JPS63188788A - radiation detector - Google Patents

radiation detector

Info

Publication number
JPS63188788A
JPS63188788A JP2067587A JP2067587A JPS63188788A JP S63188788 A JPS63188788 A JP S63188788A JP 2067587 A JP2067587 A JP 2067587A JP 2067587 A JP2067587 A JP 2067587A JP S63188788 A JPS63188788 A JP S63188788A
Authority
JP
Japan
Prior art keywords
scintillators
photomultiplier tube
output
radiation detector
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2067587A
Other languages
Japanese (ja)
Inventor
Seiichi Yamamoto
誠一 山本
Yoshibumi Azuma
東 義文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2067587A priority Critical patent/JPS63188788A/en
Publication of JPS63188788A publication Critical patent/JPS63188788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、ECT装置(エミッション型コンピュータ
・トモグラフィ装置)などの核医学診断装置に使用する
放射線検出器に関する。
The present invention relates to a radiation detector used in a nuclear medicine diagnostic apparatus such as an ECT apparatus (emission computer tomography apparatus).

【従来の技術】[Conventional technology]

従来のECT装置では、1個のシンチレータに1個の光
電子増倍管を組み合わせた放射線検出器が使用されるこ
とが多い。すなわち、このようなシンチレータと光電子
増倍管との組合せによる放射線検出器を多数リング型に
配列するのである。 したがって、このようなECT装置では、空間分解能は
上記のような放射線検出器の配列密度に依存することに
なる。
In conventional ECT devices, a radiation detector that combines one scintillator and one photomultiplier tube is often used. That is, a large number of radiation detectors made of a combination of such a scintillator and a photomultiplier tube are arranged in a ring shape. Therefore, in such an ECT device, the spatial resolution depends on the arrangement density of the radiation detectors as described above.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

そこで、ECT装置の空間分解能をあげようとする場合
、放射線検出器をなるべく小さくして高密度に配列すれ
ばよいことになる。しかし、これは現実には非常に難し
い。 というのは、まず第1に、光電子増倍管は大きさを小さ
くするにも限度があり、ある程度以上に小さくできない
し、第2に、たとえ小さくできたとしても多数の光電子
増倍管を配列しなければならないので、きわめて価格が
高くなってしまい、現実的ではなくなってしまうからで
ある。 この発明は、高価格化を避けながら容易に空間分解能を
高めることができる放射線検出器を提供することを目的
とする。
Therefore, in order to increase the spatial resolution of an ECT device, it is sufficient to make the radiation detectors as small as possible and arrange them at high density. However, this is extremely difficult in reality. First of all, there is a limit to the size of photomultiplier tubes, and they cannot be made smaller beyond a certain point.Secondly, even if they could be made smaller, it would be difficult to arrange a large number of photomultiplier tubes. This is because the cost would be extremely high, making it impractical. An object of the present invention is to provide a radiation detector that can easily improve spatial resolution while avoiding an increase in price.

【問題点を解決するための手段】[Means to solve the problem]

この発明による放射線検出器は、不純物濃度の相違によ
り発光量が異なる複数個のシンチレータと、該複数個の
シンチレータに光結合される光電子増倍管と、該光電子
増倍管の出力より上記発光量の相違に基づき発光したシ
ンチレータを弁別する回路とを備える。
A radiation detector according to the present invention includes a plurality of scintillators that emit different amounts of light due to differences in impurity concentration, a photomultiplier tube optically coupled to the plurality of scintillators, and a photomultiplier tube that determines the amount of light emitted from the output of the photomultiplier tube. and a circuit that discriminates the emitted scintillator based on the difference in the scintillator.

【作  用】[For production]

純粋なヨウ化セシウム(CsI)よりなるシンチレータ
の場合、シンチレーション光のスペクトルは第5図の点
線のようになるが、臭素(Br)を不純物として添加す
ると同図実線のようになる。 すなわち、臭素を添加すると、速い成分く減衰時間10
 n5ec、ピーク波長300nm)に対して遅い成分
(減衰時間10μsec、ピーク波長450nm)か大
きくなる。そして、臭素の濃度が大きくなればなるほど
遅い成分の強度が大きくなる。 したがって、不純物濃度を変えたシンチレータを複数個
並べ、これらを1個の光電子増倍管に結合したとき、光
電子増倍管の出力のなかの遅い成分の大きさを判別すれ
ば、複数個のシンチレータのうちどれでシンチレーショ
ンが発生したかが分かる。
In the case of a scintillator made of pure cesium iodide (CsI), the spectrum of scintillation light becomes like the dotted line in FIG. 5, but when bromine (Br) is added as an impurity, it becomes like the solid line in the figure. That is, when bromine is added, the decay time of the fast component decreases by 10
n5ec, peak wavelength 300 nm), the slower component (attenuation time 10 μsec, peak wavelength 450 nm) becomes larger. And the greater the concentration of bromine, the greater the intensity of the slow component. Therefore, when multiple scintillators with different impurity concentrations are lined up and connected to a single photomultiplier tube, by determining the magnitude of the slow component in the output of the photomultiplier tube, it is possible to It is possible to determine in which of them scintillation occurred.

【実 施 例】【Example】

第1図において、9個のシンチレータ1〜9がライトガ
イド10を介して1個の光電子増倍管11の入力面に光
結合されている。これらのシンチレータ1〜9は、ヨウ
化セシウムを主体とするもので、シンチレータ1は添加
物を何も含まず純粋なヨウ化セシウムからなり、シンチ
レータ2〜9はヨウ化セシウムに臭素を添加したもので
、この不純物濃度が番号が多くなるにしたがって高くな
るようにされている。光電子増倍管11は図示のような
′四角形のタイプが望ましい。この光電子増倍管11の
出力は増幅器21を経て積分器22に送られ、その積分
出力が波高弁別器23によって弁別される。 シンチレータ1〜9のいずれかにγ線が入射し、シンチ
レーション発光が生じると、その光はライトガイド10
により光電子増倍管11に導かれ、電気的な出力信号が
生じる。この出力信号は、第2図に示すように速い成分
Aと遅い成分Bとからなるが、この遅い成分Bは不純物
濃度が高いほど大きいので、番号の多いシンチレータは
ど大きくなる。そこで、この出力信号を、速い成分の減
衰時間に対し十分長い積分時間で積分すると、その積分
値は第3図のように番号の多いシンチレータはど大きく
なる。したがって、積分器22の出力の波高値を波高弁
別器23で弁別すれば、どのシンチレータで発光が生じ
たか、つまりどのシンチレータにγ線が入射したかの判
別ができる。 上記では、不純物濃度を相違させた9個のシンチレータ
1〜9を2次元的に配列し、光電子増倍管11の出力か
ら2次元的なγ線入射位置の判別を行っているが、不純
物濃度の異なる複数個のシンチレータを1次元的に配列
すれば1次元的なγ線入射位置の判別ができる。 第4図に示す第2の実施例は、不純物濃度の相違による
出力の相違の判別によっては1次元の判別を行うように
したものである。この第4図で、不純物濃度の異なる5
個の細いシンチレータ1〜5がX方向に配列され、ライ
トガイド10によってY方向に並べられた複数個(ここ
では3個)の光電子増倍管11〜13に光結合されてい
る。光電子増倍管11〜13の出力の遅い成分の相違に
よりシンチレータ1〜5のどれにγ線が入射したかの判
別、つまりX方向の入射位置判別ができる。 この実施例では、Y方向のγ線入射位置判別は、通常の
アンガ一方式シンチレーションカメラと同様に行うこと
ができる。つまり、ある位置で発光が生じた時その位置
から近い光電子増倍管はと大きな出力を生じることを利
用して、3個の光電子増倍管11〜13の出力の比較に
よりγ線のY方向入射位置を判別する。これらの組合せ
により、γ線入射位置の2次元的な判別ができる。 なお、シンチレータの数は上記実施例に限定されないこ
とは勿論であるが、上記のように不純物濃度を段階的に
変化させるだけでなく、連続的に変化させるようにして
もよい。また、上記では、ECT装置に使用することを
一応前提に述べたが、ECT装置以外に平面像を得るシ
ンチレーションカメラなどの放射線測定装置にも適用す
ることが可能である。
In FIG. 1, nine scintillators 1 to 9 are optically coupled to the input surface of one photomultiplier tube 11 via a light guide 10. These scintillators 1 to 9 are mainly made of cesium iodide, scintillator 1 is made of pure cesium iodide without any additives, and scintillators 2 to 9 are made by adding bromine to cesium iodide. The impurity concentration increases as the number increases. The photomultiplier tube 11 is preferably of the rectangular type as shown in the figure. The output of the photomultiplier tube 11 is sent to an integrator 22 via an amplifier 21, and its integrated output is discriminated by a pulse height discriminator 23. When γ-rays enter any of the scintillators 1 to 9 and scintillation light emission occurs, the light is transmitted to the light guide 10.
is guided to the photomultiplier tube 11, where an electrical output signal is generated. This output signal consists of a fast component A and a slow component B, as shown in FIG. 2, and since this slow component B becomes larger as the impurity concentration increases, the scintillator with a higher number becomes larger. Therefore, when this output signal is integrated over an integration time that is sufficiently long with respect to the decay time of the fast component, the integrated value becomes larger for scintillators with higher numbers as shown in FIG. Therefore, by discriminating the peak value of the output of the integrator 22 using the peak discriminator 23, it is possible to determine which scintillator has emitted light, that is, which scintillator has the γ-ray incident. In the above, nine scintillators 1 to 9 with different impurity concentrations are two-dimensionally arranged, and the two-dimensional γ-ray incident position is determined from the output of the photomultiplier tube 11. If a plurality of scintillators with different values are arranged one-dimensionally, it is possible to one-dimensionally determine the γ-ray incident position. In the second embodiment shown in FIG. 4, one-dimensional discrimination is performed depending on the discrimination of the difference in output due to the difference in impurity concentration. In this figure 4, 5 different impurity concentrations are shown.
Thin scintillators 1 to 5 are arranged in the X direction, and optically coupled by a light guide 10 to a plurality of (three in this case) photomultiplier tubes 11 to 13 arranged in the Y direction. It is possible to determine which of the scintillators 1 to 5 the gamma rays are incident on, that is, to determine the incident position in the X direction, based on the difference in the slow output components of the photomultiplier tubes 11 to 13. In this embodiment, the determination of the γ-ray incident position in the Y direction can be performed in the same manner as in a normal Angular one-type scintillation camera. In other words, by taking advantage of the fact that when light emission occurs at a certain position, photomultiplier tubes near that position produce a large output, the outputs of the three photomultiplier tubes 11 to 13 are compared to determine the Y direction of the γ-ray. Determine the incident position. With these combinations, the γ-ray incident position can be determined two-dimensionally. It should be noted that the number of scintillators is of course not limited to that in the above embodiment, but the impurity concentration may not only be changed stepwise as described above, but may be changed continuously. Furthermore, although the above description has been made assuming that the present invention is used in an ECT apparatus, it is also possible to apply the present invention to radiation measurement apparatuses such as scintillation cameras that obtain planar images in addition to ECT apparatuses.

【発明の効果】【Effect of the invention】

この発明の放射線検出器によれば、1本の光電子増倍管
で、これに結合されている複数個のシンチレータのどれ
に放射線が入射したかを弁別できるので、空間分解能を
非常に高くできる。しかもこれによって光電子増倍管の
数の増大を招かず、また、構造もシンプルなので、価格
を低くできる。
According to the radiation detector of the present invention, a single photomultiplier tube can discriminate which of the plurality of scintillators coupled to the photomultiplier tube has been hit by radiation, so that the spatial resolution can be very high. Moreover, this does not require an increase in the number of photomultiplier tubes, and the structure is simple, so the price can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の模式的な斜視図、第2図
は光電子増倍管出力の時間的変化を表すグラフ、第3図
は光電子増倍管出力の積分値の時間的変化を表すグラフ
、第4図は他の実施例の模式的な斜視図、第5図はシン
チレーションスペクトルを表すグラフである。 1〜9・・・シンチレータ、10・・・ライトガイド、
11〜13・・・光電子増倍管、21・・・増幅器、2
2・・・積分器、23・・・波高弁別器。
FIG. 1 is a schematic perspective view of an embodiment of the present invention, FIG. 2 is a graph showing temporal changes in photomultiplier tube output, and FIG. 3 is a temporal change in integral value of photomultiplier tube output. FIG. 4 is a schematic perspective view of another example, and FIG. 5 is a graph showing a scintillation spectrum. 1 to 9...scintillator, 10...light guide,
11-13...Photomultiplier tube, 21...Amplifier, 2
2... Integrator, 23... Wave height discriminator.

Claims (1)

【特許請求の範囲】[Claims] (1)不純物濃度の相違により発光量が異なる複数個の
シンチレータと、該複数個のシンチレータに光結合され
る光電子増倍管と、該光電子増倍管の出力より上記発光
量の相違に基づき発光したシンチレータを弁別する回路
とを備える放射線検出器。
(1) A plurality of scintillators that emit different amounts of light due to differences in impurity concentration, a photomultiplier tube that is optically coupled to the plurality of scintillators, and a photomultiplier tube that emits light based on the difference in the amount of light emitted from the output of the photomultiplier tube. A radiation detector comprising a circuit for discriminating scintillators.
JP2067587A 1987-01-31 1987-01-31 radiation detector Pending JPS63188788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2067587A JPS63188788A (en) 1987-01-31 1987-01-31 radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2067587A JPS63188788A (en) 1987-01-31 1987-01-31 radiation detector

Publications (1)

Publication Number Publication Date
JPS63188788A true JPS63188788A (en) 1988-08-04

Family

ID=12033764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2067587A Pending JPS63188788A (en) 1987-01-31 1987-01-31 radiation detector

Country Status (1)

Country Link
JP (1) JPS63188788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775793A1 (en) * 1998-03-06 1999-09-10 Robert Allemand METHOD FOR LOCATING AND SELECTING ENERGY OF GAMMA PHOTONS, APPLICATION TO THE PRODUCTION OF FAST DETECTORS FOR POSITON TOMOGRAPHS
JP2016017851A (en) * 2014-07-08 2016-02-01 株式会社島津製作所 Radiographic imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775793A1 (en) * 1998-03-06 1999-09-10 Robert Allemand METHOD FOR LOCATING AND SELECTING ENERGY OF GAMMA PHOTONS, APPLICATION TO THE PRODUCTION OF FAST DETECTORS FOR POSITON TOMOGRAPHS
WO1999045412A1 (en) * 1998-03-06 1999-09-10 Robert Allemand Photon gamma locating and energy selecting method for positron tomograph
JP2016017851A (en) * 2014-07-08 2016-02-01 株式会社島津製作所 Radiographic imaging apparatus

Similar Documents

Publication Publication Date Title
US5773829A (en) Radiation imaging detector
US3978337A (en) Three-dimensional time-of-flight gamma camera system
US6194726B1 (en) Semiconductor radiation detector with downconversion element
US6080984A (en) Semiconductor gamma-ray camera and medical imaging system
CA2252993C (en) Detector assembly for multi-modality scanners
US6812469B2 (en) Two-dimensional radiation and neutron image detectors
EP0515630B1 (en) A large solid state sensor assembly formed from smaller sensors
US4843245A (en) Scintillation detector for tomographs
EP0199118A1 (en) Method and apparatus for 3-D encoding
US5506408A (en) Gamma camera
WO1983003683A1 (en) Large arrays of discrete ionizing radiation detectors multiplexed using fluorescent optical converters
US5118934A (en) Fiber fed x-ray/gamma ray imaging apparatus
US3683185A (en) Radiation imaging apparatus
US6124595A (en) Gamma ray imaging detector with three dimensional event positioning and method of calculation
US3329814A (en) Stereo positron camera for determining the spatial distribution of radioactive material in a test body
JPS63188788A (en) radiation detector
US20050029461A1 (en) Gamma camera using rotating scintillation bar detector and method for tomographic imaging using the same
JPH0544991B2 (en)
KR100488768B1 (en) Pixellated crystal array and compact gamma imager system having pixellated crystal array
JPS639881A (en) Radiation detector
JP2015087348A (en) Radiation detection instrument and positron emission computed tomograph
TR202010020U5 (en) LIGHT COLLECTOR FOR SMALL-DIMENSIONAL PHOTO-DETECTORS IN GAMA CAMERAS
JP2653047B2 (en) Radiation detector
JP2014081288A (en) Radiation visualization device
Zlock et al. Performance of gamma-ray imager using a 38/spl times/38 crossed-strip Ge detector