JPS63187571A - Positive plate for battery and its manufacture - Google Patents

Positive plate for battery and its manufacture

Info

Publication number
JPS63187571A
JPS63187571A JP62019310A JP1931087A JPS63187571A JP S63187571 A JPS63187571 A JP S63187571A JP 62019310 A JP62019310 A JP 62019310A JP 1931087 A JP1931087 A JP 1931087A JP S63187571 A JPS63187571 A JP S63187571A
Authority
JP
Japan
Prior art keywords
cobalt
positive electrode
nickel
hydroxide
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62019310A
Other languages
Japanese (ja)
Other versions
JPH0793138B2 (en
Inventor
Hideo Yasuda
安田 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP62019310A priority Critical patent/JPH0793138B2/en
Publication of JPS63187571A publication Critical patent/JPS63187571A/en
Publication of JPH0793138B2 publication Critical patent/JPH0793138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To stabilize open circuit voltage for a long time, to enable the residual capacity to be estimated from the change of open circuit voltage, and to obtain a battery having good high rate discharge performance by adding a specified ratio of phosphoric acid to active material mainly comprising hydroxides in which the content ratio of cobalt to nickel and cobalt is specified. CONSTITUTION:1-70 wt% [{P/(Ni+Co)}X100] phosphoric acid is added to active material mainly comprising hydroxides in which the content ratio of cobalt to nickel and cobalt is 15-90 wt%. By using hydroxides in which the content ratio of cobalt is 30-75 wt%, the potential stability of a positive electrode which is allowed to stand in alkaline aqueous solution and during charge- discharge cycle is increased and high rate discharge performance is improved. Furthermore, by adding phosphoric acid, even it the content ratio of expensive cobalt is decreased to 15 wt% or increased to 90 wt%, the performance equivalent to or exceeding that of a conventional positive plate can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 木5を明は、曲鉛、カドミウムあるいは鉄をf′!極板
とする電池の正極板及びその%J造方法に関するしので
ある。その正極板の特徴は、ニッケルと」バルトとに対
するコバルトの含有率が15〜90wt%の水酸化物を
主体とする活物質に、リン酸が1〜70wt%[{P/
 (Ni +Co ) ) X 1001含まれること
である。この正俺板を用いることにより、従来の正極板
を用いた電池に比して、艮朋間安定してその間路電(ひ
の変化かCう残r?容量を知ることができ、かつ高率1
1i電性能が良好な電池とすることができる。。 従来の技術 現在使用されている一次電池の正(折活物質には二酸化
マンガンや酸化銀、二次電池の正極活物質には二酸化1
)や水酸化ニッノノルがある。これらの活物質は、それ
ぞれ用途に応じて選択される。近年、17機器の小形化
、軒に化に伴って新しいへ性能な一次電池や二次電池の
出用が期待されている1、最近、正極活物!1としてニ
ッケルとコバルI〜とに対するコバルトの含有室が30
wt%以上の水酸化1171を主体とする活物質を用い
た正極板と、カドミウム、亜鉛あるいは鉄からなるf2
 h板とで構成されたノフルカリ電池は、従来の水酸化
ニラ9ルを用いた電池に比して、△h効率がほぼ100
%と極めて高く、しかち充放電に伴って開路1u圧が人
さく変化づる特徴をちら、そのrjtl I電圧で電池
容≠を容易に知ることがでさることが見い出された(例
えば特開昭60−163382目公報参照)。このよう
な新しい1能を有した電池の高性能化がさらに期待され
ている。 発四が解決し」、つとする問題LX L記のJ、′うに、ニッケルと二1バルトとにλ・すす
る二1バルトの含イi室が30wt%Iス上の水酸化物
を−[休とした活物質を用いた正極板のΔh効率は1〜
めてnく、しかも充放゛、tに伴う間路宙位の変化は大
きいことが児い出されたが、このような正惨板を艮1シ
1間アルカリ水溶液中′(゛数置したり、ヂd欣“、U
を捏り返すと、電位が徐々に円方向に変動し、従来のニ
ラ9ル・曲!f) ’=fx池やニッケル・カドミラl
え宙H11,!に用いられている水酸化ニッケル正極板
のfi徴とほとんど変らなくイにるという欠点があるこ
とがわかってきた。またコバルトtよニッケルに比して
高価であるために、(の二]ス1−が八くなるという欠
点も本質的にあった。 問題J−を解決するための丁「2 本発明は、ニッケルとコバルl−とに対づるコバルトの
含r′i十が15〜9owt’6の水酸化物を1休どづ
る活物質に、リン酸を1〜70wt%C(r)、′(N
 1十Co ) ) x  1001含ませることによ
って、従来のコバルトの含有率が30〜75 W j 
9Gの水酸化物を用いた場合の問題Jjjであったアル
カリ水溶;1々中での放置及び光IIi市サイすル中に
J5+jる電fi>の安定性を向−1−させるとJtに
、^率放電性能を一改良したものである。さらにリン酸
を添加することで、81市な」バルトの含イi率を+5
wj%まで減少させても、またその含有率を90wt%
に増加させても、従来の正j4+仮とllil等以」−
の11能を1!?ることがでさろようにしたものである
。 実施1t11 ニス下、本光門を実施例を用いて説明゛する。。 先ず、本発明に用いる正極活物質tよ、次の方法で製ン
告づろことがcさる。なJノ、コバル1−の會イ)+
Industrial applications Wood 5 light, curved lead, cadmium or iron f'! This article is about a battery positive electrode plate used as an electrode plate and a manufacturing method thereof. The positive electrode plate is characterized by an active material mainly composed of hydroxide with a cobalt content of 15 to 90 wt% relative to nickel and balt, and a phosphoric acid content of 1 to 70 wt% [{P/
(Ni + Co ) ) X 1001 is included. By using this positive electrode plate, compared to a battery using a conventional positive electrode plate, it is possible to stably determine the remaining capacity of the circuit current (changes in current or current), and the capacity is high. rate 1
A battery with good 1i battery performance can be obtained. . Conventional technology Currently used primary battery positive electrode active materials include manganese dioxide and silver oxide, and secondary battery positive electrode active materials include carbon dioxide.
) and Ninonol hydroxide. These active materials are selected depending on the purpose. In recent years, as devices have become smaller and more compact, new, higher-performance primary and secondary batteries are expected to be used.1.Recently, positive electrode active materials! 1, the cobalt content chamber for nickel and cobal I ~ is 30
A positive electrode plate using an active material mainly consisting of 1171 hydroxide of wt% or more, and an f2 made of cadmium, zinc or iron.
The noflukaline battery constructed with the h plate has a △h efficiency of approximately 100% compared to the conventional battery using nila hydroxide.
It was found that the battery capacity≠ can be easily determined by the rjtl I voltage, which is extremely high as %, and has the characteristic that the open circuit 1u voltage changes appreciably with charging and discharging. 60-163382). Further improvements in the performance of batteries with such new functions are expected. Problem L [The Δh efficiency of the positive electrode plate using a suspended active material is 1~
It was found that the change in the interstitial position with charging and discharging is large. Do, もd欣“, U
When you repeat this, the potential gradually fluctuates in a circular direction, and the conventional leek 9le song! f) '=fx Pond or Nickel Cadmilla l
Eh Sora H11,! It has become clear that the nickel hydroxide positive electrode plate has a flaw that the fi characteristic is almost the same as that of the nickel hydroxide positive electrode plate used in the industry. In addition, since cobalt is more expensive than nickel, it inherently has the disadvantage that (2) 1- becomes 8. Phosphoric acid was added in an amount of 1 to 70 wt% C(r),'(N
By including 10Co)) x 1001, the conventional cobalt content can be reduced from 30 to 75W
The problem when using 9G hydroxide is alkaline aqueous solution. , which has improved the rate discharge performance. Furthermore, by adding phosphoric acid, the content of 81% of baltic acid is increased by +5
Even if the content is reduced to wj%, the content will be reduced to 90wt%.
Even if it is increased to , the conventional positive j4 + provisional and lil etc.
11 Noh of 1! ? It was designed so that it could be done easily. Implementation 1t11 The main light gate under varnish will be explained using an example. . First, the positive electrode active material used in the present invention is manufactured by the following method. Na J no, Kobal 1- meeting)+


よ活物質中の金属ニッケルおよび金属コバルトの18吊
に対する金属コバルトの含有室で人足する。 IIJt5、コバルトの含fi率= <co / (N
i +CO)) x  10100(%)どする。 (a)コバルトの含t′i率が15〜90wt%の混合
溶液、例えばbn Mニッケルと硝酸コバルトの混合溶
液、塩化ニッケルと塩化コバルトの混合溶液、硫酸ニッ
ケルと硫酸コバルトの混合溶液あるい;まこれらのP、
合溶液に、リン酸イオンまたはリン酸1工を加えた後、
水門(ヒナトリウム、水酸化カリウム、水門化リブラム
等のり7ルカリン容、インで遮1’f! してから水洗
・乾燥する。 (bl」パル1〜の含(j甲かLl □ !J OW 
t ’((uの混合溶液、例えば硝酸ニッケルと哨Mコ
バルl−の混合溶液、塩化ニラl)ルと]Δ目ヒコバル
1−の混合C含液、硫酸ニッケルと硫酸コバルE〜の混
合溶:伜あるいはこれらの混合溶液に、リン醇イオン庖
含む水耐化ノ[−リウム、水酸化カリウム、水門化りf
ラム等の)′ルカリ溶液を加えてから水洗・乾燥寸ろ1
゜(C)=バルトの含有率が15〜90wt5’5の硝
酸ニッケルと1Ir1醇コバル[−の′61ご1カある
いはだの程合溶液に、リン酸またはリン酸塩を含11さ
ぜた((,110〜350℃で+nt熱処理し、その(
り水酸化J]〜リウム、水酸化カリウム、水酸化リチウ
ム等のアルカリ溶液に浸、肖してから水洗・乾燥づろ。 (d)コバルトの含有率が15〜90W(%のbl’l
ll!Iニッグルと硝酸1パル1への混合物あるいは(
の:J、A n溶液を 110〜350℃で加熱処理し
た((、リン酸イオンを・含む水酸化“ノ1ヘリウム、
水酸化カリウム、水酸化リヂウム等のアルカリ溶:イl
 t、:浸油してから水洗・乾a する。 基本的には上記のようにして、本発明に用いる正極活物
質を作ることができるが、次に具体的な実施例並びにて
の効果を詳述する。 実施例1 コバル1−の含n率が40wt%になるような硝酸コバ
ルl〜と硝酸ニッケルとの混合水溶液[PI+=1、比
+1’21.Go  (20”C) ]に、リンW (
113P 04 )を36i、、’見加えてから、比重
1.20  <20℃)の水酸化ノー1ヘリウ11水溶
液を加えた。生じた沈l!2物を湯洗した後、130℃
で201間乾燥してから、ボールミルで扮vrシて 1
00メツシユ以下の本発明に用いる活物質粉末を得た。 実施例2 コバル1−の含り率が40wt%にむるようなl1rI
醪コバルトと硝酸ニッケルとの北合水溶液[P H= 
1、比重1.60  (20℃)]に、0.2Mの次り
I−ノン醇−ナトリウム(Na H2PO2)を含む比
i 1,20(20℃)の水酸化ツートリウム水溶液を
加えた。生じた沈澱物を湯洗した後、130℃で2時間
乾燥してから、ボールミルてf5)砕して 100メツ
シユ以Fの本発明に用いる活物質粉末を1!?た。 実施例3 ■】バルトの3右′かが40wt%になるようなLl’
l M mllシルトllr!酸ニッケルとの混合水溶
液[PI+−・1、比重 1.60  (20℃)]に
、リンFa (1」3 POs >を36i/λ加えた
後、250℃で1時間加熱処理した。この生成物を比重
1.20  (20℃)の水酸化ナトリウム水溶液に1
1,1聞漏i6処理してから、 120℃で1時間乾燥
した。その後、湯洗してから、さらに 100℃で1時
間乾燥し、ボールミルでわ)砕して 100メッシ:L
以下の本yh明に用いる活物て1粉末を(りだ。 実施例4 コバル1−の含有率が40wt%に<iるような硝酸コ
バルトと硝酸ニッケルとの混合水溶液[P H= 1、
比重1,60  (20℃) ]を250℃で1時間加
熱処理した。この生成物を0,2Mの次曲リン酸ナトリ
ウム(Na 1+2 PO2)を含む比jfi 1.2
0  (20℃)の水酸化ナトリウム水溶液に1時間浸
漬してから、さらに100℃で111.’1間乾燥し、
その後ボールミルで粉砕して 100メツシユ以下の本
発明に用いる活物t1粉末を1!7た。 次に、L記実施例1・〜4で冑た活物質粉末100部と
導電材としてのカーボニルニッケル粉末10部との混合
粉末を1Wt96のカルボ1−ジメチルセルロースの水
溶液40部で脱線してペースト状にした。次に、このペ
ーストを厚さが1mmの発泡ニラクル体(住友電工(株
)製、商品名セルメツl−)に充填した1(,100℃
C1時間乾燥して本発明による大きさが30ffiI1
1×40111Inの正極根を11だ。なお、実施例1
で1!Iた活物τ1粉末を用いた正(ν扱をΔ、同じ〈
実施例2のものをB、実施例3のものをC1実施例4の
ムのを[)とづる。また前記実施例では活物τ1粉末を
発泡ニラクル体に充填したが、ニッケル・カドミウム1
−8池の活物質保持体である焼結式ニラクル基板を用い
てもtJ作できる。 実施例5 多孔度が約80%の焼結式ニッケル基板に、3627′
文のリンM(H2PO4)を含み、かつコバルi−の含
有率か401%の1.I’l Mコバルトと硝酸ニッケ
ルとの混合水溶1[PH=2、比重1.GO(20℃)
]を減圧含浸した後、比重1.20  (20℃)の水
酸化フートリウム水溶液に1時間浸iFt シてから、
120℃で1時間乾燥した。その後、湯洗してから、さ
らに 100℃で1時間乾燥して本発明によるlT極扱
1: を 得 Iこ 。 実施例6 多孔度が約80%の焼結式ニックルア7% liに、3
61772のリン酸(H3POa )を含み、かつコバ
ルトの含有率が40wt%のlIr1MコバルトとlI
l’l Mニッケルとの混合水溶液[P l−1= 2
 、比重1.60  (20℃)]を減圧含浸した後、
250℃で1池間加熱処理を行なった。その後、比重1
.20  (20℃)の水酸化す]ヘリウム水溶液に1
時間浸泊処理し−Cから、水洗し、100℃で1詩間乾
燥することによりて水光暉1によろ丁(船(及「を1!
7だ。 上記本発明によるiE極根Δ 、C、E  、Fに含ま
れるリン酸の含イf宰は:〕wt%、正(転数13 、
Dの含f;幸は2.711℃%であった。なお、実IA
 !′Aご3,4および6の加熱処Jll! W度が1
10℃未満の場合には、熱分解によって水酸化物が生じ
ない。また加熱処理温r文が350℃を越えると、ニッ
ケルとコバルトの酸化物が生成して活物質としての活性
度が低下して好ましくない。 これらの正極板Δ〜F1枚と、対極として焼結式カドミ
ウム負極板2枚を用い、1M液として比ffl 1.2
50(20℃)の水酸化カリウム水溶液を用いた公称容
量が100IIIAhのフランデッドタイプの電池を製
作して、充電が0.5Cr: 2.2時間、放電が0.
5CでOV (vs、 tl(] / H(10)まで
という充放電を50℃で120ナイクル行なった。充電
開始1をおよび放電開始後2峙間30分目の正極板の電
位の充放電サイクルに(Yう変化を、充電電位について
は第1図に、放電電位についでは第2図に示す。 なお、比較のためにリン酸を含まない硝配=1バルトと
6n酸ニツケルとの混合水溶液を用いた以外は実施例6
と同じようにして製作した従来のin 1.4+ 1J
’tGの・正位変化についても示す。第1図および第2
図から、本発明による正(〜仮の充宙過稈JiJ、び放
電過程の電位は、充放1hサイクルが進んでしほとんど
変化しないのに対して、従来の正々4!板は充放電電イ
ひとも充放電り”イクルが多くなると徐々にC1となり
、充放電サイクルが 100+2イクル程度になるとほ
ぼ一定どなる。この一定となる電位は、通常のニッケル
・カドミウム電池の正極板として使用されているコバル
トの含4j”?/が2・〜10wt%の水酸化ニッケル
正極板の電位と(Jば同じであった。 前記実施例では、=1バルトの3右率が40wt%の場
   −合について述べたが、コバルト・の含有率が1
5〜ioowt%の範囲で、5wr%きざみに同様な実
験を行なって充放電電位の安定性について調べたが、リ
ン酸を含まない正極板は、電位の安定11がなく、特に
i’SF1度が40℃以上の高温下では電位変化が著し
く大さかった。このことは、コバルl−の含有率が30
wt%以上の水酸化ニッケルあるいは水酸化コバルトを
L体とする活*nを11船仮とするアルカリ電池の特徴
であるΔh効ヤが高く、開路′市圧の変化によって電池
の残存容量が検出できるという11点が充放電サイクル
を行なうと徐々に失われることを意味し、特に高温下で
はその傾向が人さかった。したがって、本発明による正
極板の電位安定性は極めて良いと言える。この電(1′
lの安定性は、リン酸イオンの添加によって得られるも
のであること(ユ明らかである。そのリン酸の添加の効
果をさらによく調べるために、実施例3にJ3けるコバ
ルトの添加iflを変えたII−極数を製作し、対(〜
にポリテトラフルオロエチレンわ)末の60%木竹ディ
スパージョン溶液を拮7344として製作したロール式
+m極くポリアミドの不織布とボリエヂレンの微孔性セ
パレータで・包み込/υだもの)を、電解液として酸化
曲鉛を飽和した比重1,300 (20℃)の水酸化カ
リウム水溶液を用い°C1公称容ωが100m△hのフ
ランデッドタイプの電池を製作して、充電が1Cで端子
電圧が1.85 ’Jまで、bり宿が1Cで端子電圧が
1.0■までという充放電を35℃で繰り返した。充放
電リーイクルが 150量ナイクル[1の充電終了後1
5分目の正極板の開路電位および放電終了後30分目の
正極板の開路電位と正極活150のコバルl−の含有率
との関係を第3図に示す。第3図中、11はリン酸を添
加した本発明による正(船(侵、Iはリン酸を添加して
いない従来の正極板の1′I竹である。、013図より
、充電終了19すなわら敢電間始ボ1の開路電位(よ本
発明による正極板1−1と従来のIT極If lの間に
Iよ、はとんど差がないが、放電終了1月の開路電位の
差はコバルトの含有率が15wt%以上に1.ヱると明
確になる。、そして本発明による正!参敗10はコバル
トの含有率が高くなると、開路電位(ま卑になる1¥I
向があるが、従来の正;〜へ1の開路゛、u(ff G
よコバルトの含有率が15W
[
A chamber containing metal cobalt is used for 18 times the amount of metal nickel and metal cobalt in the active material. IIJt5, cobalt fi content = <co/(N
i + CO)) x 10100 (%). (a) A mixed solution with a cobalt content t'i of 15 to 90 wt%, such as a mixed solution of BN M nickel and cobalt nitrate, a mixed solution of nickel chloride and cobalt chloride, a mixed solution of nickel sulfate and cobalt sulfate, or; Well these P,
After adding phosphate ions or phosphoric acid to the combined solution,
Water gate (hysodium, potassium hydroxide, water gate libram, etc. glue 7 lucarin volume, block with in 1'f!, then wash with water and dry.
t' (mixed solution of (U, e.g., mixed solution of nickel nitrate and cobalt sulfate, nila chloride), mixed solution of Δth hikobal 1-, mixed solution of nickel sulfate and cobal sulfate E~ : Or in a mixed solution of these, water-resistant chlorium, potassium hydroxide, sluice containing phosphorus ion, etc.
Rum, etc.)' After adding the lucali solution, wash with water and dry through a sieve 1
゜(C) = Balt content of 15 to 90wt5'5 nickel nitrate and 1Ir1 cobalt [-'61% or more] A solution containing phosphoric acid or a phosphate salt is added to the solution. ((,+nt heat treatment at 110-350℃, the (
Soak in an alkaline solution of hydroxide, potassium hydroxide, lithium hydroxide, etc., then rinse with water and dry. (d) Cobalt content is 15-90W (% bl'l
ll! A mixture of I niggle and nitric acid 1 pal 1 or (
The J, An solution was heat-treated at 110 to 350°C ((, helium hydroxide containing phosphate ions,
Alkaline solutions such as potassium hydroxide and lidium hydroxide:
t.: Immerse in oil, then wash with water and dry a. Basically, the positive electrode active material used in the present invention can be produced as described above, but specific examples and effects thereof will be described in detail below. Example 1 A mixed aqueous solution of cobal nitrate l~ and nickel nitrate such that the n content of cobal 1- was 40 wt% [PI+=1, ratio +1'21. Go (20”C) ], Phosphorus W (
113P 04 ) was added thereto, and then an aqueous solution of hydroxide No. 1 Heliu-11 having a specific gravity of 1.20 (<20° C.) was added. The resulting sink! After washing 2 items with hot water, 130℃
After drying it for 201 minutes, I made it into a VR machine using a ball mill.
An active material powder used in the present invention having a mesh size of 0.00 mesh or less was obtained. Example 2 l1rI with a Kobal-1 content of 40 wt%
Kitago aqueous solution of cobalt moromi and nickel nitrate [PH=
1, specific gravity 1.60 (20°C)] was added an aqueous solution of tuttrium hydroxide containing 0.2M NaH2PO2 with a specific gravity of 1.20 (20°C). The resulting precipitate was washed with hot water, dried at 130°C for 2 hours, and then ground in a ball mill (f5) to obtain active material powder used in the present invention having a mesh size of 100 mesh or less. ? Ta. Example 3 ■] Ll' such that Baltic's 3 right' is 40wt%
l M mll silt llr! After adding 36i/λ of phosphorus Fa (1'3 POs >) to a mixed aqueous solution with acid nickel [PI+-・1, specific gravity 1.60 (20°C)], it was heat-treated at 250°C for 1 hour. 1 in a sodium hydroxide aqueous solution with a specific gravity of 1.20 (20°C).
After 1,1 min. i6 treatment, it was dried at 120°C for 1 hour. After that, it was washed with hot water, dried at 100℃ for 1 hour, and crushed with a ball mill to make 100 mesh: L.
Example 4 A mixed aqueous solution of cobalt nitrate and nickel nitrate such that the cobal content was <i>40 wt% [PH=1,
specific gravity 1.60 (20°C)] was heat-treated at 250°C for 1 hour. This product was mixed with 0.2 M sodium phosphate (Na 1+2 PO2) at a ratio jfi 1.2
0 (20°C) for 1 hour, and then further soaked at 100°C for 111. 'Dry for 1 minute,
Thereafter, it was ground in a ball mill to obtain 1:7 of the live material T1 powder used in the present invention having a size of 100 mesh or less. Next, a mixed powder of 100 parts of the active material powder obtained in Examples 1 to 4 of L and 10 parts of carbonyl nickel powder as a conductive material was dewired with 40 parts of an aqueous solution of 1Wt96 carbo-1-dimethyl cellulose and then paste. It was made into a shape. Next, this paste was filled into a foamed Niracle body (manufactured by Sumitomo Electric Industries, Ltd., trade name Selumetsu l-) with a thickness of 1 mm.
After drying for C1 hour, the size according to the present invention is 30ffiI1
The positive root of 1×40111In is 11. In addition, Example 1
So 1! Positive (ν treatment is Δ, same〈
The one in Example 2 is written as B, the one in Example 3 is written as C, and the one in Example 4 is written as [). In addition, in the above example, the active substance τ1 powder was filled into the foamed Niracle body, but nickel cadmium 1
tJ can also be produced using a sintered Niracle substrate, which is an active material holder for -8 ponds. Example 5 A sintered nickel substrate with a porosity of about 80% was coated with 3627'
1. Contains phosphorus M (H2PO4) and has a Kobal i content of 401%. I'l M Mixed aqueous solution of cobalt and nickel nitrate 1 [PH=2, specific gravity 1. GO (20℃)
] after being impregnated under reduced pressure, immersed in a futrium hydroxide aqueous solution with a specific gravity of 1.20 (20°C) for 1 hour, and then
It was dried at 120°C for 1 hour. Thereafter, it was washed with hot water and further dried at 100°C for 1 hour to obtain the 1T electrode according to the present invention. Example 6 Sintered Nicklure 7% li with a porosity of about 80%, 3
61772 phosphoric acid (H3POa) and a cobalt content of 40 wt% lIr1M cobalt and lI
Mixed aqueous solution with l'l M nickel [P l-1= 2
, specific gravity 1.60 (20°C)] was impregnated under reduced pressure,
Heat treatment was performed at 250°C for one cycle. After that, specific gravity 1
.. 20 (20°C) hydroxide] 1 in a helium aqueous solution
After soaking for an hour, washing with water and drying at 100°C for 1 hour, the water was dried.
It's 7. The content of phosphoric acid contained in the iE polar roots Δ, C, E, and F according to the present invention is:]wt%, positive (transfer number 13,
The content of D was 2.711°C%. In addition, real IA
! 'A heat treatment for 3, 4 and 6 Jll! W degree is 1
If the temperature is less than 10°C, no hydroxide is produced by thermal decomposition. Furthermore, if the heat treatment temperature exceeds 350° C., oxides of nickel and cobalt will be produced, and the activity as an active material will decrease, which is not preferable. Using one of these positive electrode plates Δ~F and two sintered cadmium negative electrode plates as counter electrodes, the ratio ffl was 1.2 as a 1M solution.
A fland-type battery with a nominal capacity of 100IIIAh was fabricated using a potassium hydroxide aqueous solution at 50°C (20°C), charged at 0.5Cr for 2.2 hours, and discharged at 0.5Cr for 2.2 hours.
Charging and discharging up to OV (vs, tl(] / H(10)) at 5C was performed for 120 nicles at 50°C. Charging and discharging cycle of the potential of the positive electrode plate 30 minutes after the start of charging 1 and 2 after the start of discharging. The changes in Y are shown in Figure 1 for the charge potential and Figure 2 for the discharge potential.For comparison, a mixed aqueous solution of 1 balt and 6n nickel without phosphoric acid was used for comparison. Example 6 except that
Conventional in 1.4+ 1J made in the same way as
The change in orientation of 'tG is also shown. Figures 1 and 2
From the figure, it can be seen that the potential during the charging and discharging process of the present invention's positive (~temporary charging/discharging overculm JiJ) hardly changes as the 1-h charging/discharging cycle progresses, whereas the conventional positive 4! As the number of charging and discharging cycles increases, the voltage gradually reaches C1, and becomes almost constant when the charging/discharging cycle reaches about 100 + 2 cycles. The potential of a nickel hydroxide positive electrode plate with a cobalt content of 4j''?/ of 2.~10 wt% (J was the same as that of the nickel hydroxide positive electrode plate). As mentioned above, if the cobalt content is 1
Similar experiments were conducted in the range of 5 to ioowt% in 5w% increments to examine the stability of the charge/discharge potential, but the positive electrode plate that did not contain phosphoric acid did not have potential stability11, especially at i'SF1 degree. However, at high temperatures of 40° C. or higher, the potential change was significantly large. This means that the cobal l- content is 30
The Δh effect, which is a characteristic of alkaline batteries that contain more than wt% of nickel hydroxide or cobalt hydroxide in the L form, is high, and the remaining capacity of the battery can be detected by changes in the open circuit pressure. The 11 points of being able to do so mean that they are gradually lost during charge/discharge cycles, and this tendency was particularly noticeable at high temperatures. Therefore, it can be said that the potential stability of the positive electrode plate according to the present invention is extremely good. This electricity (1'
It is clear that the stability of l is obtained by the addition of phosphate ions. II-The number of poles is made, and the pair (~
A roll type 7344 made of a 60% wood-bamboo dispersion solution containing polytetrafluoroethylene powder is wrapped in a polyamide non-woven fabric and a polyethylene microporous separator, and then the electrolyte solution is Using a potassium hydroxide aqueous solution with a specific gravity of 1,300 (20℃) saturated with curved lead oxide, a flanded type battery with a °C1 nominal capacity ω of 100m△h was fabricated, and the charge was 1C and the terminal voltage was 1. Charging and discharging was repeated at 35°C until .85'J with a voltage of 1C and a terminal voltage of 1.0. Charging/discharging leakage is 150 nicles [1 after charging is completed]
FIG. 3 shows the relationship between the open circuit potential of the positive electrode plate at 5 minutes, the open circuit potential of the positive electrode plate at 30 minutes after the end of discharge, and the cobal l- content of the active positive electrode 150. In Figure 3, 11 is the positive electrode plate of the present invention to which phosphoric acid has been added, I is the conventional positive electrode plate 1'I bamboo to which phosphoric acid is not added. In other words, there is almost no difference in the open-circuit potential at the start of the discharge (1-1) between the positive electrode plate 1-1 according to the present invention and the conventional IT pole, but the open-circuit potential at the end of the discharge is The difference in potential becomes clear when the cobalt content increases to 15 wt% or more.The difference in potential becomes clear when the cobalt content increases to 15 wt% or more.The difference in potential becomes clear when the cobalt content increases by 1. I
There is a positive direction, but the conventional positive;
The cobalt content is 15W

【%以上になっても卑にな
らず、はぼ一定となっていることかゆかる。 このことは、コバルトの含有率が15W[%以上のとこ
ろで、リン酸の添加の効果が明確に現われており、放電
開始前と放電終了後の開路電位との差が充放電サイクル
初+II+とほとんど変らないことを意味し、また従来
の正極板はコバルトの含4″i率が15W1%以上にな
ると、/1り電終了後の電位は充放電サイクルが進むと
肖な方向に変動すると曾える。しかしながら、コバルト
の念4’i 4;が!10 W t % <−’ 、J
!jえろとリン1%りを添加した工博仮の放電キ3了(
りの電1+”114無添加の場合とほとノυど差がない
ことから、リン酸の効果はコバル1への含有室が90w
t%を越えると減少づろどいえる。したがって、コバル
トの含有率は15〜90Wt’?6が好ましい。さらに
放電電位特性例えば放電中間電位(放電持続時間の半分
経過時の電位)は、従来のtTKi板の場合には、コバ
ルトの含有室が15へ一90wt%以−■−の場合、サ
イクルが進むと門になって行くが、本発明の正極板の場
合には、ぞの電1<lの変化は(,1とんどなく安定し
ていた。 本発明による正極板の電位が何故充放電す、イクルの准
11によっても安定しているのかな調べるために、実施
例3で(りた本発明による活物質、Jと実施例3におい
てリン酸を添加しないで製)告したもt来の正極活物r
jKのX線回折図形を第4図に示す。 図より、本発明ににる正極活物!1.Jには回折ピーク
が五2められないが、従来の正極活物τ’jK[は、ニ
ッケルとコバルlへか固溶したNi  (Co )  
(01−1> 2のピークが明確に認められる。このこ
とから1本発明にJ、る活物質は、従来の正(少活νり
1“1に比して明らかに無定形の状態であり、その表面
情が大さいしのと11[定される。 さらに、化学分析によって活物質中のN i (Co)
″+(n>2>の高級酸化1力の定量分析を行なったと
ころ、従来の正極活物tI KにGJ 2価以上のニラ
I)ル亡コバルトが6.3wt%含まれていたのにλ[
シ(、本発明による正極活物質Jには(1,5wt%し
か含まれていくfかった。 これらのことから、リン酸−イオンやリン醇1ムを用い
て製造した本発明による穫板の効果は、次のように4え
ることが(゛さる。叩ら、本発明のようにリン酸イオン
やリン酸塩を用いてコバルトの含f1十が15wt%以
」−の:1パルl−とニッケルとの水酸化物を製茫する
と、無添加の場合に比してBしく結晶)ヒ度が低い状態
のものがでさ、ぞの表面積の大きな活11度の高いもの
が生成し、しかもアルカリ水溶液中の?8q醇索等によ
っ(酸化を菫り難い状態になっているものと思われる。 次に、活物質に含まれるリンPlりの含On’の影響を
調べるために、実り恒例Gにおいてリン酸の間を種々変
えた正極板を製イ1し、対極として焼結式カドミウムf
m !を板2(父を、電解液として比Φ L250(2
0℃)の水酸化カリウム1水溶液を用いて、公称容量が
100m△[)のフラン1−ツドクイブの電池を製作し
、0,1Cで16時間充電した後、5Cで0V(vs、
 lI[) ”11g0)まひ放電したときの利用!キ
】(活物質中のニッケルとコバルトがNi<Co)(0
11)zであるとし、光(l′i電反応が一電了反応に
従うらのと仮定した)を表1に示す。 表1から、リン酸の含有率[{P/(Ni →C。 ))X100]が1wt%以−Eになると利用率が良り
1.1す、リン酸の効果が士じていることがわかる。 またリン酸の含有率が70wj%を越えるとやや利用率
の低下が認められ、またリン酸の含(i率が多くなると
体積当りのエネルギー密度がそれだけ減少するので、実
用上利貞は少なくなる。したがって、実用上からは、リ
ン酸の含イT I’は701%以下とする必要がある。 このJ、うに、水弁ijJによる正極板の+1j用土が
凸いの1よ、1lIJ述したように、本発明ににるi′
[神話物質が非晶質の状態であり、そのため表面積が人
さく、しかし均t1な状r5とくiつてJタリ、敢電時
の過電j工が小さくなるためと乙えられる。。 な(13,6ζfζ実記例以外に、前述した水弁Ill
に用いろ正極活物質の製造方法(a)〜(d)による種
//の方法で製造した正極活物質を用いて木55明によ
る正極板を種々製作して試験に供したが、前記実施例と
同じような(1用効宋を1!することかでさた。 発明の効果 以上)ホべたように本発明にJ、る正)〜板は、従来の
正博板に比して充放電サイクルによる電位の変動は少な
いため、その開路電位の変化によって残存容Mを長期間
、安定して知ることができ、しかも本発明による活物質
は従来の活物質に比して非晶71な状態どく1つている
ため、充放電反応の活性度が高い。したがって、本発明
によって従来にない特徴を(1した二次型11j5よび
一次電池を製作することができろ。
[The fact that it doesn't become mean even if it exceeds % and remains almost constant is interesting. This shows that when the cobalt content is 15W% or more, the effect of adding phosphoric acid is clearly visible, and the difference between the open circuit potential before the start of discharge and after the end of discharge is almost the same as +II+ at the beginning of the charge/discharge cycle. In addition, when the cobalt content of a conventional positive electrode plate reaches 15W1% or more, the potential after the completion of the 1/1 charge will fluctuate in a negative direction as the charge/discharge cycle progresses. .However, the cobalt theory 4'i 4; is !10 W t % <-', J
! J Ero and 1% phosphorus added to the engineering school temporary discharge key 3 (
Since there is almost no difference between Rinoden 1+"114 and the case without additives, the effect of phosphoric acid is that the content chamber in Kobal 1 is 90W.
If it exceeds t%, it can be said that it decreases. Therefore, the cobalt content is 15 to 90 Wt'? 6 is preferred. Furthermore, the discharge potential characteristics, for example, the discharge midpoint potential (potential at half the discharge duration), in the case of a conventional tTKi plate, if the cobalt content chamber is 15 to 90 wt% or more, the cycle progresses. However, in the case of the positive electrode plate of the present invention, the change in the electric potential of 1 < l was almost stable (,1. In order to investigate whether it is also stable with Ikuru's Junction 11, the active material J according to the present invention, prepared without adding phosphoric acid in Example 3, was also tested. positive electrode active material r
The X-ray diffraction pattern of jK is shown in FIG. From the figure, the positive electrode active material according to the present invention! 1. Although there are no diffraction peaks in J, the conventional positive electrode active material τ'jK[ is Ni (Co) dissolved in nickel and cobal.
(A peak of 01-1>2 is clearly recognized. From this, the active material J of the present invention is clearly in an amorphous state compared to the conventional positive (low activity)1"1. It was determined that the surface condition was 11 [11].Furthermore, chemical analysis revealed that Ni (Co) in the active material
When we conducted a quantitative analysis of the higher oxidation power of ``+ (n>2>), it was found that the conventional cathode active material tIK contained 6.3 wt% of cobalt with a valence of more than GJ2. λ[
The positive electrode active material J according to the present invention contained only 1.5 wt%. The effect of this can be summarized as follows: (1) When the cobalt content is 15 wt% or more by using phosphate ions or phosphates as in the present invention, the effect can be summarized as follows: When a hydroxide of - and nickel is made, a hydroxide with a lower degree of heat (b) and a larger surface area than the case without additives is produced. Moreover, it is thought that the condition is such that it is difficult to oxidize due to the presence of ?8q in the alkaline aqueous solution. , In the fruitful annual G, positive electrode plates with various phosphoric acid levels were manufactured, and sintered cadmium f was used as the counter electrode.
M! The ratio of plate 2 (father) to electrolyte is Φ L250 (2
A furan 1-tube battery with a nominal capacity of 100 mΔ[) was made using a potassium hydroxide 1 aqueous solution at 0°C), and after being charged at 0.1C for 16 hours, it was charged at 5C at 0V (vs,
lI[) ”11g0) Use when paralyzing discharge!K] (Nickel and cobalt in the active material are Ni<Co) (0
11) z, and the light (assuming that the l'i electric reaction follows a one-shot reaction) is shown in Table 1. From Table 1, when the phosphoric acid content [{P/(Ni → C.))X100] is 1 wt% or more -E, the utilization rate is good (1.1), indicating that the effect of phosphoric acid is increasing. I understand. Further, when the content of phosphoric acid exceeds 70wj%, a slight decrease in the utilization rate is observed, and as the content of phosphoric acid increases, the energy density per volume decreases accordingly, so the practical efficiency decreases. Therefore, from a practical point of view, the phosphoric acid content T I' must be 701% or less. According to the present invention, i′
[This is thought to be because the mythical substance is in an amorphous state, so the surface area is small, but the uniformity of t1 reduces the overvoltage during energization. . (13,6ζfζIn addition to the actual example, the water valve Ill mentioned above
A variety of positive electrode plates were manufactured using the positive electrode active materials manufactured by the methods (a) to (d) for use in the manufacturing methods (a) to (d) of the positive electrode active materials used in the above methods, and were subjected to tests. Similar to the example (1 effect was to change the Song Dynasty to 1!) As mentioned above, the present invention has been applied to the present invention. Since there is little variation in potential due to discharge cycles, the residual capacity M can be stably known over a long period of time based on changes in the open circuit potential.Moreover, the active material according to the present invention is amorphous 71 compared to conventional active materials. Since there is only one state, the charge/discharge reaction is highly active. Therefore, according to the present invention, it is possible to manufacture a secondary type 11j5 and a primary battery that have features not found in the prior art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による正極板と従来の正極板の充放電サ
イクル経過に伴う充電電位変化の比較図、第2図は本発
明による正極板と従来の正極板の充放電リイクル経過に
伴う放電電位変化の比較図、第3図は本発明にJ、る正
極板と従来の正極板の充電終了後J′3よび放電終了後
の開路電位とコバルトの含有率との関係を示J特付図、
第4図は本発明による正極活物質と従来の正極活物質の
X線回折図形の比較図である。 を枚t’yイクル飲 禿勃1【?イウル敗 才 3 目
Fig. 1 is a comparison diagram of the change in charging potential of the positive electrode plate according to the present invention and the conventional positive electrode plate as the charge/discharge cycle progresses, and Fig. 2 shows the discharge of the positive electrode plate according to the present invention and the conventional positive electrode plate as the charge/discharge cycle progresses. Comparison diagram of potential changes, Figure 3 shows the relationship between the open circuit potential and cobalt content after the completion of charging J'3 and the completion of discharging of the positive electrode plate according to the present invention and the conventional positive electrode plate. ,
FIG. 4 is a comparison diagram of the X-ray diffraction patterns of the positive electrode active material according to the present invention and the conventional positive electrode active material. A piece of t'y cycle drinking bald erection 1 [? Iul loser 3rd

Claims (3)

【特許請求の範囲】[Claims] (1)ニッケルとコバルトとに対するコバルトの含有率
が15〜90wt%の水酸化物を主体とする活物質に、
リン酸が1〜70wt%[{P/(Ni+Co)}×1
00]含まれることを特徴とする電池用正極板。
(1) An active material mainly composed of hydroxide with a cobalt content of 15 to 90 wt% relative to nickel and cobalt,
Phosphoric acid is 1 to 70 wt% [{P/(Ni+Co)}×1
00] A battery positive electrode plate characterized by comprising:
(2)硝酸ニッケルと硝酸コバルトの混合溶液等からな
るニッケルとコバルトとに対するコバルトの含有率が1
5〜90wt%の混合溶液を水酸化ナトリウム、水酸化
カリウム、水酸化リチウム等のアルカリ溶液で処理する
工程を有し、且つ前記混合溶液あるいはアルカリ溶液中
にリン酸イオンまたはリン酸塩を含有させておくことを
特徴とする電池用正極板の製造方法。
(2) A mixed solution of nickel nitrate and cobalt nitrate containing nickel and cobalt with a cobalt content of 1
A step of treating a mixed solution of 5 to 90 wt% with an alkaline solution such as sodium hydroxide, potassium hydroxide, lithium hydroxide, etc., and containing phosphate ions or phosphates in the mixed solution or alkaline solution. A method for manufacturing a positive electrode plate for a battery, characterized by:
(3)ニッケルとコバルトとに対するコバルトの含有率
が15〜90wt%の硝酸ニッケルと硝酸コバルトの混
合物あるいはその混合溶液を110〜350℃で加熱処
理した後、水酸化ナトリウム、水酸化カリウム、水酸化
リチウム等のアルカリ溶液で処理する工程を有し、且つ
前記混合物あるいは混合溶液もしくはアルカリ溶液中に
リン酸イオンまたはリン酸塩を含有させておくことを特
徴とする電池用正極板の製造方法。
(3) After heating a mixture of nickel nitrate and cobalt nitrate or a mixed solution thereof at 110 to 350°C with a cobalt content of 15 to 90 wt% relative to nickel and cobalt, sodium hydroxide, potassium hydroxide, hydroxide 1. A method for manufacturing a positive electrode plate for a battery, comprising a step of treating with an alkaline solution of lithium or the like, and containing phosphate ions or phosphates in the mixture, mixed solution, or alkaline solution.
JP62019310A 1987-01-29 1987-01-29 Positive electrode plate for battery and manufacturing method thereof Expired - Lifetime JPH0793138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62019310A JPH0793138B2 (en) 1987-01-29 1987-01-29 Positive electrode plate for battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019310A JPH0793138B2 (en) 1987-01-29 1987-01-29 Positive electrode plate for battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63187571A true JPS63187571A (en) 1988-08-03
JPH0793138B2 JPH0793138B2 (en) 1995-10-09

Family

ID=11995844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019310A Expired - Lifetime JPH0793138B2 (en) 1987-01-29 1987-01-29 Positive electrode plate for battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0793138B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0680106A1 (en) * 1993-11-02 1995-11-02 Mitsubishi Cable Industries, Ltd. Positive electrode material for lithium cell and method for production thereof
US5538814A (en) * 1992-05-18 1996-07-23 Mitsubishi Cable Industries, Ltd. Lithium secondary battery
JP2015513513A (en) * 2012-03-16 2015-05-14 エルジー・ケム・リミテッド Precursor for producing lithium composite transition metal oxide and method for producing the same
JP2016530193A (en) * 2013-08-20 2016-09-29 エルジー・ケム・リミテッド Precursor for producing lithium composite transition metal oxide, method for producing the same, and lithium composite transition metal oxide using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069528A (en) * 1973-10-25 1975-06-10
JPS60163382A (en) * 1984-02-03 1985-08-26 Japan Storage Battery Co Ltd Alkaline secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069528A (en) * 1973-10-25 1975-06-10
JPS60163382A (en) * 1984-02-03 1985-08-26 Japan Storage Battery Co Ltd Alkaline secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705296A (en) * 1899-10-10 1998-01-06 Mitsubishi Cable Industries, Ltd. Lithium secondary battery
US5538814A (en) * 1992-05-18 1996-07-23 Mitsubishi Cable Industries, Ltd. Lithium secondary battery
EP0680106A1 (en) * 1993-11-02 1995-11-02 Mitsubishi Cable Industries, Ltd. Positive electrode material for lithium cell and method for production thereof
EP0680106A4 (en) * 1993-11-02 1995-11-22
US5614334A (en) * 1993-11-02 1997-03-25 Mitsubishi Cable Industries, Ltd. Material for lithium battery positive electrode and production thereof
JP2015513513A (en) * 2012-03-16 2015-05-14 エルジー・ケム・リミテッド Precursor for producing lithium composite transition metal oxide and method for producing the same
US9431143B2 (en) 2012-03-16 2016-08-30 Lg Chem, Ltd. Precursor for preparing lithium composite transition metal oxide and method for preparing the same
JP2017043540A (en) * 2012-03-16 2017-03-02 エルジー・ケム・リミテッド Precursor for preparing lithium composite transition metal oxide and method for preparing the same
US9905325B2 (en) 2012-03-16 2018-02-27 Lg Chem, Ltd. Precursor for preparing lithium composite transition metal oxide and method for preparing the same
JP2016530193A (en) * 2013-08-20 2016-09-29 エルジー・ケム・リミテッド Precursor for producing lithium composite transition metal oxide, method for producing the same, and lithium composite transition metal oxide using the same
US10355275B2 (en) 2013-08-20 2019-07-16 Lg Chem, Ltd. Precursor for preparation of lithium composite transition metal oxide, method for preparing the same and lithium composite transition metal oxide obtained from the same
US10903489B2 (en) 2013-08-20 2021-01-26 Lg Chem, Ltd. Precursor for preparation of lithium composite transition metal oxide, method for preparing the same and lithium composite transition metal oxide obtained from the same

Also Published As

Publication number Publication date
JPH0793138B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US20190312277A1 (en) Three-dimensional structured plant-fiber carbon material for use as anode material for sodium-ion battery and lithium-ion battery, and preparation method thereof
JP6006789B2 (en) battery
WO2017000741A1 (en) Lithium manganese phosphate-coated lithium nickel cobalt manganese oxide cathode material and preparation method thereof
US3335033A (en) Method of making electric battery electrodes
CN104779066B (en) The super capacitor of a kind of rattan shape cobalt acid nickel as positive electrode and preparation method thereof
JPS63187571A (en) Positive plate for battery and its manufacture
JPS61502646A (en) Improvement of nickel hydroxide positive electrode for alkaline storage batteries
CN105470570B (en) A kind of polymer dielectric and its preparation method and application
JPS5916269A (en) Manufacture of positive plate for alkaline battery
CN109004197A (en) A kind of preparation method of anode material for lithium-ion batteries
CN107845811A (en) Negative electrode active material, negative electrode sheet, and secondary battery
CN110828821B (en) Composite positive electrode material of lithium ion battery and preparation method thereof
CN112803116B (en) Lithiation treatment method of diaphragm and diaphragm material treated by lithiation treatment method
JPH0355758A (en) Nickel-zinc storage battery and manufacture thereof
CN112331826A (en) Modified lithium ion battery positive electrode material and preparation method and application thereof
JPH0799690B2 (en) Method for manufacturing hydrogen storage electrode
JPH0377271A (en) Nickel electrode for alkaline storage battery
JPH0426058A (en) Manufacture of nickel electrode plate
CN111435730A (en) Method for forming an interfacial layer of a lead-carbon compound on a lead-based substrate
JPS63146353A (en) Manufacture of hydrogen absorbing electrode
JPS61124068A (en) Nickel cadmium alkaline battery
JPH0475257A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS6348746A (en) Manufacture of nickel positive electrode for alkaline storage battery
JPS63266766A (en) Manufacture of nickel electrode for battery
JPS6220258A (en) Sealed nickel-cadmium storage battery