JPS6318922A - Distribution lines remote monitor and control system - Google Patents

Distribution lines remote monitor and control system

Info

Publication number
JPS6318922A
JPS6318922A JP61162224A JP16222486A JPS6318922A JP S6318922 A JPS6318922 A JP S6318922A JP 61162224 A JP61162224 A JP 61162224A JP 16222486 A JP16222486 A JP 16222486A JP S6318922 A JPS6318922 A JP S6318922A
Authority
JP
Japan
Prior art keywords
section
switch
zero
voltage
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61162224A
Other languages
Japanese (ja)
Inventor
一夫 西島
宮崎 照信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61162224A priority Critical patent/JPS6318922A/en
Publication of JPS6318922A publication Critical patent/JPS6318922A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は配電線遠方監視制御方式に関し、特に配電線路
の地絡事故検出と地絡事故点の探索に好適な配電線遠方
監視制御方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a distribution line remote monitoring and control system, and more particularly to a distribution line remote monitoring and control system suitable for detecting ground faults on distribution lines and searching for ground fault points. .

〔従来の技術〕[Conventional technology]

従来、配電線に於ける事故発生時には、健全区間と事故
区間を速やかに区分する為に、「故障区間自動検出用区
分開閉器」が用いられ、予め設定された時間間隔で、自
動的に順次投入し、事故区間充電時には、変電所の配電
線引出口に設置した保護継電器により、配電線引出口し
ゃ断器(以下CBという)を直ちに開放することにより
、どの区間に事故があるかを判別し、それ以外の健全区
間への給電を早く復旧させる方法が実用化されているが
、この方法では、自動投入操作を行う区分開閉器(以下
DMという)を多数設ければ、事故区間を短く区分する
(停電区間を短く区分する)ことが出来る。しかし、事
故時に配電線末端までの復旧操作に長時間を要する欠点
があるため、一つの配電線には数個(通常10台以下)
のDMを設けるのみである。従って、事故区間(停電区
間)を短く区分するためには、DMとDMの間に多くの
手動区分開閉器(以下ASという)を設置し。
Conventionally, when an accident occurs on a power distribution line, in order to quickly distinguish between a healthy section and an accident section, a "divider switch for automatic failure section detection" has been used, and the switch is automatically switched on and off at preset time intervals. When charging the faulty section, a protective relay installed at the distribution line exit of the substation immediately opens the distribution line exit breaker (hereinafter referred to as CB) to determine in which section the fault is occurring. , a method has been put into practical use to quickly restore power supply to otherwise healthy sections, but this method requires that a large number of automatic switching switches (hereinafter referred to as DMs) be installed to shorten the fault section. (divide the power outage section into shorter sections). However, in the event of an accident, it takes a long time to restore the power to the end of the distribution line.
DM is only provided. Therefore, in order to divide the accident section (power outage section) into shorter sections, many manual section switches (hereinafter referred to as AS) are installed between DMs.

人為的に開閉操作して、事故区間の検出と停電範囲の最
小化を図っている。
The system is operated manually to open and close in order to detect the accident section and minimize the area of power outage.

以下、従来方式の具体例について述べる。A specific example of the conventional method will be described below.

第4図は、配電線路2回線の場合に於けるDMの動作を
説明するための簡略図で、配電用トランスTRにより降
圧された配電々圧を有する配電用変電所6.6KV B
uSへ、配電線引出口開閉器CB;、CB2を設けた配
電線1,2が接続されている。
FIG. 4 is a simplified diagram for explaining the operation of DM in the case of two distribution lines.
Distribution lines 1 and 2 provided with distribution line outlet switches CB; and CB2 are connected to uS.

D’M17は、再記電線の突合せ点に設置されたDMで
、平常時(両側共課電状態)は、開路状態であるが、い
ずれか片側の電圧が一定時限以上無電圧時には、自動投
入する。即ち、配電線1側の電圧は、電圧変成器PTL
Iで、配電線2側の電圧は、電圧変成器PTbzでそれ
ぞれ導出し、制御袋[Lに於て、その電圧の有無状態を
監視し1片側の配電線路の末端が一定時間(2時間)以
上、停電継続時には、DM17を投入する指令を出し、
停電側の配電線に対し、逆送電する働きをする。
D'M17 is a DM installed at the butting point of the rewriting power line, and is in an open state under normal conditions (both sides are energized), but when there is no voltage on either side for a certain period of time or more, it is automatically turned on. do. That is, the voltage on the distribution line 1 side is
In I, the voltage on the distribution line 2 side is derived from each voltage transformer PTbz, and in the control bag [L, the presence or absence of that voltage is monitored. As mentioned above, if the power outage continues, issue a command to turn on DM17,
It functions to transmit power backwards to the distribution line on the power outage side.

D M 1五、 D M t z 、 D M 18は
、配電線1に直列に接続されたDMで、D M s 1
は、CBsが投入されて区間11が加圧されると、制御
装置F1によって一定時限後自動投入され、区間12を
加圧状態とする。DM工zは、区間12または区間13
のいずれかが加圧されてから、一定時限後に、制御装置
C1によって自動投入されるようになっており、制御装
置f!FlとC1の異なる点は、Flが予め決めた片方
(本例では区間11)からの加圧に対してのみ応動する
のに対し、C1は、いずれか片方からの加圧に対しても
応動する点である。
DM 15, DM tz and DM 18 are DMs connected in series to the distribution line 1, and DM s 1
When the CBs are turned on and the section 11 is pressurized, the controller F1 automatically turns them on after a certain period of time, and puts the section 12 in a pressurized state. DM engineering z is section 12 or section 13
After a certain period of time has elapsed after either of the f! The difference between Fl and C1 is that Fl responds only to pressure from one predetermined side (section 11 in this example), whereas C1 responds to pressure from either side. This is the point.

また、Fl、C1共、DMを投入後一定時間(Y時間)
以内に、線路電圧がなくなると、当該DMによって課電
した区間に事故が発生し、CB Lがトリップしたと判
断し、当該DMを開放させ、以降の投入動作を鎖錠する
ように出来ている。但し、7時間経過後の停電時には、
単に当該DMを引外すのみで、投入動作の鎖錠は行わな
い。
Also, for both Fl and C1, a certain period of time (Y time) after DM is input.
If the line voltage disappears within that time, it is determined that an accident has occurred in the section energized by the DM and the CB L has tripped, the DM is opened, and subsequent closing operations are locked. . However, in the event of a power outage after 7 hours,
The DM is simply pulled out, and the closing operation is not locked.

更にC1は、片側電圧印加状態が一定時限以内(X時限
以内で、自動投入を行う以前)に!!雷電圧なった時は
、以降の投入動作を鎖錠するようにできている。
Furthermore, for C1, the voltage application state on one side is within a certain time period (within X time period and before automatic input)! ! When lightning voltage is reached, subsequent closing operations are locked.

以上は、Flと01についての説明であるが。The above is an explanation of Fl and 01.

F2はFlと、C2,C3,C4はC1と全く同様な動
作をする。
F2 operates in exactly the same manner as Fl, and C2, C3, and C4 operate in exactly the same manner as C1.

上記説明のような、Fl、F2.C1〜C4゜Lの各制
御装置と、区分開業器DMII〜DM1?。
As explained above, Fl, F2. Each of the control devices C1 to C4°L and the section starters DMII to DM1? .

電圧変成器P TFl、 P TFl、 P Tss〜
PT4z。
Voltage transformer PTFl, PTFl, PTSs~
PT4z.

P T Ll 1 P T L= +配電線引出ロ開閉
器CBI、CB2を有する配電a1及び2からなる配電
系統に於いて、配電線1側に事故があり、CB 1がト
リップし、その後、事故要因が消滅した時の再開路が正
常に行われる時のタイムチャートを第5図に示す。
P T Ll 1 P T L= + In a distribution system consisting of distribution lines a1 and 2 that have distribution line pull-out switches CBI and CB2, there was an accident on the distribution line 1 side, CB 1 tripped, and then the accident occurred. FIG. 5 shows a time chart when the route is normally restarted when the cause disappears.

配電線1に事故発生があった為、CB 1がトリップす
る。この時、区間11〜14は無電圧状態となり、DM
II〜D M 13は開放状態となる。この時、DM1
7を制御する制御装置は、区間18側のみ課電状態とな
り、自動投入の為に起動タイマz1が動作する。
Due to an accident occurring on distribution line 1, CB 1 trips. At this time, sections 11 to 14 are in a no-voltage state, and the DM
II to DM13 are in an open state. At this time, DM1
The control device that controls section 7 is in a energized state only on the section 18 side, and the start timer z1 operates for automatic power-on.

事故発生によるCBz  トリップ後、1分程度経過す
るとCB 1は再開路操作を行う。すると1区間11〜
14は、D M s 1〜D M 1 gの片側課電後
からの投入確認時間X時限後の自動投入により、順次課
電され、区間14が課電されたことにより。
Approximately one minute after the CBz trip due to the accident, CB 1 performs the re-route operation. Then 1 section 11~
14 is due to the automatic charging after one-sided charging of D M s 1 to D M 1 g after the charging confirmation time X time period, and the voltage is charged in the section 14 in sequence.

制御装置りは1両端共電性印加状態となり、Zlをリセ
ットし、DM17の開放状態を維持させる(Z’lは通
常数分〜数十分に設定されるものである)。
The control device enters a state in which a common current is applied to both ends, resets Zl, and maintains the open state of the DM 17 (Z'l is normally set for several minutes to several tens of minutes).

さて、第4図に示した運用状態で、区間12に事故が発
生し、事故要因が継続した場合のタイムチャートを第6
図に示す。まず、区間12に発生した事故の為、配電線
1の引出口CB 1が保護継電器によりトリップし、区
間11〜14は無電圧状態となり、DMzt〜D M 
13は開放状態となる。
Now, in the operational state shown in Figure 4, an accident occurs in section 12 and the time chart in case the cause of the accident continues is shown in Figure 6.
As shown in the figure. First, due to the accident that occurred in section 12, outlet CB 1 of distribution line 1 was tripped by the protective relay, and sections 11 to 14 were in a no-voltage state, and DMzt to DM
13 is in an open state.

CB tは、トリップ後、再開路リレーにより。CB t is restarted by relay after tripping.

一定時限後(通常1分後)、再投入される。CBlの投
入により、区間11は課電状態となり、Flの投入用タ
イマXllが起動し、一定時限(通常6〜1o秒の0倍
値)後タイムアツプし、D M s lを再投入させ、
区間12が課電状態となる。この時、Flは健全投入確
認用タイマYllを起動させ、C1は投入用タイマX1
2を起動させる。区間12には、事故要因があるため、
再びCBiはトリップし1区間11.12は無電圧状態
となり、Yll、X12はタイマアップせずリセットさ
れる。このため、Flは、D M s tの、C1はD
M12の以降の自動投入機能を鎖錠する。
After a certain period of time (usually 1 minute), it will be re-injected. By turning on CBl, section 11 becomes energized state, timer Xll for turning on Fl starts, and after a certain period of time (usually 0 times value of 6 to 10 seconds), it times up and turns on D M sl again.
Section 12 enters the charging state. At this time, Fl starts the healthy input confirmation timer Yll, and C1 activates the input timer X1.
Start 2. Section 12 has accident factors, so
CBi trips again and one section 11.12 becomes a no-voltage state, and Yll and X12 are reset without timer up. Therefore, Fl is D M s t and C1 is D
Locks the subsequent automatic input function of M12.

以下、配電系統の動作は、第6図に示すように、CBI
は、再トリップ後、予め設定された時限後(通常1分後
)再々閉路し1区間11を課電状態とするが、Flは自
動投入を鎖錠している為、以降の区間に対するDM+z
を介しての給電は行わない。
Below, the operation of the power distribution system is as shown in Figure 6.
After tripping again, the circuit is closed again after a preset time limit (usually 1 minute later) and 1 section 11 is energized, but since Fl is locked from automatic turn-on, DM+z for subsequent sections
Power will not be supplied via.

一方、配電線1.2の突合せ点に存在するLは区間14
が停電状態より、その計時動作を開始しており、該計時
タイマZ1がタイムアツプすることによりD M 17
を自動投入し、区間14を課電状態とする。その結果、
C2が一定時限(X13)後、D M l aを投入し
1区間13をaW&状態とする。
On the other hand, L existing at the butt point of distribution line 1.2 is section 14
has started its timing operation from the power outage state, and when the timer Z1 times up, DM17
is automatically turned on, and the section 14 is placed in the energized state. the result,
After C2 has elapsed for a certain period of time (X13), D M l a is turned on and 1 section 13 is brought into the aW& state.

C2は、自動投入が鎖錠されているため、一定時限(X
12)後もDM12は開放状態となり、事故区間12は
、CB t と各DMの動作により、自動的に切離され
る。
C2 is locked for a certain period of time (X
12) After that, the DM 12 remains open, and the accident zone 12 is automatically separated by the operation of CB t and each DM.

以上のように事故区間12を切離した後は、区間12の
停電供給支障範囲の最小化と事故点探索の為に設置した
ASを現地にて1人為的に開放して停電範囲を極限化し
ている。
After disconnecting the fault section 12 as described above, the AS installed for minimizing the range of power outage supply disturbance in section 12 and searching for the fault point was artificially opened at the site to minimize the power outage range. There is.

例えば、第7図の様に、9台のASによって10個の細
分化した区間121〜130を設け、常時閉状態のA 
S 1〜A S sのうちの1個(例えばAS4)を手
動で開放とした後、 D M 1 s (D M I 
! )を投入し、DMII (DMtz)とAS4で区
切られた間に事故があるか否かを確認し、健全区間を順
次復旧させていくものである。つまり、DM目を投入し
て事故があれば、AS4を切状態のままとし、DM五z
を投入し1区間125〜区間130を復旧する。その後
、DMltとAS4の間で、同様の開閉操作を行い、復
旧範囲を拡大し、停電区間を極限化するものである。
For example, as shown in Fig. 7, 10 subdivided sections 121 to 130 are provided by 9 ASs, and the always closed A
After manually opening one of S1 to ASs (for example, AS4), DM1s (DMI
! ), it is confirmed whether there is an accident between DMII (DMtz) and AS4, and the healthy sections are gradually restored. In other words, if there is an accident when the DM is turned on, leave AS4 off and turn on the DM5.
is input to restore the first section 125 to section 130. After that, similar opening/closing operations are performed between DMlt and AS4 to expand the restoration range and limit the power outage section.

なお、この種の事故区間切離し方法として、実公昭58
−52839号「区分開閉器用事故探索装置」に示され
たものがある。
In addition, as a method for separating this type of accident section,
There is one shown in No. 52839 "Accident detection device for sectional switchgear".

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の説明から明らかなように、従来の制御方式では、
事故区間(DMとDMで仕切られた区間)の自動例外し
は、配電線引出口CBの再々閉路により可能となり、事
故区間の極限化は、手動開閉器ASの現地に於ける人為
的操作に依存していた。
As is clear from the above explanation, in the conventional control method,
Automatic exception of the accident zone (section divided by DM and DM) is made possible by re-closing the distribution line outlet CB, and the accident zone can be minimized by manual operation of the manual switch AS at the site. I was dependent on it.

このため、健全区間の停電復旧が遅れるという問題があ
った。
As a result, there was a problem in that restoration of power outage in healthy sections was delayed.

本発明の目的は、健全区間の停電を速やかに復旧させる
ことができる配電線遠方監視制御方式を提供することに
ある。
An object of the present invention is to provide a distribution line remote monitoring control system that can quickly restore a power outage in a healthy section.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、配電系統に於ける事故のほとんどが一線地絡
事故である(発生事故の90%以上)ことに着目し、配
m線路中に分散配置した区分開閉器に零相電圧および零
相電流のうちいずれか一方または両方を検出する検出回
路を設け、前記区分開閉器の投入後所定時間以内に前記
検出回路が整定値以上の零相電圧または零相電流を検出
した時には当該区分開閉器の投入による課荷電区間に地
絡事故有りと判定し、当該区分開閉器を開放させるよう
にしたものである。
The present invention focuses on the fact that most accidents in power distribution systems are line-to-ground faults (over 90% of the accidents that occur). A detection circuit is provided to detect one or both of the currents, and when the detection circuit detects a zero-sequence voltage or zero-sequence current that is equal to or higher than a set value within a predetermined time after the sectional switch is turned on, the sectional switch This system determines that there is a ground fault in the electrified section due to the power input, and opens the corresponding sectional switch.

〔作用〕[Effect]

区分開閉器の投入後、所定時間以内に整定値以上の零相
電圧または零相電流が検出されると、地絡事故有りと判
定され、配電線引出口CBをトリップさせる変電所の保
護継電器の動作前に当該区分開閉器が開放される。
If a zero-sequence voltage or zero-sequence current equal to or higher than the set value is detected within a predetermined time after the sectional switch is turned on, it will be determined that a ground fault has occurred, and the substation's protective relay will trip the distribution line outlet CB. Before operation, the section switch is opened.

従って、健全区間は1回の停電だけで復旧される。Therefore, a healthy section can be restored with just one power outage.

〔実施例〕〔Example〕

第1図は本発明を適用したDM制御装置の追加機能部の
一実施例を示すブロック図であり、 DMが片側課電状
態となり、一定時限(X時限)経過後、このDM制御装
置は該当DMに対し、投入操作を行う。DM投入により
接点31がオンし、限時タイマ32がタイムアツプする
までのT1秒間は、論理積回路34が成立している。前
述の71秒以内に、系統の零相電圧が、予め整定された
検出レベルを越えているかどうかを検出する0vG(地
絡電圧)検出回路35が動作すると、限時タイマ33が
起動し、Tz秒後に当該DMを引外すように動作する。
FIG. 1 is a block diagram showing an embodiment of the additional function section of a DM control device to which the present invention is applied. When the DM enters a one-side energized state and after a certain time period (X time period) has elapsed, this DM control device Perform input operation for DM. The AND circuit 34 is established for T1 seconds from when the contact 31 is turned on by the input of the DM until the time limit timer 32 times up. When the 0vG (ground fault voltage) detection circuit 35, which detects whether the zero-sequence voltage of the grid exceeds a preset detection level, operates within the aforementioned 71 seconds, the timer 33 starts, and It then operates to remove the DM.

ここで、T 1 + T z秒は、配電線引出口CBを
トリップさせる保護継電器の動作時間より短くなるよう
協調をとる。また、上述のDM引外し回路は、2線地絡
以上、短絡事故検出の為に、線路電圧が予め整定された
検出レベルを下回った時には、UV(短絡事故)検出回
路36の動作により、論理積回路34が成立せず、当該
DMの引外し操作を鎖錠する。
Here, T 1 + T z seconds is arranged to be shorter than the operating time of the protective relay that trips the distribution line outlet CB. In addition, the above-mentioned DM tripping circuit operates a UV (short-circuit fault) detection circuit 36 to detect a short-circuit fault or a two-wire ground fault, and when the line voltage falls below a preset detection level, a logic The product circuit 34 is not established, and the tripping operation of the DM is locked.

次に、ASの動作について、第2図のAS制御装[50
のブロック図により説明する。第2図において、ASの
両端の電圧は、PT^工またはPT^2から導出され、
各区間の電圧の「有」 「無」条件は、各UV (短絡
事故)検出回路51の出力を入力とする○R回路52の
出力により、いずれかに電圧「有」の時のみ、ワンショ
ット回路53が動作し、記憶回路54がセットされる。
Next, regarding the operation of the AS, the AS control system [50
This will be explained using a block diagram. In Figure 2, the voltage across AS is derived from PT^ or PT^2,
The “present” or “absent” condition of the voltage in each section is determined by the output of the ○R circuit 52 which receives the output of each UV (short-circuit accident) detection circuit 51, and only when the voltage is “present” in either one, a one-shot The circuit 53 operates and the memory circuit 54 is set.

該記憶回路54がセットされると、限時タイマ55が起
動し、11秒後に記憶回路54はリセットされる。この
71秒以内に、配fteaが停電すると、UV検出回路
51は共に動作し、OR回路が不成立となり、AND回
路56が成立し、ASの引外し操作を行う。ここで、限
時タイマ57により、確認時間12秒を設けているのは
、瞬停対策のためである。
When the memory circuit 54 is set, a timer 55 is activated, and the memory circuit 54 is reset after 11 seconds. If the distribution ftea has a power outage within this 71 seconds, the UV detection circuit 51 operates together, the OR circuit fails, the AND circuit 56 is established, and the AS is tripped. Here, the reason why the time limit timer 57 is set as a confirmation time of 12 seconds is as a countermeasure against instantaneous power failure.

以上の構成の機能を各DMの制御装置に付加した第4図
の配電系統において、今、平常状態(区間11〜区間1
8が全て課電状態)において1区間12に一線地絡事故
が発生したものとする。この時のタイムチャートを第3
図に示す。
In the power distribution system shown in Fig. 4 in which the functions of the above configuration are added to the control device of each DM, the power distribution system is currently in a normal state (section 11 to section 1).
It is assumed that a single-line ground fault occurs in one section 12 when all lines 8 are in the energized state). The time chart at this time is the third
As shown in the figure.

まず、区間12に一線地絡事故が発生した事により、C
B五がトリップし、区間11〜区間14は停電状急とな
り、D M l s −D M t aは開放状態とな
る。この時、DMltは、区間18のみ課電状態となり
、自動投入の為の起動タイマz1が計時を開始する。そ
の後、CB1はトリップ後、予め設定された時限後に再
閉路し、区間11が課電される。Flは一定時限(Xl
l)後DMIIを投入させ、区間12を課電状態とする
が、区間12にある事故点が充電されることにより、地
絡電圧が発生する。Flは、DM投入後、第1図に示し
た様に、71秒以内に系統の零相電圧が予め整定した大
きさを越えた場合に、D M 工tの自動用外し操作を
行い、区間12を停電状態とする。このDMxsの引外
し操作は、配電線引出口CB Lのトリップ指令を発す
る変電所設置の保護継電器の動作時間より早く行うこと
により、区間11は課電状態を保持する。その後、配電
線1,2の突合せ点に存在する制御装置りは、計時動作
を続け、Zlがタイムアツプすることにより、DM17
を自動投入し、区間14を1ffl状態とする。その結
果、C2が一定時限(X13)経過後、DM工sを投入
し、区間13を!電状態とする。C2は、自動投入が鎖
錠されている為、一定時限(X12)経過後もDM12
は開放状態のままとなり、事故区間12は自動的に切離
される。
First, due to the single line ground fault accident in section 12, C
B5 trips, sections 11 to 14 suddenly experience a power outage, and D M ls - D M t a become open. At this time, the DMlt is in the energized state only in section 18, and the startup timer z1 for automatic power-on starts counting. Thereafter, after tripping, CB1 is reclosed after a preset time period, and section 11 is energized. Fl is a fixed time limit (Xl
l) After that, the DMII is turned on and the section 12 is placed in a energized state, but the fault point in the section 12 is charged, and a ground fault voltage is generated. As shown in Figure 1, after turning on the DM, if the zero-sequence voltage of the system exceeds a preset value within 71 seconds, Fl automatically disconnects the DM and disconnects the section. 12 is in a power outage state. By performing this DMxs tripping operation earlier than the operating time of the protective relay installed in the substation that issues the trip command for the distribution line outlet CB L, the section 11 maintains the energized state. After that, the control device located at the butting point of the distribution lines 1 and 2 continues to measure time, and as Zl times up, DM17
is automatically input, and section 14 is set to 1ffl state. As a result, after a certain period of time (X13) has elapsed, C2 inputs the DM s and completes section 13! Power on. Since the automatic injection is locked for C2, DM12 is not available even after a certain period of time (X12) has elapsed.
remains open and the accident section 12 is automatically separated.

このように、配電線1に於いては、1回の停電(CBL
の再々閉路が不要)で、事故区間の判別切離しが可能と
なる。尚、2線地終以上の短絡事故発生時には、DMの
即時開放機能は応動せず、従来通り変電所の配電線引出
口CBのトリップにより、再々閉路で事故区間の切離し
を行う。
In this way, on distribution line 1, one power outage (CBL)
(no need to close the circuit again), it becomes possible to identify and separate the accident section. Furthermore, in the event of a short-circuit accident involving two or more wires at the ground end, the immediate release function of the DM will not respond, and the fault section will be disconnected by re-closing the circuit by tripping the distribution line exit CB at the substation as before.

なお、本実施例では、零相電圧のみによる一腺地絡事故
検出について述べたが、零相電流を取込み(DM内にZ
CTを設ける必要が有る)、零相電圧と組合せることに
より、地絡検出に方向性を有すことも可能であるし、或
いは、単純に地絡電流のみで、−線地終事故検出とする
ことも容易である。
In addition, in this embodiment, single gland ground fault detection was described using only the zero-sequence voltage, but it is also possible to take in the zero-sequence current (Z
It is possible to have directionality in ground fault detection by combining it with zero-sequence voltage, or simply by using ground fault current alone, it is possible to detect - line termination faults. It is also easy to do.

さて、DMで仕切ら九た事故区間を自動的に切離した時
、事故区間にあるASは、第2図に示したブロック構成
により、停電状態から加電状態となった後、一定時間以
内に、停電状態となった時は、開放状態となる。つまり
、本実施例ではDMstが投入され、−線地絡事故によ
り、DM工zが引外される時、第7図に示したA S 
1〜A S sは全て開放状態となる。
Now, when the accident section partitioned by DM is automatically separated, the AS in the accident section will, within a certain period of time after changing from the power outage state to the power supply state, according to the block configuration shown in Figure 2. When a power outage occurs, it becomes open. In other words, in this embodiment, when DMst is turned on and DMst is tripped due to a - line ground fault, the A S shown in FIG.
1 to A S s are all open.

従って、ASの制御を有線方式又は電力線搬送方式によ
り、次の様な手順で行うことにより、事故区間の極限化
(健全区間の復旧)が可能となる。
Therefore, by controlling the AS using a wired system or a power line transport system according to the following procedure, it is possible to limit the accident section (restoration of a healthy section).

すなわち、第7図において、D M L を及びD M
 1zが鎖錠状態で、この区間にあるA S 1〜A 
S aは全て「開放」状態にある。先ず、D M 1□
又はD M 12は、遠方制御により、鎖錠を解除し、
投入換作することかできる。この時区間121又は区間
129に事故が残留していれば、CBi又はCB 2が
トリップするので、ASにより細分化した区間の事故か
否かの判別が可能となる。事故がない時は、次の区間、
例えばASl、AS2.Ash、AS9のいずれかの遠
方制御により健否チェックを行う。
That is, in FIG. 7, D M L and D M
1z is locked and A S 1 to A in this section
All S a are in the "open" state. First, DM 1□
Or DM 12 releases the lock by remote control,
It is possible to input or replace the crop. If an accident remains in section 121 or section 129 at this time, CBi or CB 2 will trip, making it possible to determine whether the accident is in a subdivided section by AS. When there are no accidents, the next section,
For example, ASl, AS2. A health check is performed by remote control of either Ash or AS9.

この様に、順次、遠方から制御することにより、事故区
間の極限化と健全区間の復旧が可能となる。
In this way, by sequentially controlling from a distance, it becomes possible to limit accident sections and restore healthy sections.

このように、従来は現地に於いて、人為的に行っていた
ASの制御も遠方から行うことが可能となることにより
、事故区間の探索と早期停電復旧に非常に大きな効果を
有する事となる。
In this way, it is now possible to perform AS control from a distance, which was previously done manually at the site, which will have a huge effect on searching for accident areas and quickly restoring power outages. .

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明しこよれば。 As is clear from the above description, the present invention is advantageous.

−線地絡事故等の事故発生時の配電線引出口CBの再々
閉路処理がなくなり、健全区間は一回の停電だけで復旧
されるという多大な効果がある。
- There is no need to repeatedly close the distribution line outlet CB when an accident such as a line ground fault occurs, and a healthy section can be restored with just one power outage, which has a great effect.

また、実施例で示したようにASを遠方制御するように
した場合には、事故区間の探索により停電区間を最小限
にとどめることができる。
Furthermore, when the AS is remotely controlled as shown in the embodiment, the power outage section can be kept to a minimum by searching for the accident section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したDM制御装置の追加機能部の
一実施例を示すブロック図、第2図はAS制御装置の一
実施例を示すブロック図、第3図は第1図と第2図の機
能を付加した配電系統の動作を説明するためのタイムチ
ャート、第4図は本発明を適用する配電系統の一例を示
す系統図、第5図および第6図は従来の制御方式による
区分開閉器の動作を説明するためのタイムチャート、第
7図は事故区間を拡大して示した配線図である。 CBx、CBz・・・配電線引出口開閉器、D M t
 t〜D M 17・・・区分開閉器、Fl、F2.C
1〜C4・・・制御装置、 A S 1−A S e・
・・手動区分開閉器、32゜33・・・時限タイマ、3
5・・・地絡電圧検出回路。 36・・・短絡事故検出回路、50・・・AS制御装置
、51・・・短絡事故検出回路、54・・・記憶回路、
55゜57・・・時限タイマ。
FIG. 1 is a block diagram showing an embodiment of an additional function section of a DM control device to which the present invention is applied, FIG. 2 is a block diagram showing an embodiment of an AS control device, and FIG. Figure 2 is a time chart for explaining the operation of a power distribution system with added functions, Figure 4 is a system diagram showing an example of a power distribution system to which the present invention is applied, and Figures 5 and 6 are diagrams based on a conventional control system. A time chart for explaining the operation of the sectional switch, and FIG. 7 is a wiring diagram showing an enlarged view of the accident section. CBx, CBz... Distribution line outlet switch, D M t
t~DM 17... Sectional switch, Fl, F2. C
1 to C4...control device, AS1-ASe・
・・Manual compartment switch, 32° 33・・Timer, 3
5... Ground fault voltage detection circuit. 36... Short circuit accident detection circuit, 50... AS control device, 51... Short circuit accident detection circuit, 54... Memory circuit,
55°57... Timed timer.

Claims (1)

【特許請求の範囲】 1、配電線路中に分散配置した区分開閉器に零相電圧お
よび零相電流のうちいずれか一方または両方を検出する
検出回路を設け、前記区分開閉器の投入後所定時間以内
に前記検出回路が整定値以上の零相電圧または零相電流
を検出した時には当該区分開閉器の投入による課荷電区
間に地絡事故有りと判定し、当該区分開閉器を開放させ
ることを特徴とする配電線遠方監視制御方式。 2、前記区分開閉器で区分される区間内に、常時は閉路
状態を保持し、電圧印加時に予め設定した時限以内に、
停電となつた時のみ、開放状態となる第2の区分開閉器
を有することを特徴とする特許請求の範囲第1項記載の
配電線遠方監視制御方式。 3、常時閉路状態の第2の区分開閉器が開放状態にある
時、片側より電圧印加後に予め設定した時限以内に停電
となつた時は、以後の投入操作を鎖鏡するようにしたこ
とを特徴とする特許請求の範囲第2項記載の配電線遠方
監視制御方式。 4、常時閉状態の第2の区分開閉器が開放状態にある時
、片側より課電され、当該状態が予め設定した時限以上
経過すると自動投入するようにしたことを特徴とする特
許請求の範囲第2項記載の配電線遠方監視制御方式。 5、常時閉状態の第2の区分開閉器が、開放状態から閉
路状態となつた後、予め設定した時限以上、両側課電状
態が継続した場合、以後の停電状態を保持することを特
徴とする特許請求の範囲第2項記載の配電線遠方監視制
御方式。 6、常時閉路状態にある第2の区分開閉器を遠方監視制
御するようにしたことを特徴とする特許請求の範囲第2
項記載の配電線遠方監視制御方式。 7、配電線路中に分散配置した区分開閉器に零相電圧お
よび零相電流のうちいずれか一方または両方を検出する
検出回路を設け、前記区分開閉器の投入後所定時間以内
に前記検出回路が整定値以上の零相電圧または零相電流
を検出した時には当該区分開閉器の投入による課電圧区
間に地絡事故有りと判定し、当該区分開閉器を開放させ
、さらに線路電圧を検出する検出回路を設け、当該線路
電圧が、予め定めた検出レベルを下回つた時には、二線
地絡、三線地絡、短絡事故等の発生と判断し、区分開閉
器の取外し操作をロックすることを特徴とする配電線遠
方監視制御方式。
[Scope of Claims] 1. A detection circuit for detecting one or both of zero-sequence voltage and zero-sequence current is provided in sectional switches distributed in the distribution line, and a detection circuit for detecting either or both of zero-sequence voltage and zero-sequence current is provided, and a predetermined period of time after the sectional switch is turned on is provided. If the detection circuit detects a zero-sequence voltage or zero-sequence current that is equal to or higher than a set value within a period of time, it is determined that there is a ground fault in the charged section due to the closing of the sectional switch, and the sectional switch is opened. A remote monitoring and control system for power distribution lines. 2. Within the section divided by the section switch, always maintain a closed state, and within a preset time period when voltage is applied,
2. The remote distribution line monitoring and control system according to claim 1, further comprising a second section switch that is opened only when a power outage occurs. 3. When the second section switch, which is normally closed, is in the open state, if there is a power outage within a preset time period after voltage is applied from one side, the subsequent closing operation will be interrupted. A distribution line remote monitoring and control system according to claim 2, characterized in that: 4. Claims characterized in that when the normally closed second section switch is in the open state, electricity is applied from one side, and the switch is automatically turned on when the state exceeds a preset time limit. The distribution line remote monitoring control method described in item 2. 5. If the normally closed second section switch changes from the open state to the closed state and continues to be energized on both sides for a preset time period or longer, the power outage state is maintained thereafter. A distribution line remote monitoring and control system according to claim 2. 6. Claim 2, characterized in that the second section switch, which is always in a closed state, is remotely monitored and controlled.
Distribution line remote monitoring and control method described in Section 2. 7. A detection circuit for detecting one or both of zero-sequence voltage and zero-sequence current is provided in the sectional switches distributed in the distribution line, and the detection circuit is activated within a predetermined time after the sectional switch is turned on. When a zero-sequence voltage or zero-sequence current exceeding a set value is detected, a detection circuit determines that there is a ground fault in the voltage section due to the closing of the sectional switch, opens the sectional switch, and further detects the line voltage. When the line voltage falls below a predetermined detection level, it is determined that a two-wire ground fault, three-wire ground fault, short circuit accident, etc. has occurred, and the removal operation of the sectional switch is locked. Distance monitoring and control system for power distribution lines.
JP61162224A 1986-07-10 1986-07-10 Distribution lines remote monitor and control system Pending JPS6318922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61162224A JPS6318922A (en) 1986-07-10 1986-07-10 Distribution lines remote monitor and control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61162224A JPS6318922A (en) 1986-07-10 1986-07-10 Distribution lines remote monitor and control system

Publications (1)

Publication Number Publication Date
JPS6318922A true JPS6318922A (en) 1988-01-26

Family

ID=15750328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61162224A Pending JPS6318922A (en) 1986-07-10 1986-07-10 Distribution lines remote monitor and control system

Country Status (1)

Country Link
JP (1) JPS6318922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164374A (en) * 2014-02-28 2015-09-10 株式会社Nttファシリティーズ Power supply system, power supply control apparatus, and power supply control method and program in power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553129A (en) * 1978-10-09 1980-04-18 Togami Electric Mfg Automatic distribution trouble section detector
JPS5783120A (en) * 1980-11-11 1982-05-24 Togami Electric Mfg Method of detecting ground-fault accident zone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553129A (en) * 1978-10-09 1980-04-18 Togami Electric Mfg Automatic distribution trouble section detector
JPS5783120A (en) * 1980-11-11 1982-05-24 Togami Electric Mfg Method of detecting ground-fault accident zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164374A (en) * 2014-02-28 2015-09-10 株式会社Nttファシリティーズ Power supply system, power supply control apparatus, and power supply control method and program in power supply system

Similar Documents

Publication Publication Date Title
JPH03159519A (en) Automatic disconnection detector
MXPA96005115A (en) Method and apparatus for transfer between sources of electrical energy that block adaptative transfer until the voltage of charge achieves a secure value
JPH05137250A (en) System for minimizing interruption of distribution line
JPS6318922A (en) Distribution lines remote monitor and control system
JP3480671B2 (en) Bus protection system for spot network power receiving equipment
JPH06276672A (en) Method for sensing and isolating groud fault
JP3169976B2 (en) Distribution line ground fault protection system
CN219322144U (en) Power supply circuit
CN110854804A (en) Power supply comprehensive protection device
JPH02206325A (en) Distribution line protective device
JPH1014100A (en) Ground self-breaking type automatic section switch
EP4303904A1 (en) Multiphase ground fault circuit interrupter
JP3086955B2 (en) Method and apparatus for minimizing electrode interruption in power system
JP3899215B2 (en) Distribution system accident recovery method
JPH01214222A (en) Protection control system for distribution line
JP2876781B2 (en) Ground fault protection device for distribution line
JP2550006B2 (en) Distribution line protection relay device
JP2860477B2 (en) Distribution line switch control method
JP3075740B2 (en) Accident point separation device
JP3215524B2 (en) Distribution line switchgear control device
JPH0833186A (en) Reclosing system
JPH0767236B2 (en) Distribution line protection device
JPH035132B2 (en)
JPS6030193B2 (en) Control device for standby line switching device
JPH07222353A (en) Switchgear for distribution system