JPS63187535A - Cold cathode vacuum tube - Google Patents

Cold cathode vacuum tube

Info

Publication number
JPS63187535A
JPS63187535A JP1614787A JP1614787A JPS63187535A JP S63187535 A JPS63187535 A JP S63187535A JP 1614787 A JP1614787 A JP 1614787A JP 1614787 A JP1614787 A JP 1614787A JP S63187535 A JPS63187535 A JP S63187535A
Authority
JP
Japan
Prior art keywords
electron
electrode
insulating layer
electron emitting
vacuum tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1614787A
Other languages
Japanese (ja)
Other versions
JP2735118B2 (en
Inventor
Takeo Tsukamoto
健夫 塚本
Akira Shimizu
明 清水
Akira Suzuki
彰 鈴木
Masao Sugata
菅田 正夫
Isamu Shimoda
下田 勇
Masahiko Okunuki
昌彦 奥貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62016147A priority Critical patent/JP2735118B2/en
Publication of JPS63187535A publication Critical patent/JPS63187535A/en
Priority to US07/515,352 priority patent/US4994708A/en
Application granted granted Critical
Publication of JP2735118B2 publication Critical patent/JP2735118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent malfunction by forming a plate electrode via an insulating layer provided with an electron emitting port on the electron emitting section of an electron emitting element. CONSTITUTION:A plate electrode is formed via an insulating layer provided with an electron emitting port on the electron emitting section of an electron emitting element connecting a work function reduction material region to the P-type semiconductor region of the electron emission side. For example, an electrode 7 such as Al is formed on an insulating layer 6, a grid electrode 9 such as Al, poly Si is formed via an insulating layer 9 such as SiO2, and a plate electrode 11 such as Al is formed on this grid electrode 9 via an insulating layer 10 such as SiO2. An electrode 1 is formed on the opposite side to an N-type Si substrate 2 via an ohmic contact layer. Accordingly, no electron is moved in a solid dissimilarly to a semiconductor element, thus a high-speed response device can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷陰極真空管に係り、特に電子放出源として冷
陰極音用いて作表された冷陰極真空管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cold cathode vacuum tube, and more particularly to a cold cathode vacuum tube produced using cold cathode sound as an electron emission source.

現在、整流作用、増幅作用を有する回路素子としては、
ダイオード、トランジスタ等のP型半導体とN型半導体
を組み合わせて構成てれる半導体素子が多く用いられて
いる。
Currently, circuit elements with rectification and amplification functions include:
2. Description of the Related Art Semiconductor elements such as diodes and transistors that are constructed by combining a P-type semiconductor and an N-type semiconductor are often used.

これらの半導体素子は、小型、軽量で集積化が可能であ
り、大幅にコスト低減が可能であり、長寿命であること
から信頼性が高い等の長所を有しており、コンピュータ
等の情報機器、テVビ、ラジオ等の家庭電器製品等各種
の用途に用いられている。
These semiconductor elements have advantages such as being small, lightweight, and can be integrated, allowing for significant cost reductions, and having a long life and high reliability. It is used in various applications such as home appliances such as TVs, radios, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のダイオード、トランジスタ等の半
導体素子はα線等の放射線に対して誤動作を生ずる問題
点を有しており、また応答速度にオイても〜100 M
Hz (31トランジスタ等)程度であり、GHzの応
答速度が要求される分野では用いることが困難であった
。これらの問題点は、二極管、三極管等の真空管を用い
ることによって解決可能であるが、逆に真空管は、熱陰
極の不安定性、耐衝撃性等の信頼性、小型化等の問題点
全有していた。
However, semiconductor devices such as diodes and transistors have the problem of malfunctioning due to radiation such as alpha rays, and even if the response speed is low,
Hz (31 transistors, etc.), making it difficult to use in fields that require a GHz response speed. These problems can be solved by using vacuum tubes such as diodes and triodes, but on the other hand, vacuum tubes have all the problems such as instability of the hot cathode, reliability such as shock resistance, and miniaturization. was.

本発明の目的は上記問題点に鑑み、従来の半導体素子と
真空管との両者の長所を兼ね備えた新規な構成の真空管
ft提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a vacuum tube ft with a novel structure that combines the advantages of both conventional semiconductor devices and vacuum tubes.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点は、電子放出側のP型半導体領域に仕事関
数低下材領域を接合させた電子放出素子の電子放出部上
に電子放出口が設けられた絶縁層を介して形成されたプ
レート電極とを有する本発明の冷陰極真空管によって解
決される。
The above problem is caused by the plate electrode being formed on the electron emitting part of the electron emitting element in which the work function reducing material region is bonded to the P-type semiconductor region on the electron emitting side via an insulating layer provided with an electron emitting hole. The problem is solved by the cold cathode vacuum tube of the present invention having the following features.

〔作用〕[Effect]

本発明は、半導体基体に形成された接合型電子放出領域
を、熱陰極の代わりに用いることにより、真空管の電子
放出源の半導体素子化を図り且つ半導体基体上に、少な
くとも電子放出源である電子放出領域と絶縁層を介して
形成されたプレート電極とを設けることにより、半導体
基体上に真空管を形成しようとするものである。
The present invention aims at converting the electron emission source of a vacuum tube into a semiconductor element by using a junction type electron emission region formed on a semiconductor substrate in place of a hot cathode, and at the same time, it is possible to use a junction type electron emission region formed on a semiconductor substrate in place of a hot cathode. The idea is to form a vacuum tube on a semiconductor substrate by providing an emission region and a plate electrode formed through an insulating layer.

なふ・、前記電子放出領域と前記絶縁層との間に電子制
御用のグリッド電極金膜けなければ、二極管として、グ
リッド電極を−又は二以上設ければ三極管、四極管等の
真空管を構成することができる。
If there is no grid electrode gold film for electronic control between the electron emission region and the insulating layer, it can be used as a diode, and if one or more grid electrodes are provided, it can be used as a vacuum tube such as a triode or tetrode. can do.

1だ、電子放出素子とグリッド電極あるいはプレート電
極間の距離を電子の大気圧下でのmeanfree p
ath (平均自由散乱行程)よりも短かくすることに
より(約1μm ) % K真空を用りずともデバイス
としての動作が期待できる。
1. The distance between the electron-emitting device and the grid electrode or plate electrode is the meanfree p of electrons under atmospheric pressure.
By making it shorter than ath (mean free scattering path) (approximately 1 μm), operation as a device can be expected without using a %K vacuum.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を用いて詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の冷陰極真空管の一実施例全示す概略的
断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of the cold cathode vacuum tube of the present invention.

同図に示すように、N型81 (100)基板2上に絶
縁層5を一面に形成した後、フォトリソグラフィ等によ
ってP型半導体領域(以下P領域と記す)3全形成する
ための開口部を設ける。続いて、P領域31!:不純物
拡散等の方法によって形成し、更にイオン打ち込み等に
よってオーミックコンタクト用の高不純物濃度のP領域
4及びP+1領域5を形成する。P領域3上には後述す
る低仕事関数材料膜12が形成され電子放出部を形成す
る。絶縁層6上にはAt等の電極7が形成され、  t
さらにSlO□等の絶縁層8を介してA4 、ポリS1
等のグリッド電極9が形成され、このグリッド電極9上
に8102等の絶縁層10全介してAt等のプレート電
極11を形成する。N型St基板2の反対側にはオーミ
ックコンタクト層を介して電極1を形成する。
As shown in the figure, after forming an insulating layer 5 over an N-type 81 (100) substrate 2, an opening is formed to completely form a P-type semiconductor region (hereinafter referred to as P region) 3 by photolithography or the like. will be established. Next, P area 31! : Formed by a method such as impurity diffusion, and further formed with high impurity concentration P region 4 and P+1 region 5 for ohmic contact by ion implantation or the like. A low work function material film 12, which will be described later, is formed on the P region 3 to form an electron emitting region. An electrode 7 made of At or the like is formed on the insulating layer 6, and t
Furthermore, A4 and poly S1 are connected via an insulating layer 8 such as SlO
A grid electrode 9 such as 8102 or the like is formed, and a plate electrode 11 made of At or the like is formed on this grid electrode 9 through the entire insulating layer 10 such as 8102 or the like. An electrode 1 is formed on the opposite side of the N-type St substrate 2 via an ohmic contact layer.

本実施例で使用される低仕事関数材料膜12としては、
仕事関数が約2.5@V以下の金属材料が望ましく、た
とえば、Li e Na # K # Rb s Sr
 e C@tBa 、 Eu 、 Yb 、 Fr等を
用いることができる。また、低仕事関数材料膜120安
定化を考慮すれば、CsSiやRbSi等のアルカリ金
属シリサイドや、金属炭化物、ホウ素等を使用してもよ
い。
The low work function material film 12 used in this example is as follows:
A metal material with a work function of about 2.5@V or less is desirable, for example, Li e Na # K # Rb s Sr
e C@tBa, Eu, Yb, Fr, etc. can be used. Furthermore, in consideration of stabilizing the low work function material film 120, alkali metal silicides such as CsSi and RbSi, metal carbides, boron, etc. may be used.

なお、本実施例においてSt基板1に(100)面を使
用したのは、シリコンでは(100)面の場合に電子親
和力が小ざくなり、この電子親和力が小さくなることで
電子が放出され易くなるからである。
In addition, in this example, the (100) plane was used for the St substrate 1 because in the case of silicon, the electron affinity becomes small in the case of the (100) plane, and as this electron affinity becomes small, electrons are easily emitted. It is from.

なお、本実施例では電子放出側のP型半導体J傷に低仕
事関数材料膜全接合し、逆バイアスをかけることで、高
効率に電子を放出する電子放出素子を構成したが、第2
図に示すように絶縁層13を介して引き出し電極14を
形成し、正電圧?加えれば、ショットキー効果により仕
事関数の低下が生じ、更に大きな寛子放t!3量を得る
ことができる。
In this example, an electron-emitting device that emits electrons with high efficiency was constructed by fully bonding the low work function material film to the P-type semiconductor J scratch on the electron-emitting side and applying a reverse bias.
As shown in the figure, an extraction electrode 14 is formed through an insulating layer 13, and a positive voltage is applied. In addition, the Schottky effect causes a decrease in the work function, resulting in an even greater Hiroko release t! 3 quantities can be obtained.

上記のよりなM成を有する冷陰極真空管において、t@
lと電極6との間に電圧v1を印加してPN接合に順方
向バイアスをかけ、j&電極と低仕事関数材料膜12と
の間に逆バイアスVs k印加すると、N型si基板2
からP領域3に電子が注入され、この電子は、極めて薄
いP型半導体層の中を格子に散乱されることなく進行し
、このため低仕事関数材料膜とP漕手導体の界面でホッ
ト化することにより、低仕事関数材料膜12の異面から
放出される。放出された電子は′ri極7とグリッド1
Si極9との間に印加きれるバイアス電圧V、によって
制御される。このバイアス電圧Vg(jfLt圧)の値
を小さくしてい< (IVgIは大きくなる)と電子は
反発されて、プレート電極に致達する電子Fi減少して
いく、逆に大きくしてい< (IVg1は小さくなる)
と電子はグリッド電極9を通過してグレート電極に致達
し、グレート電流!、は増加する。
In the cold cathode vacuum tube with the above-mentioned higher M configuration, t@
When voltage v1 is applied between l and electrode 6 to apply forward bias to the PN junction, and reverse bias Vs k is applied between j& electrode and low work function material film 12, N-type Si substrate 2
Electrons are injected into the P region 3, and these electrons proceed through the extremely thin P-type semiconductor layer without being scattered by the lattice, and therefore become hot at the interface between the low work function material film and the P rower conductor. As a result, it is emitted from different surfaces of the low work function material film 12. The emitted electrons are connected to 'ri pole 7 and grid 1
It is controlled by the bias voltage V that can be applied between the Si electrode 9 and the Si electrode 9. If the value of this bias voltage Vg (jfLt pressure) is decreased < (IVgI becomes larger), electrons are repelled and the electrons Fi reaching the plate electrode decrease. Become)
The electrons pass through the grid electrode 9 and reach the great electrode, creating a great current! , increases.

以上説明した本実施例の冷陰極真空管はグリッド電極が
一つの三極管と同じ構成であり、第3図に示した三極管
の等価回路図と同等である。
The cold cathode vacuum tube of this embodiment described above has the same configuration as a triode having one grid electrode, and is equivalent to the equivalent circuit diagram of the triode shown in FIG.

すなわち、同図に示したグレートP、グリッドG、カソ
ードCは第1図に示したグレート電極11、グリッド電
極9、電子放出領域Aに対応する。
That is, the grate P, grid G, and cathode C shown in the figure correspond to the grate electrode 11, grid electrode 9, and electron emission region A shown in FIG.

なお、電子放出領域に用いられる電子放出素子としては
PN接合順方向バイアス型に限定されず、半導体基板上
に形成可能な方式であれば、他の方式でもよい。
Note that the electron-emitting device used in the electron-emitting region is not limited to the PN junction forward bias type, but may be of any other type as long as it can be formed on the semiconductor substrate.

第4図は本発明の冷陰極真空管に用いられる電子放出素
子の他の実施例を示す概略的断面図である。
FIG. 4 is a schematic cross-sectional view showing another embodiment of the electron-emitting device used in the cold cathode vacuum tube of the present invention.

本実施例は、PN接合t−有するなだれ降伏型電子放出
素子である。
This example is an avalanche breakdown type electron-emitting device having a PN junction t-.

同図において、P型半導体基板15に形成式れたP+層
16とP型半導体基板15上に形成されたN+層17と
の間に逆バイアス電圧Vat印加すると、高濃度にドー
グされたP+層16とN+層17との間の空乏領域でな
だれ降伏が生起し、加速された電子が1層17表面から
放出する。
In the figure, when a reverse bias voltage Vat is applied between a P+ layer 16 formed on a P-type semiconductor substrate 15 and an N+ layer 17 formed on the P-type semiconductor substrate 15, a highly doped P+ layer is formed. Avalanche breakdown occurs in the depletion region between the N+ layer 16 and the N+ layer 17, and accelerated electrons are emitted from the surface of the first layer 17.

電子は空乏領域中でP+層16から1層17側へ加速さ
れるために、放出電子のエネルギ分布は尖鋭であシ、放
出効率も高い。
Since the electrons are accelerated from the P+ layer 16 to the first layer 17 side in the depletion region, the energy distribution of the emitted electrons is sharp and the emission efficiency is high.

また、側速電極19に電圧を印加することにより、放出
でれた電子が加速されるとともに、シ。
Further, by applying a voltage to the side velocity electrode 19, the emitted electrons are accelerated and the electrons are shrunk.

ットキ効果によって仕事関数が低下し、電子放出効率を
高めることができる。
The work function is lowered by the Kottky effect, and electron emission efficiency can be increased.

なお、以上説明した本発明の冷陰極真空管はグリッド電
極を一つ設けたものであり、三極管に対応するものであ
ったが、グリッド電極を設けなければ二極管、グリッド
電他全二つ以上設ければ、四極管、三極管等の真空管に
対応する冷陰極真空管を作製することができる。
The cold cathode vacuum tube of the present invention described above is equipped with one grid electrode and corresponds to a triode; however, if the grid electrode is not provided, two or more diode tubes, grid electrodes, etc. can be installed. For example, a cold cathode vacuum tube corresponding to a vacuum tube such as a tetrode or triode can be manufactured.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明の冷陰極真空管に
よれば、電子放出側のP型半導体領域に仕事関数低下材
領域を接合させた電子放出素子を、熱陰極の代わりに用
いることによシ、真空管の電子放出源の半導体素子化を
図り且つ半導体基体上に、少なくとも電子放出源である
電子放出領域と絶縁層を介して形成されたプレート電極
とを設けることにより、半導体基体上に真空管を形成す
ることができる。その結果として、本発明の冷陰極真空
管は、半導体素子のように固体内を電子が移動すること
がないので、高速応答デバイスが可能であり、高インピ
ーダンスで、α線等の放射線の影響全受けにくいという
特徴を有し、また従来の真空管のように熱陰極音用いな
いので長寿命で、安定性が使れており、従来の半導体微
細加工プロセスを用いることができるので小型化、軽量
化が容易に行うことができるという特徴を有している。
As explained above in detail, according to the cold cathode vacuum tube of the present invention, an electron emitting element in which a work function reducing material region is bonded to a P-type semiconductor region on the electron emitting side can be used instead of a hot cathode. By making the electron emission source of the vacuum tube into a semiconductor element and providing at least an electron emission region serving as an electron emission source and a plate electrode formed through an insulating layer on the semiconductor substrate, it is possible to Vacuum tubes can be formed. As a result, the cold cathode vacuum tube of the present invention is capable of high-speed response devices because electrons do not move within a solid body unlike semiconductor devices, and it has high impedance and is completely immune to the effects of radiation such as alpha rays. It also has a long lifespan and stability because it does not use hot cathode sound like conventional vacuum tubes, and it can be made smaller and lighter because it can use conventional semiconductor microfabrication processes. It has the characteristic of being easy to perform.

また、本発明の冷陰極真空管は半導体基体上に設けられ
るので他の半導体素子と一体化することができ、集積化
が可能であるという特徴も有している。
Further, since the cold cathode vacuum tube of the present invention is provided on a semiconductor substrate, it can be integrated with other semiconductor elements, and has the feature that it can be integrated.

なお、電子制御用のグリッド電極を設けなければ、二極
管として、グリッド電極を−又は二以上設ければ三極管
、四項管等の真空管を構成することができる。
Note that if a grid electrode for electronic control is not provided, it can be used as a diode, and if one or more grid electrodes are provided, a vacuum tube such as a triode or quartet tube can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷陰極真空管の一実施例を示す概略的
断面図である。 第2図は引出し電極を有するPN接合順方向バイアス型
の電子放出素子の概略的断面図である。 第3図は三極管の等価回路図である。 第4図は本発明の冷陰極真空管に用いられる電子放出素
子の他の実施例を示す概略的断面図である。 1.7・・・電極、2・・・N型St基板、3・・・P
領域、4・・・P領域、5・・・P+1領域、6.8.
10・・・絶縁層、9・・・グIJ ノド電極、11・
・・グレート電極、12・・・低仕事関数材料膜。 代理人  弁理士 山 下 穣 平 第1図 第2図 h
FIG. 1 is a schematic sectional view showing an embodiment of the cold cathode vacuum tube of the present invention. FIG. 2 is a schematic cross-sectional view of a PN junction forward bias type electron-emitting device having an extraction electrode. FIG. 3 is an equivalent circuit diagram of a triode. FIG. 4 is a schematic cross-sectional view showing another embodiment of the electron-emitting device used in the cold cathode vacuum tube of the present invention. 1.7... Electrode, 2... N-type St substrate, 3... P
Area, 4...P area, 5...P+1 area, 6.8.
DESCRIPTION OF SYMBOLS 10... Insulating layer, 9... Gu IJ throat electrode, 11.
...Grate electrode, 12...Low work function material film. Agent Patent Attorney Jo Taira Yamashita Figure 1 Figure 2 h

Claims (2)

【特許請求の範囲】[Claims] (1)電子放出側のP型半導体領域に仕事関数低下材領
域を接合させた電子放出素子の電子放出部上に電子放出
口が設けられた絶縁層を介して形成されたプレート電極
とを有する冷陰極真空管。
(1) It has a plate electrode formed on an electron emitting part of an electron emitting element in which a work function reducing material region is bonded to a P-type semiconductor region on the electron emitting side via an insulating layer provided with an electron emitting hole. Cold cathode vacuum tube.
(2)前記電子放出素子の電子放出部と前記絶縁層との
間に、絶縁層を介して形成されるグリッド電極を一又は
二以上積層させた特許請求の範囲第1項記載の冷陰極真
空管。
(2) The cold cathode vacuum tube according to claim 1, wherein one or more grid electrodes are laminated with an insulating layer interposed between the electron-emitting part of the electron-emitting device and the insulating layer. .
JP62016147A 1986-07-01 1987-01-28 Cold cathode vacuum tube Expired - Fee Related JP2735118B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62016147A JP2735118B2 (en) 1987-01-28 1987-01-28 Cold cathode vacuum tube
US07/515,352 US4994708A (en) 1986-07-01 1990-04-30 Cold cathode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016147A JP2735118B2 (en) 1987-01-28 1987-01-28 Cold cathode vacuum tube

Publications (2)

Publication Number Publication Date
JPS63187535A true JPS63187535A (en) 1988-08-03
JP2735118B2 JP2735118B2 (en) 1998-04-02

Family

ID=11908388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016147A Expired - Fee Related JP2735118B2 (en) 1986-07-01 1987-01-28 Cold cathode vacuum tube

Country Status (1)

Country Link
JP (1) JP2735118B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637126A1 (en) * 1988-09-23 1990-03-30 Thomson Csf COMPONENT SUCH AS DIODE, TRIODE OR FLAT AND INTEGRATED CATHODOLUMINESCENT DISPLAY DEVICE, AND MANUFACTURING METHOD
JPH02312153A (en) * 1989-05-26 1990-12-27 Sharp Corp Manufacture of semiconductor transistor
US6177774B1 (en) 1998-02-27 2001-01-23 Fanuc Limited Motor controller based on PWM system
JP2008016451A (en) * 2006-06-30 2008-01-24 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Small field emission element and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455262B1 (en) * 2013-09-03 2014-10-31 고려대학교 산학협력단 Vertical vaccum electronic device, method thereof and integrated device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755704A (en) * 1970-02-06 1973-08-28 Stanford Research Inst Field emission cathode structures and devices utilizing such structures
JPS499255A (en) * 1972-05-17 1974-01-26
JPS518874A (en) * 1974-07-10 1976-01-24 Hitachi Ltd
JPS5164366A (en) * 1974-12-02 1976-06-03 Sony Corp Handotaiinkyokuno seizohoho
JPS56134452A (en) * 1980-03-26 1981-10-21 Toshiba Corp Cold-cathode active element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755704A (en) * 1970-02-06 1973-08-28 Stanford Research Inst Field emission cathode structures and devices utilizing such structures
JPS499255A (en) * 1972-05-17 1974-01-26
JPS518874A (en) * 1974-07-10 1976-01-24 Hitachi Ltd
JPS5164366A (en) * 1974-12-02 1976-06-03 Sony Corp Handotaiinkyokuno seizohoho
JPS56134452A (en) * 1980-03-26 1981-10-21 Toshiba Corp Cold-cathode active element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637126A1 (en) * 1988-09-23 1990-03-30 Thomson Csf COMPONENT SUCH AS DIODE, TRIODE OR FLAT AND INTEGRATED CATHODOLUMINESCENT DISPLAY DEVICE, AND MANUFACTURING METHOD
EP0362017A1 (en) * 1988-09-23 1990-04-04 Thomson-Csf Device such as diode, triode or flat and integrated cathodoluminescent display device, and manufacturing process
US4986787A (en) * 1988-09-23 1991-01-22 Thomson-Csf Method of making an integrated component of the cold cathode type
JPH02312153A (en) * 1989-05-26 1990-12-27 Sharp Corp Manufacture of semiconductor transistor
US6177774B1 (en) 1998-02-27 2001-01-23 Fanuc Limited Motor controller based on PWM system
JP2008016451A (en) * 2006-06-30 2008-01-24 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Small field emission element and its manufacturing method

Also Published As

Publication number Publication date
JP2735118B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US2960659A (en) Semiconductive electron source
US4683399A (en) Silicon vacuum electron devices
US3581151A (en) Cold cathode structure comprising semiconductor whisker elements
US5252833A (en) Electron source for depletion mode electron emission apparatus
JPS60241626A (en) Display unit having electron current generating semiconductor device
HK84091A (en) Semiconductor device for producing an electron beam
US4801994A (en) Semiconductor electron-current generating device having improved cathode efficiency
US3150282A (en) High efficiency cathode structure
ES8402463A1 (en) Electron sources and equipment having electron sources
EP3584818B1 (en) Restriction of free electrons in multiplier semiconductor structure
JPS63187535A (en) Cold cathode vacuum tube
US4994708A (en) Cold cathode device
US4060823A (en) Electron-emissive semiconductor devices
US4910562A (en) Field induced base transistor
US4751423A (en) Photocathode having a low dark current
US6198210B1 (en) Electron tube having a semiconductor cathode with lower and higher bandgap layers
JPS62229731A (en) Semiconductor device for electron beam generation
US3364367A (en) Solid state electron multiplier including reverse-biased, dissimilar semiconductor layers
JPS63119131A (en) Electron emitting element
JP3153340B2 (en) Semiconductor device
JP2663384B2 (en) Cold cathode vacuum tube
JP2014523099A (en) Semiconductor devices for electron emission in vacuum.
US6340859B1 (en) Cold cathode electron emission device for activating electron emission using external electric field
Faulkner et al. A practical p‐n junction cold cathode
CN110690269B (en) Bidirectional thyristor and electronic product

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees