JPS63188642A - Production of 3,3,5-trimethylcyclohexanone - Google Patents

Production of 3,3,5-trimethylcyclohexanone

Info

Publication number
JPS63188642A
JPS63188642A JP62020697A JP2069787A JPS63188642A JP S63188642 A JPS63188642 A JP S63188642A JP 62020697 A JP62020697 A JP 62020697A JP 2069787 A JP2069787 A JP 2069787A JP S63188642 A JPS63188642 A JP S63188642A
Authority
JP
Japan
Prior art keywords
isophorone
trimethylcyclohexanone
reaction
catalyst
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62020697A
Other languages
Japanese (ja)
Other versions
JPH0749385B2 (en
Inventor
Naohide Shirako
白子 直秀
Masaharu Uragami
浦上 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP62020697A priority Critical patent/JPH0749385B2/en
Publication of JPS63188642A publication Critical patent/JPS63188642A/en
Publication of JPH0749385B2 publication Critical patent/JPH0749385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the titled compound useful as a solvent, curing catalyst, vulcanizing agent, etc., in high purity at a low cost, by partially hydrogenating isophorone with pressurized hydrogen gas in the presence of a Raney-Ni catalyst at a low temperature. CONSTITUTION:3,3,5-Trimethylcyclohexanone can be produced by the partial hydrogenation of isophorone with pressurized hydrogen in the presence of a Raney-Ni as a catalytic reduction catalyst while cooling the system to keep the reaction temperature to <=25 deg.C. The amount of by-produced trans-3,3,5- trimethylcyclohexanol can be suppressed to extremely low level by cooling the reaction system to <=25 deg.C. The titled compound having high purity is obtained by removing the catalyst from the reaction mixture and purifying the mixture. The titled compound is useful as a solvent for compounding to a synthetic resin for lacquer, varnish, etc., curing catalyst for unsaturated polyester resin, vulcanization agent for elastomer, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、3.3.5−トリメチルシクロヘキサノンの
製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing 3.3.5-trimethylcyclohexanone.

さらに詳しくは、イ、ソホロンをラネーニッケル触媒存
在下、水素ガス加圧下にて部分水添することによって、
従来技術に比べ廉価で高純度の3゜3.5−トリメチル
シクロヘキサノンを製造する方法に係る。
More specifically, by partially hydrogenating sophorone in the presence of a Raney nickel catalyst and under pressure of hydrogen gas,
The present invention relates to a method for producing 3°3.5-trimethylcyclohexanone at a lower price and with higher purity than conventional techniques.

3.3.5−トリメチルシクロヘキサノンは、ラッカー
、ワニス等の被覆、仕上げ材製造に必要な合成樹脂組成
物を配合する為の溶剤として用いられている。
3.3.5-Trimethylcyclohexanone is used as a solvent for blending synthetic resin compositions necessary for coatings such as lacquers and varnishes, and for producing finishing materials.

これは、3.3.5−トリメチルシクロヘキサノンが高
沸点であること、ゲル化することなしに、ビニル樹脂等
の合成樹脂を高含有量で溶屏する能力をもつこと、貯蔵
安定性に優れていること、などの理由によるものである
This is because 3.3.5-trimethylcyclohexanone has a high boiling point, has the ability to dissolve synthetic resins such as vinyl resin in high content without gelation, and has excellent storage stability. This is due to reasons such as being present.

また、一方、不飽和ポリエステル圏脂用の硬化用触媒、
エラストマーの加硫剤等の用途にも使用され、工業的に
有用な物質である。
In addition, on the other hand, a curing catalyst for unsaturated polyester resin,
It is also used as a vulcanizing agent for elastomers, and is an industrially useful substance.

(従来技術) および (発明が解決しようとする問題点) イソホロンから3.3.5−トリメチルシクロヘキサノ
ンを製造する方法は、古くより周知の接触水添法がある
(Prior Art) and (Problems to be Solved by the Invention) As a method for producing 3.3.5-trimethylcyclohexanone from isophorone, there is a catalytic hydrogenation method which has been well known for a long time.

かくして、米国特許2,264.625号にはイソホロ
ンの接触水添法が2滅されているが、かかる反応におい
ては充分な注意が必要である。
Thus, although US Pat. No. 2,264.625 discloses a method for catalytic hydrogenation of isophorone, great care must be taken in such a reaction.

何故ならば過度に水添するとカルボニル基の水添が起き
アルコールであるシス−及びトランス−3,3,5−ト
リメチルシクロヘキサノールが副生じてしまうし、又、
水添が不充分であると天辺の未反応イソホロンを残す結
果になるからである。
This is because excessive hydrogenation causes hydrogenation of the carbonyl group, resulting in the production of cis- and trans-3,3,5-trimethylcyclohexanol, which are alcohols, and also,
This is because if hydrogenation is insufficient, unreacted isophorone will remain at the top.

これら二通りの場合は、何れも望ましくはない。Neither of these two cases is desirable.

何故ならば、第一にアルコールまで過度に水添すると3
.3.5−トリメチルシクロヘキサノンから分別するの
に極めて困難なトランス−3,3゜5−トリメチルシク
ロヘキトルを生成するからである。
Firstly, if alcohol is excessively hydrogenated, 3
.. This is because trans-3,3°5-trimethylcyclohexitol, which is extremely difficult to separate from 3,5-trimethylcyclohexanone, is produced.

即ち、3.3.5−トリメチルシクロヘキサノンの沸点
は189℃でありトランス3,3.5−メチルシクロヘ
キサノールの沸点は190℃である。第2に未反応イソ
ホロンを大暑に残す結果になる不充分な水添は、イソホ
ロンの回収リサイクル量が増加し、製造設備も複雑にな
り、経済的な方法ではない。
That is, the boiling point of 3,3,5-trimethylcyclohexanone is 189°C, and the boiling point of trans-3,3,5-methylcyclohexanol is 190°C. Second, insufficient hydrogenation, which results in leaving unreacted isophorone in the heat, increases the amount of isophorone recovered and recycled, and the manufacturing equipment becomes complicated, which is not an economical method.

バッチ式方法によって3.3.5−)−リメチルシクロ
ヘキサノンを′!A造する方法が米国特許2゜560.
361号にポされている。
3.3.5-)-limethylcyclohexanone'! by a batch process. The method for making A is covered by U.S. Patent No. 2゜560.
It is posted in issue 361.

この特許では、イソホロンと3.3.5−トリメチルシ
クロヘキサノールの等モル混合物を接蝕水添舖媒の存在
下でトランス−水添反応を行なわしめ目的とする3、3
.5−トリメチルシクロヘキサノンを得るものであるが
、反応は遅く僅か74%の変換を達成するのに12時間
らかかる。
In this patent, an equimolar mixture of isophorone and 3,3,5-trimethylcyclohexanol is subjected to a trans-hydrogenation reaction in the presence of a corrosive hydrogenation solvent.
.. Although 5-trimethylcyclohexanone is obtained, the reaction is slow and takes up to 12 hours to achieve only 74% conversion.

しかも、一方の原料である3、3.5−トリメチルシク
ロヘキサノールを予めイソホロンの水添によって製造す
ることが必要であり、且つ触媒ラネーニッケルを10重
量%と天場に使用しており、全く実際的な方法とは言い
難い。
Moreover, 3,3.5-trimethylcyclohexanol, one of the raw materials, must be prepared in advance by hydrogenating isophorone, and 10% by weight of Raney nickel is used as a catalyst, which is completely impractical. It's hard to say that it's a good method.

また、イソホロンから3.3.5−トリシクロヘキサノ
ンをWA造する場合の接散jス元融媒としてルテニウム
カーボンを用いることにより、3,3゜5−トリメチル
シクロヘキサノンが選択率良りサツ造できることは周知
である。
Furthermore, by using ruthenium carbon as a dispersion source melting medium in the WA production of 3,3,5-tricyclohexanone from isophorone, 3,3°5-trimethylcyclohexanone can be produced with good selectivity. It is well known.

しかしながら、触媒であるルテニウムカーボンは、非常
に高+11[iであり、ルアニウムカーボン触媒を用い
て、イソホロンから3.3.5−トリメチルシクロヘキ
サノンを製造する方法は、決して経済的な方法ではない
However, the catalyst ruthenium carbon has a very high +11[i, and the method of producing 3,3,5-trimethylcyclohexanone from isophorone using a ruanium carbon catalyst is by no means an economical method.

そこで、゛本発明者らは、これらの問題を解決し、優れ
た3、3.5−トリメチルシクロヘキサノンの製造法を
検討した結果遂に本発明を成すに至った。
Therefore, the present inventors solved these problems and investigated an excellent method for producing 3,3,5-trimethylcyclohexanone, and as a result, they finally accomplished the present invention.

(発明の構成) 即ち、本発明は [イソホロンを部分水添して、3,3.5−トリメチル
シクロヘキサノンを製造する方法において、接触還元触
媒として、ラネーニッケルを用い、イソホロンを水素ガ
スの加圧下25℃以下の反応温度で反応させることを特
徴とする3、3.5−トリメチルシクロヘキサノンのt
J3i4方法」である。
(Structure of the Invention) That is, the present invention provides a method for producing 3,3,5-trimethylcyclohexanone by partially hydrogenating isophorone, using Raney nickel as a catalytic reduction catalyst, t of 3,3,5-trimethylcyclohexanone, characterized in that the reaction is carried out at a reaction temperature of ℃ or less.
J3i4 method”.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は、イソホロンから3.3.5−トリシクロヘキ
サノンを?A造する場合の工程フローシートである。
Figure 1 shows 3.3.5-tricyclohexanone from isophorone? This is a process flow sheet for building A.

第1図に於いて、導管1からイソホロンを、導管2から
溶剤であるイソプロパツールを含むラネーニッケル触媒
を、それぞれ反応器4に導入し、導管3から水素ガスを
導入して、25℃以■に冷UJLながらイソホロンの水
添反応を行う。
In FIG. 1, isophorone is introduced through conduit 1, and Raney nickel catalyst containing isopropanol as a solvent is introduced through conduit 2 into reactor 4, hydrogen gas is introduced through conduit 3, and the temperature rises above 25°C. Hydrogenation reaction of isophorone is carried out under cold UJL.

反応系におけるイソホロンの水添反応は次式で表わされ
る。
The hydrogenation reaction of isophorone in the reaction system is expressed by the following formula.

イソよ。ン          3.3.5−トリメチ
ルシクロヘキサノン 3、3.5−トリメチ ルシクロヘキサ ノール この反応は、ラネーニッケル融FXを用いる場合、反応
温度が高ければ、インホロンが水添されて生成する、ト
ランス−3,3,5−トリメチルシクロヘキサノールの
生成けが増加し、目的物である3、3.5−トリメチル
シクロへキナノンとトランス−3,3,5−トリメチル
シクロへキナノールの沸点が近いため、蒸留にて分別す
ることが極めて困鼎となる。
Iso. 3.3.5-Trimethylcyclohexanone 3,3.5-Trimethylcyclohexanol When using Raney nickel melt FX, if the reaction temperature is high, inphorone is hydrogenated and trans-3,3, The production of 5-trimethylcyclohexanol increases, and the target products, 3,3,5-trimethylcyclohequinanone and trans-3,3,5-trimethylcyclohequinanol, have similar boiling points, so they must be separated by distillation. becomes extremely difficult.

しかしながら、反応)晶度を25℃以下になるように冷
却し、イソホロンを水添すれば、トランス−3,3,5
−トリメチルシクロヘキサノールの生成塁は氏めて少G
となる。
However, if the reaction) crystallinity is cooled to below 25°C and isophorone is hydrogenated, trans-3,3,5
- The generation base of trimethylcyclohexanol should be cooled down to a low G.
becomes.

次に、3,3.5−トリメナルシクロヘキサノン、トラ
ンス−3,3,5−トリメチルシクロヘキサノール、イ
ンホロン、ラネーニッケルr媒、イソプロピルアルコー
ル等を含んだ水添液を、5の触媒分迩器により、ラネー
ニッケル触媒と3.。
Next, a hydrogenation solution containing 3,3,5-trimenalcyclohexanone, trans-3,3,5-trimethylcyclohexanol, inholon, Raney nickel medium, isopropyl alcohol, etc. is passed through a catalyst distributor in 5. Raney nickel catalyst and 3. .

5−トリメチルシクロへキナノン、トランス−3゜3.
5−トリメチルシクロヘキサノン、イソホロン、イソプ
ロピルアルコール等をgんだ液に分遣する。
5-trimethylcyclohequinanone, trans-3゜3.
Dispense 5-trimethylcyclohexanone, isophorone, isopropyl alcohol, etc. into the grated liquid.

3.3.5−t−ルメチルシクロヘキサノン、トランス
−3,3,5−トリメチルシクロヘキサノール、イソホ
ロン、インプロピルアルコール等を含む液は′M製塔6
で低沸成分、高沸成分を除去し、純度の高い3.3.5
−トリメチルシクロヘキサノンを得る。
3.3.The liquid containing 5-tert-methylcyclohexanone, trans-3,3,5-trimethylcyclohexanol, isophorone, inpropyl alcohol, etc.
3.3.5 with high purity by removing low boiling components and high boiling components.
-trimethylcyclohexanone is obtained.

以下に本発明の効果を実施例、比較列を用いて説明する
The effects of the present invention will be explained below using examples and comparison columns.

実施例 反応器にイソホロン90’ON、イソプロピルアルコー
ル100p1ラネーニツケル、)虫媒40Kgを仕込み
、反応温度16℃に保ちながら水素ガスを169N立米
/1−1の速度で仕込み、ポンプでV@環し、水添反応
を行った。
Example A reactor was charged with 90'ON of isophorone, 100p1 of isopropyl alcohol, and 40kg of insect medium, and while maintaining the reaction temperature at 16°C, hydrogen gas was charged at a rate of 169N m3/1-1. A hydrogenation reaction was performed.

反応圧力4〜9に’i/c:iGである。The reaction pressure is 4-9'i/c:iG.

反応時間約3@間後の反応:層液より、ラネーニッケル
触媒を分列した反応m液1成はガスクロ分析によると3
.3.5−トリメチルシクロへキサノン80.86wt
%、トランス−3,3,5−トリメチルシクロヘキサノ
ール2.28wt%。
Reaction after about 3 reaction times: According to gas chromatography, the reaction liquid 1, in which the Raney nickel catalyst was separated from the layer liquid, was 3.
.. 3.5-trimethylcyclohexanone 80.86wt
%, trans-3,3,5-trimethylcyclohexanol 2.28 wt%.

シス−3,3,5−トリメチルシクロヘキサノール0.
49wt%、イソホ[:Iン9.34wt%。
Cis-3,3,5-trimethylcyclohexanol 0.
49 wt%, Isopho[:In 9.34 wt%.

イソプロピルアルコール6.52Wt’j10.その他
0.51wt%であった。
Isopropyl alcohol 6.52Wt'j10. Others were 0.51 wt%.

この反応m液のM裂塔にて脱低沸及び説店沸を行って得
た製品の組成は、3.3.5−トリメチルシクロヘキサ
ノン99.691/Vt%、トランスー3.3.5−ト
リメチルシクロヘキサノール0゜26wt%、その他0
.05wt%である。
The composition of the product obtained by removing low boiling temperature and high temperature boiling of this reaction liquid in the M column is 3.3.5-trimethylcyclohexanone 99.691/Vt%, trans-3.3.5-trimethyl Cyclohexanol 0゜26wt%, other 0
.. 05wt%.

比咬例 反応器にイソホロン900!J、インプロピルアルコー
ル100fJ、ラネーニッケル触媒40に9を仕込み、
反応温度を38℃に保ちながら、水素ガスを163N立
米/Hの速度で仕込み、ポンプで循環し、水添反応を行
った。
Isophorone 900 for the ratio bite reactor! J, inpropyl alcohol 100 fJ, Raney nickel catalyst 40 charged with 9,
While maintaining the reaction temperature at 38°C, hydrogen gas was charged at a rate of 163N cubic meters/H and circulated with a pump to carry out a hydrogenation reaction.

反応圧力は4〜9にぴ/rrtGである。The reaction pressure is 4 to 9 pi/rrtG.

反応時間約3時間後の反応:層液よりラネーニッケル触
媒を分列した。
Reaction after about 3 hours of reaction time: Raney nickel catalyst was separated from the layer liquid.

反応m液の組成は、ガスクロ分析によると、3゜3.5
−トリメチルシクロへキサノン81.54W i ’%
 、  トランス−3,3,5−トリメチルシクロヘキ
サノール4.15wt%、シス−3,3゜5−トリメチ
ルシクロヘキサノール0.75wt%、イソホロン9.
24wt%、イソプロピルアルコール4.18wt%、
その他0.14Wt’%であった。
According to gas chromatography, the composition of reaction solution M was 3°3.5.
-Trimethylcyclohexanone 81.54W i'%
, trans-3,3,5-trimethylcyclohexanol 4.15wt%, cis-3,3°5-trimethylcyclohexanol 0.75wt%, isophorone 9.
24wt%, isopropyl alcohol 4.18wt%,
Others were 0.14 Wt'%.

この反応、i11液を精製塔にて脱低沸及び脱高沸を1
qって1qた製品の組成は、3,3.5−トリメデルシ
クロへキサノン96.54W−t:%、トランスー3 
+ 3 + 5−トリメブールシクロへキナノール3゜
42wt%、そのft!!0.04wt%である。
In this reaction, the i11 liquid is removed from low boiling point and high boiling point by 1 in a purification column.
The composition of the product, where q is 1q, is 3,3.5-trimedelcyclohexanone 96.54W-t:%, trans-3
+ 3 + 5-trimebulccyclohequinanol 3°42wt%, its ft! ! It is 0.04wt%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を通用する反応装コ、′M製の
ための蒸留塔などのフローシートであり、4が温度制御
ができろ水添反応器である。
FIG. 1 is a flow sheet of a reaction vessel, a distillation column for producing M, etc., which can be used in the method of the present invention, and 4 is a hydrogenation reactor whose temperature can be controlled.

Claims (1)

【特許請求の範囲】[Claims] イソホロンを部分水添して、3,3,5−トリメチルシ
クロヘキサノンを製造する方法において、接触還元触媒
としてラネーニッケルを用い、イソホロンを水素ガスの
加圧下、25℃以下反応温度で反応させることを特徴と
する3,3,5−トリメチルシクロヘキサノンの製造方
法。
A method for producing 3,3,5-trimethylcyclohexanone by partially hydrogenating isophorone, characterized by using Raney nickel as a catalytic reduction catalyst and reacting isophorone under pressure of hydrogen gas at a reaction temperature of 25°C or less. A method for producing 3,3,5-trimethylcyclohexanone.
JP62020697A 1987-01-31 1987-01-31 Method for producing 3,3,5-trimethylcyclohexanone Expired - Lifetime JPH0749385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020697A JPH0749385B2 (en) 1987-01-31 1987-01-31 Method for producing 3,3,5-trimethylcyclohexanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020697A JPH0749385B2 (en) 1987-01-31 1987-01-31 Method for producing 3,3,5-trimethylcyclohexanone

Publications (2)

Publication Number Publication Date
JPS63188642A true JPS63188642A (en) 1988-08-04
JPH0749385B2 JPH0749385B2 (en) 1995-05-31

Family

ID=12034345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020697A Expired - Lifetime JPH0749385B2 (en) 1987-01-31 1987-01-31 Method for producing 3,3,5-trimethylcyclohexanone

Country Status (1)

Country Link
JP (1) JPH0749385B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728891A (en) * 1990-07-08 1998-03-17 Huels Aktiengesellschaft Process for the preparation of 3,3,5-trimethylcyclohexanone
CN105061176A (en) * 2015-07-22 2015-11-18 黄河三角洲京博化工研究院有限公司 Fixed-bed synthetic method for 3,3,5-trimethylcyclohexanone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728891A (en) * 1990-07-08 1998-03-17 Huels Aktiengesellschaft Process for the preparation of 3,3,5-trimethylcyclohexanone
CN105061176A (en) * 2015-07-22 2015-11-18 黄河三角洲京博化工研究院有限公司 Fixed-bed synthetic method for 3,3,5-trimethylcyclohexanone

Also Published As

Publication number Publication date
JPH0749385B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JP3380295B2 (en) Method for producing 1,3-propanediol
US3268588A (en) Process for producing hexamethylenediamine from 1-6-hexanediol
EP0126299B1 (en) Multi-step process for the preparation of 1,6-hexamethylenediisocyanate and for isomeric aliphatic diisocyanates
US3347917A (en) Process for the preparation of di (paraaminocyclohexyl) methane
US4900868A (en) Process for producing N,N&#39;-disubstituted paraphenylene diamine mixtures by sequential reductive alkylation
US11142513B2 (en) Method for simultaneously preparing 2-ethoxyphenol and 1,3-benzodioxolane-2-one
US5981810A (en) Process for preparing 1,4-butanediol
JPH05378B2 (en)
JPS63188642A (en) Production of 3,3,5-trimethylcyclohexanone
EP1975146B1 (en) Process for production of 1,6-hexanediol
EP3873888A1 (en) Preparation of 2-substituted 4-methyl-tetrahydropyrans from 2-substituted 4-hydroxy-4-methyl-tetrahydropyrans as starting materials
DE69123951T2 (en) BF3-catalyzed acetylation of butylbenzene
US4064186A (en) Hydrogenation of styrene oxide to produce 2-phenylethanol
US3769331A (en) Process for the preparation of acetates of 1,3-propanediol
US3141036A (en) Cyclohexane carboxylic acid produced by hydrogenation of molten benzoic acid
JPH0322859B2 (en)
US4016201A (en) Process for the preparation of acetoxybutanols
EP0869951A1 (en) Method of producing 1,6-hexane diol from epoxybutadiene
JP2013523797A (en) Process for producing asymmetric secondary tert-butylamine in gas phase
JPH1045645A (en) Production of 1,4-cyclohexanedimethanol
JPS62123154A (en) Production of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
US3914291A (en) Process for splitting cycloaliphatic hydroperoxides
JPH09165348A (en) Separation of cyclohexene
JPS6357545A (en) Production of dihydroisophorone
JPH06321849A (en) Preparation of cyclohexyl adipate and adipic acid

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term