JPS6318617A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS6318617A JPS6318617A JP16190486A JP16190486A JPS6318617A JP S6318617 A JPS6318617 A JP S6318617A JP 16190486 A JP16190486 A JP 16190486A JP 16190486 A JP16190486 A JP 16190486A JP S6318617 A JPS6318617 A JP S6318617A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- substrate
- gas
- pressure
- reaction furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 15
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 16
- 229910052710 silicon Inorganic materials 0.000 abstract description 16
- 239000010703 silicon Substances 0.000 abstract description 16
- 239000012535 impurity Substances 0.000 abstract description 7
- 239000012212 insulator Substances 0.000 abstract description 5
- 229910007264 Si2H6 Inorganic materials 0.000 abstract description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 abstract 2
- 238000010276 construction Methods 0.000 abstract 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 208000012868 Overgrowth Diseases 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 244000241257 Cucumis melo Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 244000309456 Decussocarpus nagi Species 0.000 description 1
- 235000008375 Decussocarpus nagi Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
5 Torr以下の減圧下でジシラン(Si2H4)ガ
スを用いてシリコンの選択的エピタキシャル成長〔横方
向エピタキシャルオーバ成長(lateral epi
−taxial overgrowth、 LEO)
)を行う方法である。[Detailed description of the invention] [Summary] Selective epitaxial growth of silicon using disilane (Si2H4) gas under reduced pressure of 5 Torr or less [lateral epitaxial overgrowth (lateral epi
-taxial overgrowth, LEO)
).
本発明は半導体装置の製造方法に関するもので、さらに
詳しく言えば、従来の塩素系ガス、例えばジクロールシ
ラン(SiHユα2)+H匡+ H2ガスを用いるエピ
タキシャル成長に代えて、塩素系ガスを用いることなく
シリコン・オン・インシュレータ(silicon o
n 1nsulater、 SOI )構造を作る方法
に関するものである。The present invention relates to a method for manufacturing a semiconductor device, and more specifically, the present invention relates to a method for manufacturing a semiconductor device, and more specifically, the present invention relates to a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a semiconductor device using a chlorine-based gas in place of epitaxial growth using a conventional chlorine-based gas, such as dichlorosilane (SiH α2) + H 2 + H2 gas. Silicon on insulator (silicon o)
The present invention relates to a method for making a n 1 nsulater (SOI) structure.
絶縁物の上に単結晶シリコン層を形成しく5OI)、こ
の単結晶シリコン層に半導体デバイスを形成する技術が
開発され、それには絶縁物の上に多結晶シリコン(ポリ
シリコン)を成長し、このポリシリコンをゾーンメルト
、レーザアニールによって単結晶化する技術と固相成長
およびLEOとがある。A technique has been developed to form a single-crystal silicon layer on an insulator (5OI) and to form semiconductor devices on this single-crystal silicon layer. There are techniques for single crystallizing polysilicon by zone melting and laser annealing, solid phase growth, and LEO.
固相成長法を第9図を参照して説明すると、シリコン基
Fj、31上に酸化膜(5i02膜)32が設けられて
いる。基板上にアモルファスシリコン(a−3i)膜3
3を成長し、a−Si膜53をアニールすると、a−3
iが溶融しついで固化するときにシリコン基板31と同
じ結晶性をもった単結晶シリコンが得られる。The solid phase growth method will be explained with reference to FIG. 9. An oxide film (5i02 film) 32 is provided on the silicon base Fj, 31. Amorphous silicon (a-3i) film 3 on the substrate
When the a-Si film 53 is grown and the a-Si film 53 is annealed, a-3
When i is melted and then solidified, single crystal silicon having the same crystallinity as the silicon substrate 31 is obtained.
LEOは第10図に示されるように、酸化膜32が形成
されたシリコン基板31上にシリコンをエピタキシャル
成長すると、シリコンは先ず図に矢印Iで示す方向に成
長し、次いで矢印Hに示す方向に酸化11!32上にも
成長して酸化膜32の上に単結晶シリコン膜34が作ら
れ、SOI構造が得られる。かかる単結晶シリコンの成
長は選択的エピタキシャル成長と呼称される。As shown in FIG. 10, in LEO, when silicon is epitaxially grown on a silicon substrate 31 on which an oxide film 32 is formed, the silicon first grows in the direction shown by arrow I in the figure, and then oxidizes in the direction shown by arrow H. 11!32, a single crystal silicon film 34 is formed on the oxide film 32, and an SOI structure is obtained. Such growth of single crystal silicon is called selective epitaxial growth.
LEOの選択エピタキシャル成長の条件としては、例え
ば(54111便2+11α+ H2)ガスを用い圧力
を90Torr、成長温度を1100°Cに選定するこ
とが一般に行われる。As conditions for selective epitaxial growth of LEO, it is generally performed to use, for example, (54111 flight 2 + 11α + H2) gas, a pressure of 90 Torr, and a growth temperature of 1100°C.
従来のLEO法においては、塩素系ガスを用いるので装
置の損傷の問題が発生するので、その種のガスを用いな
いLEO法が要望されている。In the conventional LEO method, a chlorine-based gas is used, which causes damage to the equipment, so there is a demand for an LEO method that does not use that type of gas.
また副次的な問題として、従来法で1100℃の温度条
件下で塩素系ガスを用いエピタキシャル成長するときに
、シリコン基板51と5iO21W52の界面で、Si
+ SiO2→5iO1SiO2+ H2→Hユ0、S
i+Hユ0→SiO+ )12およびSi+21似→5
iCf!z + )12の反応が発生し、シリコン基板
のSiがくわれ、その結果、第11図に示す如く、 S
iO2膜32とシリコン基板31の界面において5i0
2がFM (Hされる、すなわちアンダーカット35
(undercu t)が発生する問題がある。As a secondary problem, when performing epitaxial growth using a chlorine-based gas under a temperature condition of 1100°C in the conventional method, Si
+ SiO2→5iO1SiO2+ H2→Hyu0, S
i+Hyu0→SiO+ )12 and Si+21 similar →5
iCf! z + )12 reaction occurs, the Si of the silicon substrate is crushed, and as a result, as shown in FIG. 11, S
5i0 at the interface between the iO2 film 32 and the silicon substrate 31
2 is FM (H, i.e. undercut 35
There is a problem that (undercut) occurs.
さらに成長温度が1100℃程度の高温になると、基板
にドーピングされた不純物がエピタキシャル成長したシ
リコン中に拡散されるオートドーピングの問題もある。Furthermore, when the growth temperature reaches a high temperature of about 1100° C., there is a problem of autodoping in which impurities doped into the substrate are diffused into the epitaxially grown silicon.
このことは従来さほど問題とはされなかったが、最近は
形成される半導体デバイスが微細化される傾向にあるの
で問題となるところである。This has not been considered much of a problem in the past, but it has become a problem recently as the semiconductor devices being formed tend to be miniaturized.
本発明はこのような点に鑑みて創作されたもので、LE
O法において従来例の如く塩素系ガスを用いることなく
選択的なエピタキシャル成長する方法を提供することを
目的とする。The present invention was created in view of these points, and the LE
It is an object of the present invention to provide a method for selective epitaxial growth in the O method without using a chlorine-based gas as in the conventional method.
第1図は本発明の方法を実施するに用いる装置の断面図
で、図中、11は反応炉(石英ペルジャー)、12は半
導体基板(ウェハ)、13はカーボンヒータ、14は電
源、15.16.17はそれぞれN2ガス。FIG. 1 is a sectional view of an apparatus used to carry out the method of the present invention, in which 11 is a reaction furnace (quartz Pelger), 12 is a semiconductor substrate (wafer), 13 is a carbon heater, 14 is a power source, 15. 16 and 17 are N2 gas, respectively.
H2ガス、Si工H6ガスの供給源例えばボンベ、18
はマスフローコントローラ、19と20はそれぞれペル
ジャー11を排気するためのメカニカルブースタポンプ
とロータリポンプ、21は排気圧を調整するためのN2
ガス供給系である。Supply source of H2 gas, Si H6 gas, e.g. cylinder, 18
is a mass flow controller, 19 and 20 are a mechanical booster pump and a rotary pump for exhausting the Pelger 11, respectively, and 21 is an N2 pump for adjusting the exhaust pressure.
This is a gas supply system.
本発明においては第1図に示す装置でシリコンのLEO
を行うのであるが、そのときの成長条件は一例として、
5ilH6の流量を5 cc/ min、(12の流量
を1Qjl!/min、圧力は450 Paと8130
Pa 、温度は640〜920°Cの範囲に設定した
。In the present invention, silicon LEO is produced using the apparatus shown in FIG.
For example, the growth conditions are as follows:
The flow rate of 5ilH6 is 5 cc/min, (the flow rate of 12 is 1Qjl!/min, the pressure is 450 Pa and 8130
Pa and temperature were set in the range of 640-920°C.
前記した方法において、成長温度、ガスの流速に依存し
て選択エピタキシャル成長が可能であることが確認され
たが、690°Cでもエピタキシャル成長が発生し、オ
ートドーピングは温度の低温化に伴って減少することが
認められた。In the method described above, it was confirmed that selective epitaxial growth is possible depending on the growth temperature and gas flow rate, but epitaxial growth occurs even at 690 °C, and autodoping decreases as the temperature decreases. was recognized.
以下、図面を参照して本発明の実施例を詳細に説明する
。Embodiments of the present invention will be described in detail below with reference to the drawings.
本発明者は、塩素系ガスを用いることなく、従来試みら
れたことのないジシランを用いる減圧CVD法によるシ
リコンのエピタキシャル成長について実験をなしたとこ
ろ、成長前処理なしで、低温(750℃)にてエピタキ
シャル成長が可能となり、不純物オートドーピング、固
相拡散がほとんどなくなること、および、選択エピタキ
シャル成長が可能であるが、その選択性は、以下に説明
する如く成長温度、流速に依存することをi認した。The present inventor conducted an experiment on epitaxial growth of silicon using a low-pressure CVD method using disilane, which has never been attempted before, without using chlorine-based gas. It has been recognized that epitaxial growth becomes possible, impurity autodoping and solid phase diffusion are almost eliminated, and that selective epitaxial growth is possible, but the selectivity depends on the growth temperature and flow rate as explained below.
再び第1図に戻ると、同図に示す装置を用いる減圧エピ
タキシャル成長法において、−例として、Si2H6流
M :5 cc/ m1nH2流量 : 1(12
/min
圧力 : 450 Pa
温度 : 8103c
に設定した。ガスをペルジャー11内に供給するには、
例えばシャワー形式を用いてガスが平均してウェハ12
上に到達するようにする。Returning to FIG. 1 again, in the low pressure epitaxial growth method using the apparatus shown in the same figure, for example, Si2H6 flow M: 5 cc/ml1nH2 flow rate: 1 (12
/min Pressure: 450 Pa Temperature: 8103c. To supply gas into the Pelger 11,
For example, using a shower format, the gas is
Try to reach the top.
前記エピタキシャル成長のための実験において、圧力お
よび温度と時間の関係は第2図に示す如くに設定した。In the experiment for epitaxial growth, the relationship between pressure, temperature and time was set as shown in FIG.
なお同図においては横軸に時間をとり、図の上方には圧
力をパスカル(Pa)でまた温度は℃で表した。最初の
5分間はN2ガスでペルジャー内をパージし、その工程
で圧力を大気圧から450 Paまで下げた。In the figure, time is plotted on the horizontal axis, pressure is expressed in Pascals (Pa), and temperature is expressed in degrees Celsius in the upper part of the figure. The inside of the Pelger was purged with N2 gas for the first 5 minutes, during which the pressure was lowered from atmospheric pressure to 450 Pa.
次いで、図示の如< 82のみを供給し始め、その時
点から温度を810℃まで昇温する。次にSi工H6+
82を供給し、45分経過したところでH2のみを約
10分供給し、続いてN2ガスに切り換え、この段階で
圧力を大気圧に戻し、また温度も常温にまで下げた。Then, as shown in the figure, only <82°C is fed, and from that point on, the temperature is increased to 810°C. Next, Si engineering H6+
After 45 minutes had elapsed, only H2 was supplied for about 10 minutes, then switched to N2 gas, and at this stage the pressure was returned to atmospheric pressure and the temperature was also lowered to room temperature.
第3図は、5i02膜22が設けられたシリコン基板2
1上に成長したエピタキシャルlI*23の顕微鏡写真
に基づいて作成した図で、上記に説明した方法と装置を
用いるエピタキシャル成長の実態を示す。FIG. 3 shows a silicon substrate 2 provided with a 5i02 film 22.
This figure was created based on a micrograph of epitaxial II*23 grown on 1, and shows the actual state of epitaxial growth using the method and apparatus described above.
この例では未だ5i02膜上のエピタキシャル成長は認
められないが、従来例で問題となったアンダーカットの
発生を示唆する現象は全く見られない。In this example, epitaxial growth on the 5i02 film is not yet observed, but no phenomenon suggesting the occurrence of undercuts, which was a problem in the conventional example, is observed.
前記実験におけるエピタキシャル成長速度と温度の関係
は第4図に示される。同図において○印は450 Pa
のとき、口印は8130 Paのときの結果である。温
度が下がるとそれに対応して成長速度が低下するのは予
想されたとおりであるが、この実験では温度を640〜
920℃の範囲内に設定しておいたところ、450〜8
130Paの圧力範囲内で選択的エピタキシャル成長が
発生するが、これらの圧力範囲外ではエピタキシャル成
長が難しく、また920℃を超える温度では従来例で問
題となったオートドーピングの発生を抑制し難いことが
確かめられた。The relationship between epitaxial growth rate and temperature in the above experiment is shown in FIG. In the same figure, the circle mark is 450 Pa
When , the mouth mark is the result when the pressure is 8130 Pa. As expected, the growth rate decreases as the temperature decreases, but in this experiment, the temperature was increased from 640 to 640℃.
When I set it within the range of 920℃, it was 450~8
Selective epitaxial growth occurs within a pressure range of 130 Pa, but it has been confirmed that epitaxial growth is difficult outside these pressure ranges, and that it is difficult to suppress the occurrence of autodoping, which was a problem in conventional examples, at temperatures exceeding 920°C. Ta.
ガス流速は第5図に示されるように、10〜103cm
/secの範囲でほぼ一定した成長速度が得られるが、
この範囲外では堆積する膜が一様でない(不均一である
)ことが確認された。The gas flow rate is 10-103cm, as shown in Figure 5.
Although a nearly constant growth rate can be obtained within the range of /sec,
It was confirmed that outside this range, the deposited film was not uniform (non-uniform).
本発明による減圧Si2H6エビタキシヤル成長膜の評
価について説明すると、As、 B 、 Sbをそれぞ
れドープした基板上に、成長温度810℃、成長圧力4
50 Paにてエピタキシャル成長し、拡がり抵抗法に
よってキャリア濃度プロファイルを求めた。To explain the evaluation of the low-pressure Si2H6 epitaxially grown film according to the present invention, the film was grown at a growth temperature of 810°C and a growth pressure of 4 on a substrate doped with As, B, and Sb.
Epitaxial growth was performed at 50 Pa, and the carrier concentration profile was determined by the spreading resistance method.
Asの濃度プロファイルは第6図に示され、遷移領域は
0.1μm程度である。なおり、Sbの場合も第7図と
第8図にそれぞれ示される如く遷移領域は0.1μm程
度であることが確かめられ、基板にドープされた不純物
のオートドーピングがほとんど発生しないことが判明し
た。The concentration profile of As is shown in FIG. 6, and the transition region is about 0.1 μm. In addition, in the case of Sb, the transition region was confirmed to be approximately 0.1 μm, as shown in Figures 7 and 8, respectively, and it was found that autodoping of impurities doped into the substrate hardly occurred. .
以上述べてきたように本発明によれば、5iJ6を用い
る減圧エピタキシャル成長が可能となり、塩素系ガスを
用いないので、装置の損傷が少なくなり、副次的には従
来例よりも低い温度を用いるので絶縁物の基板に接する
面でのアンダー力・ノドが防止され、オートドーピング
が殆どなくなった。As described above, according to the present invention, it is possible to perform low-pressure epitaxial growth using 5iJ6, and since chlorine-based gas is not used, there is less damage to the equipment, and as a side effect, lower temperatures are used than in the conventional example. Underforce and knots on the surface of the insulator in contact with the substrate are prevented, and autodoping is almost eliminated.
第1図は本発明実施例断面図、
第2図は本発明の方法の時間経過を示す断面図、第3図
は本発明によるエピタキシャル成長を示す断面図、
第4図は成長温度と成長速度の関係を示す線図、第5図
はガス流速と成長速度の関係を示す線図、第6図は不純
物プロファイル(As)を示す線図、第7図は不純物プ
ロファイル(B)を示す線図、第8図は不純物プロファ
イル(Sb)を示す線図、第9図は固相成長を示す断面
図、
第10図はLEOを示す断面図、
第11図は従来例の問題点を示す断面図である。
第1図において、
11はペルジャー、
12はウェハ、
13はカーボンヒータ、
14は電源、
15はN2ボンベ、
16はN2ボンベ、
17は5ill(6ボンベ、
18はマスフローコントローラ、
19はメカニカルブースタポンプ、
20はロータリポンプ、
21はN2供給系である。
代理人 弁理士 久木元 彰
復代理人 弁理士 大 菅 義 之
第2図
六ズ(土(Cm/ 5ec)
ノンχ&C七ニヒRWシJ斐=■瑣トをうrイ1瓜〕第
5図
0 0.5 1.0
+、5血、ji1d距唾(μm)
芥$εを句ブロフ法しくAs )を科環■訂垂直大虹誹
難(lJm)
矛ルE#Iアロフ1イ2しくB)を利判q凪第7図
重lガ釦餌蝕(lJm)
洋↑七化久フ゛ロファイ1しくsb)乞才運東第8図Fig. 1 is a cross-sectional view of an example of the present invention, Fig. 2 is a cross-sectional view showing the time course of the method of the present invention, Fig. 3 is a cross-sectional view showing epitaxial growth according to the present invention, and Fig. 4 is a cross-sectional view of the growth temperature and growth rate. A diagram showing the relationship; FIG. 5 is a diagram showing the relationship between gas flow rate and growth rate; FIG. 6 is a diagram showing the impurity profile (As); FIG. 7 is a diagram showing the impurity profile (B). Fig. 8 is a diagram showing the impurity profile (Sb), Fig. 9 is a cross-sectional view showing solid phase growth, Fig. 10 is a cross-sectional view showing LEO, and Fig. 11 is a cross-sectional view showing problems in the conventional example. be. In Figure 1, 11 is a Pelger, 12 is a wafer, 13 is a carbon heater, 14 is a power supply, 15 is an N2 cylinder, 16 is an N2 cylinder, 17 is a 5ill (6 cylinders, 18 is a mass flow controller, 19 is a mechanical booster pump, 20 is the rotary pump, 21 is the N2 supply system. Agent: Patent attorney: Hajime Kuki Agent: Yoshiyuki Osuga, patent attorney ■Go to 1 melon] Figure 5 0 0.5 1.0
+, 5 blood, ji1d distance spit (μm) Aku $ ε to phrase buroff law As) to the medical circle ■ correction vertical great rainbow slander (lJm) spear E # I Alof 1 I 2 Shik B) to benefit q Nagi Figure 7 Heavy Button Bait Eclipse (lJm) Yo ↑ Shichikakyu Philophy 1 sb) Kousaiun East Figure 8
Claims (1)
炉にジシランガスと水素ガスを供給する一方で反応炉か
ら排気し、反応炉内の圧力を450〜8130Pa、成
長温度を640〜920℃、成長ガスの流速を10〜1
0^3cm/secに設定したことを特徴とする半導体
装置の製造方法。A semiconductor substrate (12) is placed in a reactor (11), disilane gas and hydrogen gas are supplied to the reactor, while the reactor is evacuated, the pressure in the reactor is set at 450 to 8130 Pa, and the growth temperature is set at 640 to 920 Pa. ℃, growth gas flow rate 10-1
A method for manufacturing a semiconductor device, characterized in that the speed is set at 0^3 cm/sec.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16190486A JP2613034B2 (en) | 1986-07-11 | 1986-07-11 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16190486A JP2613034B2 (en) | 1986-07-11 | 1986-07-11 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6318617A true JPS6318617A (en) | 1988-01-26 |
JP2613034B2 JP2613034B2 (en) | 1997-05-21 |
Family
ID=15744226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16190486A Expired - Lifetime JP2613034B2 (en) | 1986-07-11 | 1986-07-11 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2613034B2 (en) |
-
1986
- 1986-07-11 JP JP16190486A patent/JP2613034B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2613034B2 (en) | 1997-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100373853B1 (en) | Selective epitaxial growth method in semiconductor device | |
KR920003291B1 (en) | Manufacturing method of semiconductor device | |
JP2005536054A (en) | Deposition of amorphous silicon-containing films | |
JPH09312245A (en) | Thin-film-deposited substrate and manufacture thereof | |
US4137108A (en) | Process for producing a semiconductor device by vapor growth of single crystal Al2 O3 | |
US9263263B2 (en) | Method for selective growth of highly doped group IV—Sn semiconductor materials | |
JPS6318617A (en) | Manufacture of semiconductor device | |
JP3344205B2 (en) | Method for manufacturing silicon wafer and silicon wafer | |
JPH1041321A (en) | Manufacture of bipolar transistor | |
JPS6226569B2 (en) | ||
JPS61256732A (en) | Method for selective epitaxial growth | |
JPH06333822A (en) | Semiconductor device | |
JPH04177825A (en) | Epitaxial growth method and chemical vapor growth device | |
JPS60193379A (en) | Formation for low-resistance single crystal region | |
JP3277726B2 (en) | Two-step epitaxial growth method | |
JP2003528443A5 (en) | ||
JPS61131434A (en) | Manufacture of semiconductor device | |
JPH01179788A (en) | Method for growing iii-v compound semiconductor on si substrate | |
JPH03159994A (en) | Vapor-phase growth process of group iii-v compound semiconductor | |
JPH0758692B2 (en) | Method for manufacturing semiconductor device | |
JPS60158672A (en) | Manufacture of semiconductor device | |
JP2766716B2 (en) | Single crystal manufacturing method | |
JPS61183199A (en) | Method for selectively growing titanium silicide | |
JPH01226791A (en) | Molecular beam growth of silicon | |
JPS63239935A (en) | Selective growing method for silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |