き出した。このときの反
応蒸留塔内の平均滞留時間は0.76時間であつた。
この反応生成液組成は次の通りであつた。 OPA 0.1% 2,2−ジメチル−1,3−プロパンジオール
2.1% 2,2−ジメチル−1,3−プロパンジオール
イソ酪酸モノ・エステル 0.2% EDO 97.1% その他不明分 0.5% また、この反応液色はハーゼン色数10であつ
た。 実施例 4 イソブチルアルデヒドとホルムアルデヒドから
水酸化ナトリウムを触媒として製造し水から再結
晶し、触媒を除いて得たOPA95.1%、2,2−
ジメチル−1,3−プロパンジオール2.4%、水
2.5%の組成をもつ未乾燥のOPAを出発原料とし
た他は実施例1同様の操作で自己縮合反応を行な
つた。 反応蒸留塔の底部から抜き出した反応生成液
量、反応蒸留塔内の平均滞留時間、反応生成液組
成および反応液色を第1表に示した。 実施例 5 イソブチルアルデヒドとホルムアルデヒドから
炭酸カリウムを触媒として製造し、水から再結晶
し触媒を除いて得たOPA94.8%、2,2−ジメ
チル−1,3−プロパンジオール1.9%、水3.3%
の組成を持つ未乾燥のOPAを出発原料とする他
は実施例1と同様の操作で自己縮合反応を行なつ
た。 反応蒸留塔の底部から抜き出した反応生成液
量、反応蒸留塔内の平均滞留時間、反応生成液組
成および反応液色を第1表に示した。
The present invention involves self-condensation of 2,2-dimethyl-3-hydroxypropanal (hereinafter referred to as OPA) to produce 2,2-dimethyl-1, which has excellent thermal stability.
The present invention relates to a method for producing 3-propanediol hydroxypivalic acid monoester (hereinafter referred to as EDO) in a high yield in a short period of time. EDO is a type of ester glycol with a neo-structure, and is mainly used in polyester, polyurethane, plasticity, lubricating oil, etc., so it is required to have excellent thermal stability, transparency, and hydrolysis resistance. Conventionally, a method of heating OPA in the absence of a catalyst is known as a method for producing EDO by self-condensing OPA (US Pat. No. 3,057,911). but
Simply heating OPA results in a slow reaction rate and cannot be put to practical use industrially.For this reason, many methods have been proposed in which the reaction is carried out in the presence of various catalysts (Tokuko Sho).
46-41888, JP-A-49-51218 and others). However, even if the reaction is carried out in the presence of a catalyst, the reaction rate is not necessarily sufficient, and the resulting reaction product may be colored due to thermal decomposition or the yield of the desired EDO may be significantly impaired. In particular, when an amine compound is used as a catalyst, colored EDO with a Hazen color number of 400 may be obtained, and unsaturated polyester resins obtained from such raw materials are colored slightly yellow and their commercial value is significantly reduced. It becomes what it is. Furthermore, methods of producing and decolorizing EDO colored in this way are being considered, but these methods are complicated to operate and are not sufficiently effective, making it difficult to produce EDO of excellent quality in a short time and at a high yield. A manufacturing method was desired. The present invention solves such drawbacks, and OPA is heated at an absolute pressure of 8 to 8 in the absence of a catalyst.
Self-condensing at 43mmHg and temperature below 200℃,
This is a method in which the reaction is carried out while the produced EDO is continuously or intermittently extracted from the reaction system by a reactive distillation method. In the present invention, the absence of a catalyst means not only that no catalyst is added during the reaction, but also that amines, potassium carbonate, and other basic substances used in the manufacturing process of OPA used as a raw material are removed from the raw material in advance. includes. As a method for purifying the raw material OPA, publicly known methods such as distillation, solvent extraction, and recrystallization methods can be applied. The temperature of the self-condensation reaction is 200°C or less. 200℃
In this case, the amount of side reaction products generated increases due to thermal decomposition of the generated EDO, resulting in coloring of the EDO and a decrease in yield. In the present invention, it is produced by a reactive distillation method.
By performing the reaction while continuously or intermittently extracting EDO from the reaction system, OPA can be self-condensed in the absence of a high concentration of EDO, and the reaction can be continuously performed at a high initial velocity. As a result, the reaction ends in a short time. Furthermore, since EDO is not exposed to heating for a long period of time, no side reaction products are generated, and EDO can be obtained in high yield. The reactive distillation method is when OPA is selectively self-condensed inside the distillation column while substances with a lower boiling point than OPA (solvent, water, and other impurities) are removed by distillation. Since it accumulates at the bottom of the column due to the difference in boiling point, this is extracted continuously or intermittently. This reactive distillation method can be carried out in a continuous, semi-continuous or batch manner, and the operating pressure is
It is necessary to maintain the temperature of the part with the highest concentration of OPA (the bottom of the column in a continuous distillation column) in the range of 160 to 200℃, which is 8℃.
Equivalent to ~43mmHg (absolute pressure). The internal structure of the reactive distillation apparatus may be any structure as long as it has a certain degree of rectification effect; for example, general distillation column structures such as packed column type, buttful tray type, bubble cap type, sieve tray type, etc. can be used as is. . Moreover, the heating method can be performed by preheating the raw material and reboiler at the bottom of the column. According to the present invention, it is possible to obtain highly pure EDO with a high yield and high reaction rate by a simple means, and the obtained EDO does not require a catalyst removal step.
It can be made into a product as is or with a simple process. Next, the present invention will be explained in more detail with reference to Examples. "%" and "part" in Examples and Comparative Examples
Unless otherwise specified, "% by weight" and "parts by weight" are respectively meant. Example 1 OPA 96.3% produced from isobutyraldehyde and formaldehyde using triethylamine as a catalyst, recrystallized from water, and obtained by removing triethylamine.
2,2-dimethyl-1,3-propanediol
Undried OPA with a composition of 0.1% and 3.5% water
was heated and melted at 95°C and fed to the center of the reactive distillation column at a feed rate of 1410 parts/hour. In the reactive distillation column, the column top pressure is 18 to 20 mmHg, and the column top temperature, column center temperature, and column bottom temperature are each 55 to 20 mmHg.
Operated at 60°C, 165-168°C and 175-180°C. A water-based fraction is continuously extracted from the top of the reactive distillation column at a distillation rate of 59 parts/hour, and a self-condensation reaction product liquid is continuously extracted from the bottom of the reactive distillation column at a distillation rate of 59 parts/hour. I pulled it out. At this time, the average residence time in the reactive distillation column was 0.84 hours. The composition of this reaction product liquid was as follows. OPA 0.05% or less 2,2-dimethyl-1,3-propanediol
0.28% 2,2-dimethyl-1,3-propanediol isobutyric acid monoester 0.11% EDO 98.9% Water 0.01% Other unknown components 0.65% The color of this reaction liquid was less than 10 in Hazen color number. Example 2 Produced from isobutyraldehyde and formaldehyde using triethylamine as a catalyst, extracted with toluene to remove triethylamine.
OPA50.4%, 2,2-dimethyl-1,3-propanediol 0.8%, water 4.3% and toluene 44.2
OPA extract with a composition of % was heated to 60 °C and 2460
It was continuously fed to the center of the reactive distillation column at a feeding rate of 1 part/hour. In the reactive distillation column, the column top pressure is 18 to 20 mmHg, and the column top temperature, column center temperature, and column bottom temperature are each 55 to 20 mmHg.
Operated at 60°C, 165-168°C and 175-183°C. A fraction containing toluene as a main component at 1288 parts/hour was extracted from the top of the reactive distillation column, and 1172 parts/hour of a self-condensation reaction product liquid was continuously extracted from the bottom of the reactive distillation column. The average residence time in the reactive distillation column at this time was 0.97 hours. The composition of this reaction product liquid was as follows. OPA 0.05% or less 2,2-dimethyl-1,3-propanediol
0.46% 2,2-dimethyl-1,3-propanediol isobutyric acid monoester 0.10% EDO 98.9% Other unknown 0.49% The color of this reaction liquid was Hazen color number 10. Example 3 Produced from isobutyraldehyde and formaldehyde using triethylamine as a catalyst and purified by vacuum distillation to remove triethylamine.
OPA with a composition of 96.8% OPA, 1.4% 2,2-dimethyl-1,3-propanediol, and 1.8% EDO
was continuously fed into the center of the reactive distillation column at a feed rate of 1500 parts/hour. The reaction distillation column has a pressure at the top of the column of 25 to 26 mmHg, a temperature at the top, a temperature at the center of the column, and a temperature at the bottom of the column, each of 70 to 26 mmHg.
It was operated at 73°C, 176-183°C and 188-190°C. A self-condensation reaction product liquid of 1498 parts/hour was continuously withdrawn from the bottom of the reactive distillation column. The average residence time in the reactive distillation column at this time was 0.76 hours.
The composition of the reaction product liquid was as follows. OPA 0.1% 2,2-dimethyl-1,3-propanediol
2.1% 2,2-dimethyl-1,3-propanediol isobutyric acid monoester 0.2% EDO 97.1% Other unknown 0.5% The color of this reaction liquid was Hazen color number 10. Example 4 OPA 95.1%, 2,2- produced from isobutyraldehyde and formaldehyde using sodium hydroxide as a catalyst, recrystallized from water, and obtained by removing the catalyst.
Dimethyl-1,3-propanediol 2.4%, water
A self-condensation reaction was carried out in the same manner as in Example 1, except that undried OPA having a composition of 2.5% was used as the starting material. Table 1 shows the amount of the reaction product extracted from the bottom of the reactive distillation column, the average residence time in the reactive distillation column, the composition of the reaction product, and the color of the reaction product. Example 5 94.8% OPA, 1.9% 2,2-dimethyl-1,3-propanediol, 3.3% water obtained by manufacturing from isobutyraldehyde and formaldehyde using potassium carbonate as a catalyst, recrystallizing from water and removing the catalyst.
A self-condensation reaction was carried out in the same manner as in Example 1, except that undried OPA having the composition was used as the starting material. Table 1 shows the amount of the reaction product extracted from the bottom of the reactive distillation column, the average residence time in the reactive distillation column, the composition of the reaction product, and the color of the reaction product.

【表】【table】

【表】 実施例 6 実施例1と同様にして得た未乾燥のOPAを95
℃に加熱溶融し、925部/時の供給速度で反応蒸
留塔の塔中央部に供給した。 反応蒸留搭で塔頂圧力8〜10mmHgの減圧とし、
塔頂部温度、塔中央部温度および塔底部温度は
各々50〜53℃、154〜160℃および165〜167℃で操
作された。 反応蒸留塔の塔頂から46部/時の留出速度で水
を主成分とする留分を抜き出し、反応蒸留塔の底
部からは879部/時の自己縮合反応生成液を連続
的に抜き出した。このときの反応蒸留塔内の平均
滞留時間は1.30時間であつた。また、この反応生
成液の組成は次の通りであつた。 OPA 0.07% 2,2−ジメチル−1,3−プロパンジオール
0.31% 2,2−ジメチル−1,3−プロパンジオール
イソ酪酸モノ・エステル 0.20% EDO 98.87% 水 0.05% その他不明分 0.50% また、この反応液色はハーゼン色数10以下であ
つた。 比較例 1 実施例1と同様の方法で得られた未乾燥の
OPAを95℃に加熱溶融し、925部/時の供給速度
で反応蒸留塔の塔中央部に供給した。 反応蒸留塔では塔頂圧力2〜3mmHgの減圧と
し、塔頂部温度、塔中央部温度および塔底部温度
は各々25〜30℃、131〜136℃および140〜145℃で
操作された。 反応蒸留塔の塔頂部から31部/時の留出速度で
水を主成分とする留分を抜き出し、反応蒸留塔の
底部からは894部/時の自己縮合反応生成液を連
続的に抜き出した。このときの反応蒸留塔内の平
均滞留時間は1.27時間であつた。しかし、反応生
成液の組成は次に示すように未反応OPAがかな
り残存していた。 OPA 7.40% 2,2−ジメチル−1,3−プロパンジオール
0.15% 2,2−ジメチル−1,3−プロパンジオール
イソ酪酸モノ・エステル 0.10% EDO 91.80% 水 0.20% その他不明分 0.35% 反応液色はハーゼン色数10以下であつた。 比較例 2 実施例1と同様の方法で得られた未乾燥の
OPAを95℃に加熱溶融し、925部/時の供給速度
で反応蒸留塔の塔中央部に供給した。 反応蒸留塔で塔頂95〜100mmHgの減圧とし、塔
頂部温度、塔中央部温度および塔底部温度は各々
85〜90℃、210〜225℃、および230〜240℃で操作
された。 反応蒸留塔の底部から865.2部/時の自己縮合
反応生成液を連続的に抜き出し、反応蒸留塔の塔
頂部から59.8部/時の速度で留出水を抜き出した
が、留出水の他にOPAを初めとする低沸点の有
機物が留出した。 反応蒸留塔内の平均滞留時間は1.30時間であつ
た。反応生成液の組成は次に示すように副反応生
成物が多かつた。 塔底部抜き出し反応生成液組成 OPA 0.02% 2,2−ジメチル−1,3−プロパンジオール
1.15% 2,2−ジメチル−1,3−プロパンジオール
イソ酪酸モノ・エステル 0.93% EDO 87.20% 水 0.01% その他不明分 10.67% 反応液色はハーゼン色数10であつた。 又反応蒸留塔の塔頂部の留出物の組成は次の如
くであつた。 OPA 12.04% 2,2−ジメチル−1,3−プロパンジオール
2.17% 2,2−ジメチル−1,3−プロパンジオール
イソ酪酸モノ・エステル 0.84% 水 54.01% その他不明分 30.94% 比較例 3 トリエチルアミンを触媒として製造し、次に減
圧下の蒸留で水、イソブチルアルデヒド、メチル
アルコール等の低沸点成分および大半のトリエチ
ルアミンを留去して得たOPA98.4%、2,2−
ジメチル−1,3−プロパンジオール0.2%、
EDO1.07%、トリエチルアミン0.1%、不明分0.33
%の組成を持つ粗製のOPAを出発原料とした他
は温度、抜出量等実施例1と同様の操作で行なつ
た。 反応蒸留塔内の平均滞留時間は1.30時間であつ
た。また、この反応生成液の組成は次の通りであ
つた。 OPA 0.10% 2,2−ジメチル−1,3−プロパンジオール
2.11% 2,2−ジメチル−1,3−プロパンジオール
イソ酪酸モノ・エステル 1.43% EDO 94.95% 水 0.05% その他不明分 1.36% この反応液色はハーゼン色数400と著しく悪い
ものであつた。 そこでこの反応液を蒸留段数15段の充填式蒸留
塔で再蒸留したが、色相はハーゼン色数80までの
改善しかできなかつた。 比較例 4 実施例3と同様に精製した得たOPAに対して
テトライソプロピルチタネートを0.2重量%添加
したものを出発原料に1500部/時の供給速度で反
応蒸留塔の塔中央部に供給した。 反応開始および1時間あたりまでは反応蒸留塔
の塔頂圧力25〜26mmHg、塔頂温度、塔中央部温
度および塔底部温度は各々70〜73℃、176〜183℃
および188〜190℃と実施例3同様の状態を保つこ
とができたが、それ以降は徐々にその状態はくず
れ、反応開始より2時間後に反応蒸留塔の底部か
ら抜き出される反応生成液の組成を分析してみる
と次のようであつた。 OPA 1.54% 2,2−ジメチル−1,3−プロパンジオール
24.82% 2,2−ジメチル−1,3−プロパンジオール
イソ酪酸モノ・エステル 4.20% EDO 32.40% 水 0.01% その他不明分 37.03% このように副反応生成物が多く継続して反応を
進めることができなかつた。
[Table] Example 6 Undried OPA obtained in the same manner as Example 1 was
The mixture was melted by heating to 0.degree. C. and fed to the center of the reactive distillation column at a feed rate of 925 parts/hour. The pressure at the top of the column is reduced to 8 to 10 mmHg in the reactive distillation column,
The column top temperature, column center temperature and column bottom temperature were operated at 50-53°C, 154-160°C and 165-167°C, respectively. A fraction containing water as a main component was extracted from the top of the reactive distillation column at a distillation rate of 46 parts/hour, and a self-condensation reaction product liquid was continuously extracted from the bottom of the reactive distillation column at 879 parts/hour. . The average residence time in the reactive distillation column at this time was 1.30 hours. Moreover, the composition of this reaction product liquid was as follows. OPA 0.07% 2,2-dimethyl-1,3-propanediol
0.31% 2,2-dimethyl-1,3-propanediol isobutyric acid monoester 0.20% EDO 98.87% Water 0.05% Other unknown components 0.50% The color of this reaction liquid was less than 10 in Hazen color number. Comparative Example 1 Undried product obtained in the same manner as Example 1
OPA was melted by heating to 95° C. and fed to the center of the reactive distillation column at a feed rate of 925 parts/hour. The reaction distillation column was operated at a reduced pressure of 2 to 3 mmHg at the top, and at temperatures at the top, center, and bottom of the column of 25 to 30°C, 131 to 136°C, and 140 to 145°C, respectively. A water-based fraction was extracted from the top of the reactive distillation column at a distillation rate of 31 parts/hour, and a self-condensation reaction product liquid of 894 parts/hour was continuously extracted from the bottom of the reactive distillation column. . The average residence time in the reactive distillation column at this time was 1.27 hours. However, the composition of the reaction product liquid contained a considerable amount of unreacted OPA, as shown below. OPA 7.40% 2,2-dimethyl-1,3-propanediol
0.15% 2,2-dimethyl-1,3-propanediol isobutyric acid monoester 0.10% EDO 91.80% Water 0.20% Other unknown components 0.35% The color of the reaction liquid was Hazen color number 10 or less. Comparative Example 2 Undried product obtained in the same manner as Example 1
OPA was melted by heating to 95° C. and fed to the center of the reactive distillation column at a feed rate of 925 parts/hour. The pressure at the top of the reaction distillation column is reduced to 95 to 100 mmHg, and the temperature at the top, center, and bottom of the column are each
It was operated at 85-90°C, 210-225°C, and 230-240°C. Self-condensation reaction product liquid was continuously extracted from the bottom of the reactive distillation column at a rate of 865.2 parts/hour, and distilled water was extracted from the top of the reactive distillation column at a rate of 59.8 parts/hour. Low boiling point organic substances including OPA were distilled out. The average residence time in the reactive distillation column was 1.30 hours. The composition of the reaction product liquid contained many side reaction products as shown below. Composition of the reaction product extracted from the bottom of the column OPA 0.02% 2,2-dimethyl-1,3-propanediol
1.15% 2,2-dimethyl-1,3-propanediol isobutyric acid monoester 0.93% EDO 87.20% Water 0.01% Other unknown 10.67% The color of the reaction liquid was Hazen color number 10. The composition of the distillate at the top of the reactive distillation column was as follows. OPA 12.04% 2,2-dimethyl-1,3-propanediol
2.17% 2,2-dimethyl-1,3-propanediol isobutyric acid monoester 0.84% Water 54.01% Other unknown 30.94% Comparative example 3 Produced using triethylamine as a catalyst, then distilled under reduced pressure to remove water and isobutyraldehyde. , OPA 98.4%, 2,2- obtained by distilling off low-boiling components such as methyl alcohol and most of triethylamine.
Dimethyl-1,3-propanediol 0.2%,
EDO 1.07%, triethylamine 0.1%, unknown 0.33
The procedure was the same as in Example 1, such as temperature and amount of extraction, except that crude OPA having a composition of % was used as the starting material. The average residence time in the reactive distillation column was 1.30 hours. Moreover, the composition of this reaction product liquid was as follows. OPA 0.10% 2,2-dimethyl-1,3-propanediol
2.11% 2,2-dimethyl-1,3-propanediol isobutyric acid monoester 1.43% EDO 94.95% Water 0.05% Other unknown components 1.36% The color of the reaction liquid was extremely poor with a Hazen color number of 400. Therefore, this reaction solution was redistilled in a packed distillation column with 15 distillation plates, but the hue could only be improved to a Hazen color number of 80. Comparative Example 4 OPA purified in the same manner as in Example 3 to which 0.2% by weight of tetraisopropyl titanate was added was fed to the center of the reactive distillation column at a feed rate of 1500 parts/hour as a starting material. From the start of the reaction until about 1 hour, the pressure at the top of the reaction distillation column was 25-26 mmHg, the temperature at the top, the temperature at the center of the column, and the temperature at the bottom were 70-73℃ and 176-183℃, respectively.
and 188 to 190°C, which was the same condition as in Example 3, but after that, the condition gradually deteriorated, and the composition of the reaction product liquid extracted from the bottom of the reactive distillation column 2 hours after the start of the reaction. When I analyzed it, I found the following. OPA 1.54% 2,2-dimethyl-1,3-propanediol
24.82% 2,2-dimethyl-1,3-propanediol isobutyric acid mono-ester 4.20% EDO 32.40% Water 0.01% Other unknown 37.03% As shown, there are many side reaction products and the reaction cannot proceed continuously. Nakatsuta.

Claims (1)

【特許請求の範囲】[Claims] 1 2,2ジメチル−3−ヒドロキシプロパナー
ルを触媒の非存在下、絶対圧8〜43mmHg、温度
200℃以下において自己縮合させ、生成せる2,
2−ジメチル−1,3−プロパンジオール・ヒド
ロキシピバリン酸モノエステルを反応蒸留法によ
り連続的又は間歇的に反応系より抜き出しつつ反
応を行うことを特徴とする2,2−ジメチル−
1,3−プロパンジオール・ヒドロキシピバリン
酸モノエステルの製造方法。
1 2,2 dimethyl-3-hydroxypropanal in the absence of a catalyst at an absolute pressure of 8 to 43 mmHg and a temperature of
2, which can be produced by self-condensation at temperatures below 200℃.
2,2-dimethyl-, which is characterized in that the reaction is carried out while 2-dimethyl-1,3-propanediol/hydroxypivalic acid monoester is continuously or intermittently extracted from the reaction system by a reactive distillation method.
A method for producing 1,3-propanediol/hydroxypivalic acid monoester.
JP7543281A 1981-05-19 1981-05-19 Preparation of 2,2-dimethyl-1,3-propanediol hydroxypivalic monoester Granted JPS57192334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7543281A JPS57192334A (en) 1981-05-19 1981-05-19 Preparation of 2,2-dimethyl-1,3-propanediol hydroxypivalic monoester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7543281A JPS57192334A (en) 1981-05-19 1981-05-19 Preparation of 2,2-dimethyl-1,3-propanediol hydroxypivalic monoester

Publications (2)

Publication Number Publication Date
JPS57192334A JPS57192334A (en) 1982-11-26
JPS6318930B2 true JPS6318930B2 (en) 1988-04-20

Family

ID=13576049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7543281A Granted JPS57192334A (en) 1981-05-19 1981-05-19 Preparation of 2,2-dimethyl-1,3-propanediol hydroxypivalic monoester

Country Status (1)

Country Link
JP (1) JPS57192334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102137U (en) * 1989-01-28 1990-08-14

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671227B2 (en) * 1989-07-19 1997-10-29 キヤノン株式会社 Paper feeder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102137U (en) * 1989-01-28 1990-08-14

Also Published As

Publication number Publication date
JPS57192334A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
US2260261A (en) Cyclic ketals and process for
US7553994B2 (en) Method for producing ditrimethylolpropane
CN107207453B (en) Process for purifying a crude composition of dialkyl 2, 5-furandicarboxylate
US2642453A (en) Preparation of borates of tertiary alcohols
US4172961A (en) Production of 1,4-butanediol
US5292917A (en) Process for purifying dimethyl carbonate
US3878057A (en) Plural stage distillation of a crude 3-methylmercaptopropionaldehyde feed in solution with a volatile weak acid and a less volatile strong acid
JP3556684B2 (en) Method for producing aromatic carbonate
US3438868A (en) Process for purifying beta-methylmercaptopropionaldehyde by reduced pressure distillation in the presence of water or a c1 to c3 alcohol
US4092481A (en) Process for the recovery of dimethyl terephthalate and of intermediates from the dimethyl terephthalate manufacture
US2736753A (en) Recovery of phenols
GB2063264A (en) Treatment of waste stream from adipic acid manufacture
US4049723A (en) Method for separation and recovering hydroquinone
JPS6318930B2 (en)
JPH0611732B2 (en) Purification method of methyl methacrylate
US4059632A (en) Process for the production of isophorone
EP0501374B1 (en) Process for purifying dimethyl carbonate
JP2002544141A (en) Azelaic acid concentration process
US4316775A (en) Treatment of waste stream from adipic acid production
JPH11302224A (en) Purification of methyl methacrylate
EP0455906B1 (en) Recovery of acrylic acid and/or ethyl acrylate from black acid
JPH01287045A (en) Separation of butanol and butoxyacetaldehyde
EP0013501B1 (en) Method of recovering resorcinol
JPS62226945A (en) Hydrolysis of dialkylcarbonate
JP3570760B2 (en) Method for producing 2-t-butylhydroquinone