JPS63186804A - Production of fine copper particles - Google Patents

Production of fine copper particles

Info

Publication number
JPS63186804A
JPS63186804A JP1706587A JP1706587A JPS63186804A JP S63186804 A JPS63186804 A JP S63186804A JP 1706587 A JP1706587 A JP 1706587A JP 1706587 A JP1706587 A JP 1706587A JP S63186804 A JPS63186804 A JP S63186804A
Authority
JP
Japan
Prior art keywords
copper
particle size
ascorbic acid
soln
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1706587A
Other languages
Japanese (ja)
Other versions
JPH07107169B2 (en
Inventor
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1706587A priority Critical patent/JPH07107169B2/en
Publication of JPS63186804A publication Critical patent/JPS63186804A/en
Publication of JPH07107169B2 publication Critical patent/JPH07107169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce mono-dispersed fine copper particles having a narrow particle size distribution by reducing a copper-ammonium complex soln. with L-ascorbic acid or a salt thereof. CONSTITUTION:The pH of a copper-ammonium complex soln. is adjusted to about 7.5-13 pH. The pH of an aq. soln. of L-ascorbic acid or a salt thereof is adjusted to >= about 0.5 by adding NaOH or the like. The temps. of the solns. are regulated to about 30-100 deg.C and the L-ascorbic acid (salt) soln. is added to the complex soln. with stirring to reduce copper ions in the complex soln. The resulting fine copper particles are separated by filtration and washed. Thus, mono-dispersed fine copper particles having a narrow particle size distribution can be produced under control on particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細な銅粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing fine copper particles.

(従来技術とその問題点) 従来、銅微粒子の製造方法としては、酸化銅粒子を水性
媒体中でヒドラジンなどの還元剤を用いて還元する方法
が用いられてきた。
(Prior art and its problems) Conventionally, as a method for producing copper fine particles, a method has been used in which copper oxide particles are reduced in an aqueous medium using a reducing agent such as hydrazine.

ところが、この方法では、還元された粒子の粒径が酸化
物の粒径に依存するために粒径のコントロールが難しく
、かつ還元された粒子同士が引き寄せ合うために凝集し
た粒度分布の幅の広い銅粒子しか得られないという欠点
を有していた。
However, with this method, it is difficult to control the particle size because the particle size of the reduced particles depends on the particle size of the oxide, and the reduced particles attract each other, resulting in agglomerated particles with a wide range of particle size distribution. It had the disadvantage that only copper particles could be obtained.

本発明は上記の欠点を解消せんがためになされたもので
あり、分散した、粒度分布の幅の狭い微細な銅粒子の粒
径コントロール可能な製造方法を提供せんとするもので
ある。
The present invention has been made to solve the above-mentioned drawbacks, and aims to provide a method for producing dispersed fine copper particles having a narrow particle size distribution, in which the particle size can be controlled.

(問題点を解決するための手段) 本発明は銅アンモニウム錯体溶液中の銅イオンを還元し
て銅微粒子を製造する方法において、還元剤としてL−
アスコルビン酸又はL−アスコルビン酸塩類を用いるこ
とによって単分散した!PI微粒子を得ることを特徴と
するものである。
(Means for Solving the Problems) The present invention provides a method for producing fine copper particles by reducing copper ions in a copper ammonium complex solution.
Monodispersed by using ascorbic acid or L-ascorbates! This method is characterized by obtaining PI fine particles.

而して本発明の製造方法において、L−アスコルビン酸
又は、L−アスコルビン酸塩類を用いる理由は、これら
の酸化還元電位が銅アンモニウム錯体溶液を還元するの
に適当であると同時に粒子同士の凝集を防ぐ働きがある
ためである。
The reason for using L-ascorbic acid or L-ascorbic acid salts in the production method of the present invention is that their redox potential is suitable for reducing the copper ammonium complex solution, and at the same time, it prevents the aggregation of particles. This is because it works to prevent

また、本発明の請求範囲においてL−アスコルビン酸及
びL−アスコルビン酸塩類としては、ナトリウム塩、カ
リウム塩、アンモニウム塩等を問わない。
In addition, in the scope of the present invention, L-ascorbic acid and L-ascorbate salts include sodium salts, potassium salts, ammonium salts, and the like.

さらに本発明において、銅アンモニウム錯体溶液のpH
は7.5よりも低いと銅の水酸化物の沈殿が精製し、1
3より高いとアンモニアガスの発生が多くなり、反応が
遅くなるので、7.5〜13の範囲がより好ましく、L
−アスコルビン酸のpHは0.5よりも低いと反応が極
端に遅くなるので、0.5以上がより好ましく、また、
反応時の温度は30℃より低いと反応が遅く、100°
Cを超えると銅微粒子が凝集して(るので、30〜10
0℃の範囲がより好ましい。
Furthermore, in the present invention, the pH of the copper ammonium complex solution
is lower than 7.5, the precipitation of copper hydroxide is purified, and 1
If it is higher than 3, ammonia gas will be generated more and the reaction will be slow, so the range of 7.5 to 13 is more preferable.
- If the pH of ascorbic acid is lower than 0.5, the reaction will be extremely slow, so it is more preferably 0.5 or higher, and
If the reaction temperature is lower than 30°C, the reaction will be slow;
If the temperature exceeds C, copper fine particles will aggregate (so 30 to 10
A range of 0°C is more preferred.

ここで本発明の実施例について説明する。Examples of the present invention will now be described.

(実施例1) 硫酸銅結晶197gを水に溶解し1iの水溶液とした後
、28%のアンモニア水を力■えて銅アンモニウム錯体
溶液と、そのpHを9に調整する。
(Example 1) After dissolving 197 g of copper sulfate crystals in water to make a 1i aqueous solution, 28% ammonia water was added to prepare a copper ammonium complex solution and its pH was adjusted to 9.

また、L−アスコルビン酸200gを水に溶解し11の
水溶液とした後、水酸化ナトリウムを加えてpH=2.
5に調整する。ここで、この2液の温度を30℃にし、
銅アンモニウム錯体溶液を攪拌しながらL−アスコルビ
ン酸溶液を添加し、30分間反応させる。
Further, 200 g of L-ascorbic acid was dissolved in water to make an aqueous solution of No. 11, and sodium hydroxide was added to the solution to pH=2.
Adjust to 5. Here, the temperature of these two liquids is set to 30℃,
The L-ascorbic acid solution is added to the copper ammonium complex solution while stirring, and the mixture is allowed to react for 30 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で、平均粒径が1.
0μm、粒度分布は0.8〜1.3μmに70%が入る
シャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 1.
0 μm, and the particle size distribution was sharp with 70% falling between 0.8 and 1.3 μm.

(実施例2) 硫酸銅結晶126gを水に溶解し11の水溶液とした後
、28%のアンモニア水を加えて銅アンモニウム錯体溶
液とし、そのpHを12に調整する。
(Example 2) After dissolving 126 g of copper sulfate crystals in water to make an aqueous solution of 11, 28% ammonia water is added to make a copper ammonium complex solution, and the pH thereof is adjusted to 12.

また、L−アスコルビン酸128gを水に溶解し11の
水溶液とした後、28%のアンモニア水を加えてpH=
5に調整する。ここで、この2液の温度を60℃にし、
渭アンモニウム錯体溶液を攪拌しながらL−アスコルビ
ン酸溶液を添加し、30分間反応させる。
In addition, after dissolving 128 g of L-ascorbic acid in water to make an aqueous solution of 11, 28% aqueous ammonia was added to pH=
Adjust to 5. Here, the temperature of these two liquids is set to 60℃,
The L-ascorbic acid solution was added to the Wei ammonium complex solution while stirring, and the mixture was allowed to react for 30 minutes.

得られたme粉粒子濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained me powder particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は多面体で平均粒径が1.7μ
m、粒度分布は1.3〜2.0μmに70%が入るシャ
ープなものであった。
As a result, the copper fine particles were polyhedral and had an average particle size of 1.7 μm.
m, the particle size distribution was sharp with 70% falling in the range of 1.3 to 2.0 μm.

(実施例3) 硫酸銅結晶197gを水に溶解し1!の水溶液とした後
、28%のアンモニア水を加えて銅アンモニウム錯体溶
液とし、そのpHを8に調整する。
(Example 3) 197g of copper sulfate crystals was dissolved in water and 1! After making an aqueous solution, 28% aqueous ammonia is added to make a copper ammonium complex solution, and its pH is adjusted to 8.

また、L−アスコルビン酸ナトリウム200gを水に溶
解し1j2の水溶液にする。ここでこの2液の温度を5
0℃にし銅アンモニウム錯体溶液を攪拌しながらL−ア
スコルビン酸ナトリウムを添加し50分間反応させる。
Further, 200 g of sodium L-ascorbate was dissolved in water to make an aqueous solution of 1j2. Here, the temperature of these two liquids is 5
While stirring the copper ammonium complex solution at 0° C., sodium L-ascorbate is added and allowed to react for 50 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、このfI微粒子は多面体で平均粒径が0.8
μm1粒度分布は0.5〜1.2μmに70%が入るシ
ャープなものであった。
As a result, the fI fine particles were polyhedral and had an average particle size of 0.8.
The μm1 particle size distribution was sharp with 70% falling between 0.5 and 1.2 μm.

(従来例) 水1,000++vを攪拌しながら平均粒径5μmの酸
化第2銅50gを分散懸濁させる。
(Conventional Example) 50 g of cupric oxide having an average particle size of 5 μm is dispersed and suspended in 1,000 ++v of water with stirring.

さらにこの液を攪拌しながら70℃まで昇温し、80%
の抱水ヒドラジン水溶液200m !!を添加後、70
℃で2時間攪拌した。
Furthermore, the temperature of this liquid was raised to 70℃ while stirring, and the temperature was increased to 80%.
200m of hydrazine hydrate solution! ! After adding 70
The mixture was stirred at ℃ for 2 hours.

得られた銅微粒子は濾過、洗浄して粒度分布測定及び電
子顕微鏡観察をおこなった。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は不定形で、平均粒径が3.5
μm、粒度分布は0.5〜10μmと幅が広く、凝集し
たものであった。
As a result, the copper particles were irregularly shaped and had an average particle size of 3.5.
The particle size distribution was wide, ranging from 0.5 to 10 μm, and was agglomerated.

(発明の効果) 上記の説明で明らかなように本発明の製造方法は銅アン
モニウム錯体溶液を還元して銅微粒子を製造する方法に
おいて、還元剤としてL−アスコルビン酸又はL−アス
コルビン酸塩類を用いることにより、従来法では得られ
なかった単分散した粒度分布の幅の狭い微細な銅粒子を
粒径をコントロールして製造できるので、従来の製造方
法にとって代わることのできる画期的なものと言える。
(Effects of the Invention) As is clear from the above explanation, the production method of the present invention uses L-ascorbic acid or L-ascorbic acid salts as a reducing agent in the method of producing copper fine particles by reducing a copper ammonium complex solution. As a result, it is possible to produce fine copper particles with a narrow particle size distribution that is monodisperse, which could not be obtained using conventional methods, by controlling the particle size, so it can be said to be an epoch-making method that can replace conventional production methods. .

Claims (1)

【特許請求の範囲】[Claims] 銅アンモニウム錯体溶液を還元して銅微粒子を製造する
方法において、還元剤としてL−アスコルビン酸又はL
−アスコルビン酸塩類を用いることによって単分散した
銅微粒子を得ることを特徴とする銅微粒子の製造方法。
In the method of producing copper fine particles by reducing a copper ammonium complex solution, L-ascorbic acid or L-ascorbic acid is used as a reducing agent.
- A method for producing copper microparticles, which comprises obtaining monodispersed copper microparticles by using ascorbates.
JP1706587A 1987-01-27 1987-01-27 Method for producing fine copper particles Expired - Lifetime JPH07107169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1706587A JPH07107169B2 (en) 1987-01-27 1987-01-27 Method for producing fine copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1706587A JPH07107169B2 (en) 1987-01-27 1987-01-27 Method for producing fine copper particles

Publications (2)

Publication Number Publication Date
JPS63186804A true JPS63186804A (en) 1988-08-02
JPH07107169B2 JPH07107169B2 (en) 1995-11-15

Family

ID=11933582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1706587A Expired - Lifetime JPH07107169B2 (en) 1987-01-27 1987-01-27 Method for producing fine copper particles

Country Status (1)

Country Link
JP (1) JPH07107169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315604C (en) * 2003-11-08 2007-05-16 桂林工学院 Chemical Preparation for sheet superfine copper powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315604C (en) * 2003-11-08 2007-05-16 桂林工学院 Chemical Preparation for sheet superfine copper powder

Also Published As

Publication number Publication date
JPH07107169B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JPS63307206A (en) Production of fine silver particles
Eshuis et al. A descriptive model for the homogeneous precipitation of zinc sulfide from acidic zinc salt solutions
JPS63186803A (en) Production of fine copper particles
JPS63179009A (en) Production of fine silver particles
JPS63186805A (en) Production of fine copper particles
JPS63186804A (en) Production of fine copper particles
JPH01104338A (en) Manufacture of silver colloid
JPH0211709A (en) Production of silver colloid
JPS63186806A (en) Production of fine copper particles
JPS63186812A (en) Production of fine copper particles
JPS63186809A (en) Production of fine copper particles
JPS63186810A (en) Production of fine copper particles
JPS63186807A (en) Production of fine copper particles
JPH01225708A (en) Production of fine palladium particles
JPS63186811A (en) Production of fine copper particles
JPH0211708A (en) Production of silver colloid
JPS63186808A (en) Production of fine copper particles
JPH01225706A (en) Production of fine copper particles
JPH01225707A (en) Production of fine palladium particles
JPS63179012A (en) Production of fine silver particles
JPH0211707A (en) Production of silver fine particle
JPS63179010A (en) Production of fine silver particles
JPH01287210A (en) Manufacture of silver fine particle
JPH01225705A (en) Production of fine copper particles
JPH01225709A (en) Production of fine palladium particles