JPS63188417A - Control method for plate thickness in rolling mill - Google Patents
Control method for plate thickness in rolling millInfo
- Publication number
- JPS63188417A JPS63188417A JP62018175A JP1817587A JPS63188417A JP S63188417 A JPS63188417 A JP S63188417A JP 62018175 A JP62018175 A JP 62018175A JP 1817587 A JP1817587 A JP 1817587A JP S63188417 A JPS63188417 A JP S63188417A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- mill
- plate thickness
- value
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims description 17
- 238000012937 correction Methods 0.000 claims abstract description 20
- 238000005259 measurement Methods 0.000 claims abstract description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 238000013459 approach Methods 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/58—Roll-force control; Roll-gap control
- B21B37/64—Mill spring or roll spring compensation systems, e.g. control of prestressed mill stands
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、鋼板等の圧延中に圧下位置を修正制御するこ
とにより圧延後の板材の板厚を所定値に維持する圧延機
の板厚制御’a方法に関する。特に圧延中に変化するミ
ル剛性係数の現在値を常に正確に求めることにより、高
精度でかつ安定した制?Bを実現する圧延機の板厚制御
方法に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for improving the thickness of a rolling mill that maintains the thickness of a plate material after rolling at a predetermined value by correcting and controlling the rolling position during rolling of a steel plate, etc. Concerning control'a method. In particular, by always accurately determining the current value of the mill stiffness coefficient that changes during rolling, highly accurate and stable control can be achieved. The present invention relates to a method for controlling plate thickness of a rolling mill that achieves B.
(従来の技術)
鋼板等の圧延中の出側板厚りは一般的にゲージメータ式
により次式(Z)で表現される。(Prior Art) The thickness of a steel plate or the like at the exit side during rolling is generally expressed by the following formula (Z) using a gauge meter formula.
h=s+ (P/M) ・・・(1)ただし、
h:出側板厚
S:無負荷時のロールギャップ(圧下位置)P;圧延荷
重
M:ミル剛性係数
である。h=s+ (P/M)...(1) However, h: Output plate thickness S: Roll gap (rolling position) at no load P; Rolling load M: Mill rigidity coefficient.
また、ロックオン時を基準とした時の圧延中の出側板厚
偏差Δhは次式(2)で表現される。Further, the exit side plate thickness deviation Δh during rolling when based on the lock-on time is expressed by the following equation (2).
Δh撃ΔS+(ΔP /M) ・・・(2)ただし、 ΔS冨33(1 Δp=p−pe Δh臨h−h。Δh attack ΔS+(ΔP/M)...(2) However, ΔS tonnage 33 (1 Δp=p-pe Δh-h-h.
であり、So 、Po 、haは、それぞれ基準時(ロ
ックオン時)の圧下位置、圧延荷重、出側板厚である。So, Po, and ha are the rolling position, rolling load, and exit side plate thickness at the reference time (lock-on time), respectively.
ゲージメータ式による自動板厚制御では、(2)式によ
り、板厚偏差Δhを検出し、これが零に近づくように圧
下位置を修正制御している。この際の圧下位置修正指令
量ΔSrは一般に次式(3)で与えられる。In automatic plate thickness control using a gauge meter, the plate thickness deviation Δh is detected using equation (2), and the rolling position is corrected and controlled so that this deviation approaches zero. The reduction position correction command amount ΔSr at this time is generally given by the following equation (3).
ΔSr−−KA ・(ΔP/M) ・・・(31ここ
で、Kmはスケールファクタゲインであり、板厚制御精
度上はKa”1であることが好ましい。ΔSr−-KA·(ΔP/M) (31 Here, Km is a scale factor gain, and is preferably Ka″1 in terms of plate thickness control accuracy.
しかし種々の外乱に対し安定な制御を行う必要からに、
<1の範囲で可能な限り大きい値に設定して制御してい
る。However, due to the need to perform stable control against various disturbances,
Control is performed by setting the value to be as large as possible within the range <1.
またM()ン/−耐 はミル剛性係数であり、ミルの伸
びに対する圧延荷重変化を示すパラメータである。従っ
て(3)式の右辺中の八P/Mの項は、圧延条件め変化
、例えば入側板厚Hの変化ΔH1圧延材料の塑性係数Q
の変化等により発生した荷重変動ΔPによるミルの伸び
量を示す。Further, M()n/-resistance is the mill rigidity coefficient, and is a parameter indicating the change in rolling load with respect to the elongation of the mill. Therefore, the term 8P/M in the right-hand side of equation (3) is the change in rolling conditions, for example, the change in the entrance plate thickness H1, the plasticity coefficient Q of the rolled material
It shows the amount of elongation of the mill due to load fluctuation ΔP caused by changes in .
(3)式により圧下位置を修正することにより板厚偏差
Δhを零に近づけ、板厚を常にほぼ所定値に維持するこ
とができる理由は次のとおりである。The reason why the plate thickness deviation Δh can be brought closer to zero and the plate thickness can always be maintained at approximately a predetermined value by correcting the rolling position using equation (3) is as follows.
第2図は、圧下位置を一定とした場合における出側板厚
りと圧延荷重Pの関係
h−3+ (P/M) ・・・+11を示すグラフで
ある。第2図においてロックオン点での基準状態A、に
おける入側板厚をHe、圧下位置をSo、圧下荷重をP
o、出側板厚をhoとする。ここで基準状a八〇に対し
、入側板厚H。FIG. 2 is a graph showing the relationship h-3+ (P/M)...+11 between the thickness of the exit side plate and the rolling load P when the rolling position is constant. In Fig. 2, in the reference state A at the lock-on point, the entry side plate thickness is He, the rolling position is So, and the rolling load is P.
o, and the outlet side plate thickness is ho. Here, for the reference state a80, the entrance side plate thickness H.
がΔHだけ増大すると荷重はΔP、出側板厚はΔhだけ
それぞれ増加し、状ta A+に移行する。When increases by ΔH, the load increases by ΔP and the outlet plate thickness increases by Δh, shifting to the state ta A+.
この時、理想的な板厚制御が行われ圧下位置がS、から
ΔSだけ修正されるとA!で示される状態になり、この
際の圧延荷重はP2となる。At this time, if ideal plate thickness control is performed and the rolling position is corrected by ΔS from S, then A! The state shown in is reached, and the rolling load at this time is P2.
ゲージメータ式による板厚自動制御における圧下位置修
正指令量ΔSrは上述のように(3)式により算出され
る。ところで従来においては、(3)式において用いら
れるミル剛性係数Mの値は、圧延材を噛む込む際に設定
された値に固定されることが多かりた。しかしミル剛性
係数Mは圧延荷重Pの大きさに依存する量である。この
ため(3)式で圧下位置修正量ΔSrの算出に用いられ
るMの値が不正確となり板厚制御の精度が悪化する。The reduction position correction command amount ΔSr in automatic plate thickness control using a gauge meter type is calculated by equation (3) as described above. In the past, the value of the mill rigidity coefficient M used in equation (3) was often fixed to a value set when the rolled material was bitten. However, the mill stiffness coefficient M is a quantity that depends on the magnitude of the rolling load P. For this reason, the value of M used to calculate the reduction position correction amount ΔSr in equation (3) becomes inaccurate, and the accuracy of plate thickness control deteriorates.
このようにミル剛性係数Mを固定したままの板厚制御の
精度を改善するため、例えば特開昭60−9512号公
報は既に、圧延荷重Pの変動に合せ、圧下位置修正量の
算出に用いる係数Mの値を変更することを提案する。In order to improve the accuracy of plate thickness control while keeping the mill stiffness coefficient M fixed, for example, Japanese Patent Application Laid-Open No. 60-9512 has already proposed a method that uses a method to calculate the reduction position correction amount in accordance with fluctuations in the rolling load P. We propose to change the value of the coefficient M.
(発明が解決しようとする問題点)
この公報で提案されている制御方法は、それ以前のミル
剛性係数Mを固定したままの制御方法に比べれば制御精
度が向上している。しかしこの公報の方法でも、圧下位
置修正量の算出に用いられるミル剛性係数Mの値はなお
不正確であり、圧下位置修正指令量ΔSrないし板間偏
差Δhの算出に相当の誤差を伴う。(Problems to be Solved by the Invention) The control method proposed in this publication has improved control accuracy compared to the previous control method in which the mill stiffness coefficient M remains fixed. However, even with the method disclosed in this publication, the value of the mill rigidity coefficient M used to calculate the amount of correction of the rolling position is still inaccurate, and a considerable error is involved in calculating the amount of command for correction of the rolling position ΔSr or the deviation between plates Δh.
上記公報等による係数Mを変更する制御方法でも板厚偏
差Δhが正確に算出できない理由について次に第3図を
参照しながら説明する。The reason why the plate thickness deviation Δh cannot be calculated accurately even with the control method of changing the coefficient M according to the above-mentioned publication will be explained next with reference to FIG.
基準状態A、から状態A、に圧延荷重がPoからP+へ
ΔPだけ増加した時の実際の板厚偏差はΔh (Δh−
ΔP/Mc)である、しかし該公報等の従来方法では、
圧延中の圧延荷重値P、におけるミル剛性特性曲線の接
線の傾きを制御量算出用ミル剛性係数M1としている。When the rolling load increases from Po to P+ by ΔP from standard state A to state A, the actual plate thickness deviation is Δh (Δh−
ΔP/Mc), but in the conventional method such as that of the publication,
The slope of the tangent to the mill stiffness characteristic curve at the rolling load value P during rolling is defined as the mill stiffness coefficient M1 for calculating the control amount.
ところがこの係数M+を用いて算出された検出板厚偏差
はΔh’(Δh゛=ΔP / M + )であり、実際
の偏差Δhに対しΔh〉Δh”となる、即ち、ミル剛性
係数を過大評価しているため算出板厚偏差および圧下修
正量が過小となり、板厚制御精度が低下する。However, the detected plate thickness deviation calculated using this coefficient M+ is Δh' (Δh゛=ΔP/M + ), and Δh>Δh'' with respect to the actual deviation Δh, that is, the mill stiffness coefficient is overestimated. Therefore, the calculated plate thickness deviation and reduction correction amount become too small, and the plate thickness control accuracy decreases.
一方、基準状態A、に対し、圧延差荷重Pが減少した場
合は、上の説明とは逆に、ミル剛性係数を過小評価する
ことになるため、(3)弐において等価的にKa>1で
制御する結果となり、圧下修正量が過大となる。従って
板厚制御精度を低下させるのみならず場合によっては制
御が不安定となり圧延作業そのものに支障をきたす場合
がある。このために、を安全な余裕を持った低い値に設
定せざるを得ない。これはさらに制御精度を悪化させる
。On the other hand, if the rolling differential load P decreases with respect to the standard state A, contrary to the above explanation, the mill stiffness coefficient will be underestimated. As a result, the amount of reduction correction becomes excessive. Therefore, not only the accuracy of plate thickness control is reduced, but also the control becomes unstable in some cases, which may impede the rolling operation itself. For this reason, we have to set it to a low value with a safe margin. This further deteriorates control accuracy.
従って本発明の目的は、上述の従来の方法における制御
精度や制御安定性を改善するため、圧延条件−とりわけ
圧延荷重変化に応じて、ミル剛性係数を逐次正確に求め
ることにより、最適なゲインでの制御を可能とする圧延
機の板厚制御方法を提供することである。Therefore, an object of the present invention is to improve control accuracy and control stability in the conventional method described above, by successively and accurately determining the mill stiffness coefficient according to rolling conditions, especially changes in rolling load, so as to obtain an optimal gain. An object of the present invention is to provide a method for controlling plate thickness of a rolling mill that enables control of the thickness of a rolling mill.
(問題点を解決するための手段)
かくして本発明の要旨とするところは、圧延時に圧延荷
重を検出して板厚偏差を求め、該板厚偏差が零に近づく
ように圧下位置を修正制御する自動板厚制御方法におい
て、
予め圧延荷重とミル剛性係数の関係を実測により決定す
ることと、
ロックオン時は上記の関係において圧延荷重ロックオン
値に対応するミル剛性係数の値を制御用ミル剛性係数と
し、ロックオン後は、上記の関係において圧延荷重ロッ
クオン値に対応するミル剛性係数の値と圧延中の圧延荷
重検出値に対応するミル剛性係数の値の中間値を制御用
ミル剛性係数として圧下位置修正量を算出することと、
を特徴とする圧延機の板厚制御方法である。(Means for Solving the Problems) Thus, the gist of the present invention is to detect the rolling load during rolling, obtain the plate thickness deviation, and correct and control the rolling position so that the plate thickness deviation approaches zero. In the automatic plate thickness control method, the relationship between rolling load and mill stiffness coefficient is determined in advance by actual measurement, and at lock-on, the value of the mill stiffness coefficient corresponding to the rolling load lock-on value in the above relationship is used as the mill stiffness for control. After lock-on, the intermediate value between the value of the mill rigidity coefficient corresponding to the rolling load lock-on value and the value of the mill rigidity coefficient corresponding to the rolling load detection value during rolling in the above relationship is used as the mill rigidity coefficient for control. Calculating the reduction position correction amount as
This is a method for controlling plate thickness of a rolling mill, which is characterized by the following.
(作用)
圧下位置修正量の算出に用いる制御用ミル剛性係数は、
予め実験的に決定された圧延荷重とミル剛性係数の関係
を用い、圧延中は圧延荷重のロックオン時と圧延中の圧
延荷重検出値に対応するミル剛性係数の中間値として求
められる。ここで中間値とは、次の意味で用いる。第3
図に示されたミル剛性特性曲線において、圧延荷重ロッ
クオン値P0に対応するミル剛性係数はMoであり、圧
延中の圧延荷重検出値P1に対応するミル剛性係数はM
、であるが、これらのミル剛性係数M0、M、の中間値
Mcとは、ミル剛性特性曲線において圧延荷重P0およ
びP、に対応する2点A。、A、を結ぶ弦(直線)の傾
きで支えられる値を言うものとする。(Effect) The control mill rigidity coefficient used to calculate the rolling position correction amount is:
Using the relationship between the rolling load and the mill rigidity coefficient determined experimentally in advance, the mill rigidity coefficient during rolling is determined as the intermediate value between the mill rigidity coefficients corresponding to the rolling load detection value at lock-on of the rolling load and during rolling. The intermediate value is used here in the following meaning. Third
In the mill stiffness characteristic curve shown in the figure, the mill stiffness coefficient corresponding to the rolling load lock-on value P0 is Mo, and the mill stiffness coefficient corresponding to the rolling load detection value P1 during rolling is M
, but the intermediate value Mc of these mill stiffness coefficients M0 and M is two points A corresponding to the rolling loads P0 and P on the mill stiffness characteristic curve. , A, is the value supported by the slope of the chord (straight line) connecting .
従ってこの制御用ミル剛性係数を用いて算出された圧下
位置修正量は圧延中においても正確に板厚偏差を修正す
るものである。Therefore, the reduction position correction amount calculated using this controlling mill rigidity coefficient accurately corrects the plate thickness deviation even during rolling.
(実施例)
次に第1図におよび第4図を参照しながら本発明の実施
例について詳しく説明する。(Example) Next, an example of the present invention will be described in detail with reference to FIG. 1 and FIG. 4.
第1図は本発明の板厚制御方法により圧延板厚を制御す
る制御系のブロック図である。FIG. 1 is a block diagram of a control system for controlling the thickness of a rolled plate by the plate thickness control method of the present invention.
鋼板1は、圧延機スタンド2により入側板r!I−Hか
ら出側板厚りに圧延される。ロードセル2aは、圧延荷
重Pを検出し、演算制御装置3に出力する。The steel plate 1 is rolled into the entry side plate r! by the rolling mill stand 2. It is rolled from I-H to the thickness of the exit side. The load cell 2a detects the rolling load P and outputs it to the arithmetic and control device 3.
演算制御装置3は、そのメモリ内に予め実測により決定
された圧延荷重Pとミル剛性係数Mの関係を記憶する。The arithmetic and control device 3 stores in its memory the relationship between the rolling load P and the mill stiffness coefficient M, which has been determined in advance through actual measurements.
第4図はこの実測により決定された圧延荷重Pとミル剛
性係数Mの関係(P−M特性)をグラフで示したもので
ある。第3図のミル剛性特性曲線で示されるミル剛性特
性を圧延作業前にロールキス状態で実測により決定し、
各荷重での接線の傾きからその点でのミル剛性係数を求
める。次に第4図に示す圧延荷MPとミル剛性係数Mの
関係をP−M特性として算出し、予め演算制御装置3の
回路3aのメモリに記憶しておく。FIG. 4 is a graph showing the relationship between the rolling load P and the mill stiffness coefficient M (PM characteristic) determined by this actual measurement. The mill stiffness characteristics shown in the mill stiffness characteristic curve in Figure 3 were determined by actual measurements in a roll kiss state before rolling operation.
Find the mill stiffness coefficient at that point from the slope of the tangent at each load. Next, the relationship between the rolling load MP and the mill stiffness coefficient M shown in FIG. 4 is calculated as a PM characteristic and stored in advance in the memory of the circuit 3a of the arithmetic and control unit 3.
回路3aは、圧延開始時には第4図の関係(P−M特性
)においてロックオン圧延荷重P0に対応する係数M、
をメモリから読み出し、これを制御用ミル剛性係数Mc
として出力する。また圧延中にロックオン点P0から荷
重Pが変化した場合は、その時点での圧延荷重P、に対
応する係数M、を読み出しロックオン時のMoとの中間
値を制御用ミル剛性係数Mcとして出力する。ここで中
間値とは、次の意味で用いる。第3図に示されたミル剛
性特性曲線において、圧延荷重ロックオン値P。The circuit 3a has a coefficient M corresponding to the lock-on rolling load P0 in the relationship shown in FIG. 4 (P-M characteristic) at the start of rolling.
is read from the memory and used as the control mill stiffness coefficient Mc
Output as . Also, if the load P changes from the lock-on point P0 during rolling, the coefficient M corresponding to the rolling load P at that point is read out, and the intermediate value between Mo and Mo at the time of lock-on is used as the control mill rigidity coefficient Mc. Output. The intermediate value is used here in the following meaning. In the mill stiffness characteristic curve shown in FIG. 3, the rolling load lock-on value P.
に対応するミル剛性係数はMoであり、圧延中の圧延荷
重検出値P、に対応するミル剛性係数はMIであるが、
これらのミル剛性係数Mo 、M、の中間値Mcとは、
ミル剛性特性曲線において圧延荷重P、およびPlに対
応する2点As、A+を結ぶ弦(直線)の傾きで支えら
れる値を言うものとする。なお回路3aは、再ロツクオ
ン時も上述のロックオン時と同様に動作する。The mill rigidity coefficient corresponding to is Mo, and the mill rigidity coefficient corresponding to the rolling load detection value P during rolling is MI,
The intermediate value Mc of these mill stiffness coefficients Mo, M is:
It refers to the value supported by the slope of the chord (straight line) connecting the two points As and A+ corresponding to the rolling load P and Pl in the mill stiffness characteristic curve. Note that the circuit 3a operates in the same manner as in the above-mentioned lock-on during re-lock-on.
演算制御装置3内の回路3b、3Cは、基準時(ロック
オン時)における圧延荷重P0、圧下位置S。The circuits 3b and 3C in the arithmetic and control device 3 are the rolling load P0 and the rolling position S at the reference time (lock-on time).
と、圧延中の圧延荷重P、圧下位置Sの差ΔP、ΔSを
それぞれ演算する。Then, the differences ΔP and ΔS between the rolling load P and the rolling position S during rolling are calculated, respectively.
演算回路3dは回路3a〜3Cの出力Mc、ΔP1ΔS
に基づき次式により板厚偏差Δhを算出する。The arithmetic circuit 3d receives the outputs Mc and ΔP1ΔS of the circuits 3a to 3C.
The plate thickness deviation Δh is calculated based on the following formula.
Δh畠ΔS+(ΔP/Mc) ・・・(4)また演算
回路3eは、回路3a、3bの出力Mc、ΔPに基づき
、適当なスケールファクタゲインKAを用いて次式によ
り圧下位置修正量ΔS1を演算する。Δh Hatake ΔS+(ΔP/Mc) (4) Also, based on the outputs Mc and ΔP of the circuits 3a and 3b, the arithmetic circuit 3e calculates the reduction position correction amount ΔS1 using the following formula using an appropriate scale factor gain KA. calculate.
ΔS1 嵩−に、・(ΔP/Mc)・・・(5)上で算
出された修正量ΔSIをそのままスタンド2への圧下位
置修正指令量として用いても良いが、さらにモニター制
御圧下修正指令量ΔS□を加え、
ΔSs”ΔS1 +ΔS! ・・・・・(ηで与えられ
る量ΔS、を圧下位置修正指令量として用いることが好
ましい。ΔS1 Volume - (ΔP/Mc)...(5) The correction amount ΔSI calculated above may be used as it is as the reduction position correction command amount to the stand 2, but the monitor control pressure reduction correction command amount may also be used as it is. Adding ΔS□, ΔSs”ΔS1 +ΔS! (It is preferable to use the amount ΔS given by η as the reduction position correction command amount.
(発明の効果)
本発明によれば予め圧延荷重とミル剛性係数の関係を実
測により定め、この関係を用いて圧延中に変化するミル
剛性係数を制御用ミル剛性係数として正確に評価できる
ので、ゲージメータ式自動板厚制御におけるスケールフ
ァクタゲインKAが従来より1に近い値に設定可能であ
り、板厚制御精度を向上させるとともに制御の安定性を
増すことができる。(Effects of the Invention) According to the present invention, the relationship between the rolling load and the mill rigidity coefficient can be determined in advance by actual measurement, and using this relationship, the mill rigidity coefficient that changes during rolling can be accurately evaluated as the mill rigidity coefficient for control. The scale factor gain KA in gauge meter type automatic plate thickness control can be set to a value closer to 1 than in the past, improving plate thickness control accuracy and increasing control stability.
従って板厚の精度を向上させるだけではなく作業の中断
等による能率の低下を防止する効果がある。Therefore, it is effective not only to improve the accuracy of plate thickness but also to prevent a decrease in efficiency due to work interruptions, etc.
第1図は、本発明にかかる制御方法を実施するための制
御系のブロック図;
第2図は、板厚制御における圧下位置修正量決定の原理
を示すグラフ;
第3図は、従来の制御計算用ミル剛性係数に基づく板厚
偏差の算出において生じる誤差を説明するためのグラフ
;および
第4図は、第1図の制御系において用いられる圧延荷重
とミル剛性係数の関係(P−M特性)を示すグラフであ
る。
l:t!j4板
2:圧延機スタンド
3:演算制御装置Fig. 1 is a block diagram of a control system for carrying out the control method according to the present invention; Fig. 2 is a graph showing the principle of determining the reduction position correction amount in plate thickness control; Fig. 3 is a diagram of the conventional control system. A graph for explaining the error that occurs in calculating plate thickness deviation based on the calculation mill stiffness coefficient; and Fig. 4 shows the relationship between the rolling load and the mill stiffness coefficient (P-M characteristics) used in the control system of Fig. 1. ). l:t! j4 plate 2: Rolling mill stand 3: Arithmetic control device
Claims (1)
差が零に近づくように圧下位置を修正制御する自動板厚
制御方法において、 予め圧延荷重とミル剛性係数の関係を実測により決定す
ることと、 ロックオン時は上記の関係において圧延荷重ロックオン
値に対応するミル剛性係数の値を制御用ミル剛性係数と
し、ロックオン後は、上記の関係において圧延荷重ロッ
クオン値に対応するミル剛性係数の値と圧延中の圧延荷
重検出値に対応するミル剛性係数の値の中間値を制御用
ミル剛性係数として圧下位置修正量を算出することと、 を特徴とする圧延機の板厚制御方法。[Claims] In an automatic plate thickness control method that detects a rolling load during rolling to obtain a plate thickness deviation, and corrects and controls a rolling position so that the plate thickness deviation approaches zero, the rolling load and mill rigidity coefficient are determined in advance. Determine the relationship by actual measurement. At the time of lock-on, the value of the mill rigidity coefficient corresponding to the rolling load lock-on value in the above relationship is used as the mill rigidity coefficient for control, and after lock-on, the rolling load in the above relationship is determined. Calculating the reduction position correction amount using the intermediate value of the mill rigidity coefficient corresponding to the lock-on value and the mill rigidity coefficient corresponding to the rolling load detection value during rolling as a control mill rigidity coefficient. A method for controlling plate thickness in a rolling mill.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62018175A JPS63188417A (en) | 1987-01-30 | 1987-01-30 | Control method for plate thickness in rolling mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62018175A JPS63188417A (en) | 1987-01-30 | 1987-01-30 | Control method for plate thickness in rolling mill |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63188417A true JPS63188417A (en) | 1988-08-04 |
JPH0566204B2 JPH0566204B2 (en) | 1993-09-21 |
Family
ID=11964276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62018175A Granted JPS63188417A (en) | 1987-01-30 | 1987-01-30 | Control method for plate thickness in rolling mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63188417A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5580633A (en) * | 1992-04-24 | 1996-12-03 | Tdk Corporation | Magneto-optical disc having a protective layer of cured radiation curable resin containing carbon particles |
-
1987
- 1987-01-30 JP JP62018175A patent/JPS63188417A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5580633A (en) * | 1992-04-24 | 1996-12-03 | Tdk Corporation | Magneto-optical disc having a protective layer of cured radiation curable resin containing carbon particles |
Also Published As
Publication number | Publication date |
---|---|
JPH0566204B2 (en) | 1993-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS595364B2 (en) | Tension control method | |
JPS63188417A (en) | Control method for plate thickness in rolling mill | |
JPH0569021A (en) | Method and device for controlling rolling mill | |
JPH1110215A (en) | Method for controlling wedge of hot rolled stock | |
JPS6224809A (en) | Method for controlling sheet width in hot rolling | |
JPH0249166B2 (en) | ||
JP4238621B2 (en) | Method for controlling meandering and manufacturing method of rolled steel sheet | |
JPH08332506A (en) | Method for controlling thickness of taper plate | |
KR20030039280A (en) | Method for compensating the tention between each stands of press mill | |
JPS6347522B2 (en) | ||
JPS6249123B2 (en) | ||
JPS5851771B2 (en) | Meandering control method in rolling | |
JPH11319927A (en) | Strip shape control method in cold rolling | |
JPS59183918A (en) | Gage meter type automatic controlling method of plate thickness | |
JPH0261847B2 (en) | ||
JP3800646B2 (en) | Thickness control device | |
JPS62197211A (en) | Plate thickness control method utilizing mill rigidity detection value | |
JPS6225444B2 (en) | ||
JPH06114428A (en) | Method for controlling sheet thickens at tip of hot continuous roll mill | |
JPH06304635A (en) | Method for controlling plate thickness at bitten end part in plate rolling | |
JPS6146202B2 (en) | ||
JPH02112815A (en) | Automatic sheet thickness control for rolling mill | |
JPS63207408A (en) | Rolling method for preventing sheet form bending in hot rough rolling stage | |
JPS6171118A (en) | Opening revision control method of edger mill roll | |
JPH09253717A (en) | Method for rolling bar steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |