【発明の詳細な説明】[Detailed description of the invention]
本発明は化粧品、医薬品等の基剤として有用な
る新規な、炭素数17側鎖混合二価アルコール類に
関する。さらに詳しくは、本発明は一般式()
R―(CH2)6・CH2OH ()
(ただし、式中Rは
The present invention relates to novel mixed dihydric alcohols with 17 carbon atoms and side chains, which are useful as bases for cosmetics, pharmaceuticals, and the like. More specifically, the present invention relates to the general formula () R-(CH 2 ) 6 ·CH 2 OH () (wherein R is
【式】【formula】
【式】および[expression] and
【式】を表わす)で示さ
れる炭素数17側鎖混合二価アルコール類に関する
ものである。一般式()で示される本発明の化
合物は例えば次のようにして製造することが出来
る。一般式()
R―(CH2)6・COOH ()
(ただし、式中RはThis relates to mixed dihydric alcohols with 17 carbon atoms and side chains represented by the following formula: The compound of the present invention represented by the general formula () can be produced, for example, as follows. General formula () R-(CH 2 ) 6・COOH () (However, in the formula, R is
【式】【formula】
【式】および[expression] and
【式】を表わす)で示さ
れるカルボン酸、あるいは()のエステル類ま
たは()の酸ハライド類等のカルボン酸の反応
性誘導体を公知の手段で還元反応を行なうことに
より製造される。例えば還元剤としては、
LiAlH4 LiAlH(OCH3)3 AlH3 i―Bu2AlH
NaAlH4 NaAlH2(OCH2CH2OCH3)2 NaBH4
―AlCl3,NaBH4―BF3,BH3―(CH3)2S,
LiBH4,BH3,Na+ROH,LiAlH(O―t―
Bu)3,NaAlH(OC2H5)3,NaAlH〔OCH2N
(CH3)2),NaBH4―LiBr,NaBH(OCH3)3,
電解還元、
Ru,Cu―Ba―Crラネ―Ni,あるいはPtO2を触
媒とした接触還元等が用いられる。工業的には取
扱いが簡単で危険性の少ないもの例えば、
NaAlH2(OCH2―CH2OCH3)2,NaAlH
(OC2H5)3,アルコール中Naによる還元あるいは
Cu―Ba―CrOを触媒とする接触水素添加等が好
ましい。実験室的には例えば化合物()または
そのエステルをテトラヒドロフラン、ジオキサン
等の有機溶媒中LiAlH4を用いて室温から還流ま
での温度で反応することにより化合物()が高
収率で製造することができる。本発明の化合物
()は文献未知の新規化合物であり、化粧品や
医薬品の外用基剤として優れた特徴を有し、また
()を中間体として他の化粧品や医薬品の外用
基剤あるいは合成潤滑油等の工業用油剤等の有用
な原料にもなりうるものである。なお一般式
()で示される原料のカルボン酸はシクロヘキ
サノンをフエントン試薬で処理して生ずるラジカ
ル(・CH2(CH2)4・COOH)のメチルエステル
体2モルと2―メチルブタジエン1モルとの反応
で生成する混合不飽和二塩基酸を公知の適当な方
法で還元することにより得られ、本発明者らはそ
の構造について検討した結果一般式()で示す
化合物と推定した。従つて一般式()の化合物
を還元すれば一般式()の構造のものが得られ
ることになる。云いかえれば、一般式()の化
合物は2モルのシクロヘキサノンをフエントン試
薬で処理して生ずラジカル化合物に1モルの2―
メチルブタジエンを反応させて得られる炭素数17
混合側鎖不飽和二塩基酸を公知の方法で還元して
炭素数17混合側鎖飽和二塩基酸となし、さらに還
元して炭素数17側鎖混合二価アルコール類を合成
するものである。本発明物質はここに得られた混
合アルコールを意味するものである。従つて上記
の還元反応は通常混合物のまま行なうので生成す
るアルコール体は混合物()である。勿論原料
の各カルボン酸をカラムクロマト等の公知の適当
な方法で分離して、それぞれ上記方法で還元して
もよい。また混合アルコール体()をカラムク
ロマト等の公知の適当な方法で各アルコール体に
分離してもよい。実際には経済的な面を考慮すれ
ば混合アルコール()の形で化粧品や医薬品等
の基剤として用いるのが好ましい。本発明方法で
得られる化合物類の用途面での特徴を更に詳細に
のべると、本発明で得られる化合物類()は皮
膚粘膜に対して無刺激で化粧品、医薬品等の軟
膏、坐剤、クリーム、乳液等の基剤として用いこ
れに薬物等を混合させて皮膚より滲透させる溶剤
に用いられる。たとえば皮膚に対して刺激がなく
親和性が良好で触感にすぐれ、すぐれた溶解能力
と表皮に対しての滲透力があるためクリーム類の
油相原料として栄養クリーム、エモリントクリー
ムに、また油溶性薬物の卓越した皮膚学的媒液と
して薬用クリーム等に最適である。その他化粧品
崩れを防ぎ過脂肪剤としてのパウダー製品、皮膚
保護剤、口紅の顔料色素の分散剤としてのメーキ
ヤツプクリーム、口紅製品、鉱油の代りに用いる
と乳化が安定し髪をやわらかくして光沢を与える
のでヘヤーオイル、ヘヤークリーム製品、潤滑性
にすぐれているためマツサージオイル、クリーム
のマツサージ製品、肌に対して非常になめらかで
べとつかないためハンドクリーム製品、皮膚親和
性および化学的安定性にすぐれているため軟膏の
油成分として特に眼軟膏、坐薬製品に用いられる
等、その特異な性状により広範囲な応用面も開け
製剤上価値あるものである。さらに本化合物類は
熱、光に安定で例えば150℃の温度でも分解を生
じにくい。本化合物は一般に水に難溶で、アルコ
ール類、クロロホルム、アセトン、エーテル等の
有機溶媒に可溶である。本物質は沸点および引火
点が高く、空気中に長期放置しても酸化されるこ
となく安定な化合物である。本発明で得られる化
合物は文献未記載のため証明は赤外線吸収スペク
トルにより証明した。すなわち赤外線吸収スペク
トルにおいてはカルボキシル基の吸収が消失し新
たに3300cm-1附近に水酸基に相当する吸収が強く
認められることは、本化合物の生成の確認を決定
ずけるものである。
以下に実施例にて本発明の方法を説明するがこ
れに限定されるものではない。
なお、参考例―1は()の原料化合物、参考
例―2は化合物()の製造例を示したものであ
る。
参考例 1
イソプレン(2―メチル―1,3―ブタジエ
ン)70gをメタノール300mlに溶かし、これにシ
クロヘキサノン80g,35%過酸化水素80gおよび
98%硫酸3.5gを加え、20±5℃で0.5時間攪拌し
たのち、0〜,−5℃に保ちながら硫酸第一鉄
(7水塩)250gを徐々に添加した。反応後、60%
硫酸18gを加えて攪拌後2層に分離するまで静置
した。上層を分取し希硫酸および水で洗浄後乾燥
し、油状物として下記構造の化合物()()
および()のジメチルエステルの混合物132g
を得た。
本品をシリカゲルを用いたカラムクロマトグラ
フイーにて精製後つぎの機器分析を行なつた。
(イ) 赤外線吸収スペクトル(液膜法,cm-1)―
2925,2850,1735,1430,1390,1370。
(ロ) ガスクロマトグラフイー質量分析―
Γ 使用機種:島津GCMS QP―100型
Γ 分析条件:分離カラム シリコンOV―172
% on Chromosorb W 2m,カラム温度
150〜310℃,気化室温度270℃,イオン源温度
250℃,イオン化法 EI法,イオン化電圧
70eV & 20eV,走査範囲40〜500質量。
Γ 分析結果(m/e):326(M+),295(M+−
OCH3)294(M+−CH3OH),198〔M+―
CH3OCO(CH2)4CH〕,197〔M+―CH3OCO―
(CH2)5〕,184〔M+―CH3OCO(CH2)5CH〕,
183〔M+―CH3OCO(CH2)5CH2〕,165(198―
OCH3),152(183―OCH3),151(183―
CH3OH)。
(ハ) ガスクロマトグラフイー―
Γ 使用機種:島津GC―9A
Γ 分析条件
カラム:内径3mm,長さ2.1m
充填剤 シリコンOV―1,1.5%,80〜
100mesh
検出器 FID/キヤリヤーガス N2
カラム温度 130℃〜300℃(昇温)
気化室温度 320℃
Γ 分析結果(各化合物の混合物全体に対する重
量%)
化合物()のジメチルエステル 79.1%
化合物()のジメチルエステル 17.1%
化合物()のジメチルエステル 3.8%
なお、化合物(),()およ()のジメチ
ルエステルの構造についての積極的な証明は機器
分析では困難であり、反応で用いる試薬および反
応条件から推定して得た構造である。なお割合に
ついて、上記参考例と同様の条件下で10数回反応
を行ない、得られた成績体についてガスクロマト
グラフイーで分析したところ、上記の同様の結果
を得、その割合は以下のようであつた。
化合物()のジメチルエステル 約76〜82%
化合物()のジメチルエステル 約15〜19%
化合物()のジメチルエステル 約2.5〜6%
上記で得られた化合物(),()および
()のジメチルエステルの混合物を常法に従つ
て加温下希水酸化ナトリウム水溶液中で加水分解
を行ない、化合物(),()および()を得
た。
これらの化合物(),()および()の混
合割合は加水分解によつても変動していないこと
が上記と同様のガスクロマトグラフイーによつて
確認された。
参考例 2
炭素数17側鎖混合二塩基酸()の製造法
不飽和側鎖二塩基酸類(),()及び()
の混合物50gを500ml酢酸に溶解させ5%pd/c2
gを触媒として60℃、水素圧5気圧で約12時間接
触水素添加した後、触媒をロ別しロ液を減圧下濃
縮した後、温湯で洗浄し、脱水して目的物の飽和
側鎖混合二塩基酸()を無色透明の油状物とし
て47g得た。
酸価372,ケン化価374,ヨウ素価1.2。
得られた油状物中の3種の二塩基酸の混合割合
は、上記参考例で得られた化合物(),()お
よび()と同様であつた。
更にヨウ素価の価より二重結合の存在は否定さ
れ接触還元を受けた一般式()の構造であるこ
とは確実である。
また赤外線吸収スペクトルで1730〜1740cm-1に
カルボン酸特有の吸収が明確に認められる。
実施例 1
炭素数17側鎖混合二価アルコール類()の製
造法
側鎖混合二塩基酸類()の混合物3gをメタ
ノール20mlに溶解させ、これに濃硫酸を1滴加え
て5〜6時間還流させる。希Na2CO3水で中和
し、メタノールを留去後エーテルで抽出する。エ
ーテル層はNa2SO4で乾燥後エーテルを留去し残
留物を減圧蒸留してジメチルエステル体を得る。
次にジメチルエステル体を無水エタノール50mlに
加え金属Na3gを加えて還元する。還元後、水7
mlを加え約1時間還流する。エタノールを留去し
残留物をエーテルで抽出する。エーテル層は無水
Na2CO4で乾燥後エーテルを留去、脱色して目的
物の炭素数17側鎖混合二価アルコール類()を
81%収率で得た。
本品は無色透明の液体である。
水酸基価 412(計算値412.6)
実施例 2
炭素数17側鎖混合二価アルコール類()の製
造法
側鎖混合二塩基酸類()のジメチルエステル
3.3gをエーテル100mlに溶解させ、これに水素化
リチウムアルミニウム1.0gのエーテル懸濁液50
mlを氷冷撹拌下滴下、滴下終了後氷冷下3時間つ
づいて室温で3時間撹拌後水で分解エーテル層を
分取しさらに水層をエーテルで抽出する。抽出液
を合し無水Na2SO4で乾燥後溶媒を留去すれば目
的物の炭素数17側鎖混合二価アルコール類()
を93%の収率で得た。
水酸基価 410It is produced by reducing a carboxylic acid represented by the formula () or a reactive derivative of the carboxylic acid such as an ester of () or an acid halide of () by a known method. For example, as a reducing agent, LiAlH 4 LiAlH (OCH 3 ) 3 AlH 3 i-Bu 2 AlH NaAlH 4 NaAlH 2 (OCH 2 CH 2 OCH 3 ) 2 NaBH 4
―AlCl 3 , NaBH 4 ―BF 3 , BH 3 ―(CH 3 ) 2 S,
LiBH 4 , BH 3 , Na+ROH, LiAlH (O-t-
Bu) 3 , NaAlH(OC 2 H 5 ) 3 , NaAlH[OCH 2 N
( CH3 ) 2 ), NaBH4 -LiBr, NaBH( OCH3 ) 3 ,
Electrolytic reduction, catalytic reduction using Ru, Cu-Ba-Cr Raney-Ni, or PtO 2 as a catalyst are used. Products that are easy to handle industrially and have little risk, such as:
NaAlH 2 (OCH 2 ― CH 2 OCH 3 ) 2 , NaAlH
(OC 2 H 5 ) 3 , reduction by Na in alcohol or
Catalytic hydrogenation using Cu--Ba--CrO as a catalyst is preferred. In the laboratory, for example, compound () can be produced in high yield by reacting compound () or its ester with LiAlH4 in an organic solvent such as tetrahydrofuran or dioxane at a temperature from room temperature to reflux. . The compound () of the present invention is a new compound unknown in the literature, and has excellent characteristics as an external base for cosmetics and pharmaceuticals.It can also be used as an intermediate for external bases for other cosmetics and pharmaceuticals, or as a synthetic lubricant. It can also be used as a useful raw material for industrial oils, etc. The raw material carboxylic acid represented by the general formula () is a mixture of 2 moles of methyl ester of radical (・CH 2 (CH 2 ) 4・COOH) generated by treating cyclohexanone with Fuenton's reagent and 1 mole of 2-methylbutadiene. It is obtained by reducing the mixed unsaturated dibasic acid produced in the reaction using a known appropriate method, and as a result of studying its structure, the present inventors deduced it to be a compound represented by the general formula (). Therefore, if the compound of general formula () is reduced, a compound having the structure of general formula () will be obtained. In other words, the compound of general formula () is produced by treating 2 moles of cyclohexanone with Fenton's reagent, and converts 1 mole of 2- into a radical compound.
Carbon number 17 obtained by reacting methyl butadiene
The mixed side chain unsaturated dibasic acid is reduced by a known method to form a mixed side chain saturated dibasic acid with 17 carbon atoms, and further reduced to synthesize a mixed dihydric alcohol with 17 carbon atoms. The substance of the present invention refers to the mixed alcohol obtained here. Therefore, since the above-mentioned reduction reaction is usually carried out as a mixture, the alcohol product produced is a mixture (). Of course, each carboxylic acid as a raw material may be separated by a known appropriate method such as column chromatography, and each may be reduced by the above-mentioned method. Alternatively, the mixed alcohol () may be separated into each alcohol by a known appropriate method such as column chromatography. In fact, from an economical point of view, it is preferable to use it in the form of a mixed alcohol () as a base for cosmetics, pharmaceuticals, etc. To explain in more detail the characteristics of the use of the compounds obtained by the method of the present invention, the compounds obtained by the present invention () are non-irritating to the skin and mucous membranes, and are used in ointments, suppositories, creams, etc. for cosmetics and pharmaceuticals. It is used as a base for emulsions, etc., and is used as a solvent to which drugs and the like are mixed and permeated through the skin. For example, it is non-irritating to the skin, has good affinity, has an excellent texture, and has excellent dissolving ability and permeability to the epidermis, so it is used as a raw material for the oil phase of creams, such as nutritional creams and emollient creams. As an excellent dermatological vehicle for drugs, it is ideal for medicinal creams, etc. Other powder products, skin protectants, make-up creams and lipstick products, used as superfat agents to prevent cosmetics from crumbling, and lipstick pigments.When used in place of mineral oil, the emulsification stabilizes, making hair soft and shiny. Hair oil and hair cream products because of their excellent lubricity, pine surge oil because of their excellent lubricity, pine surge products that are creams, hand cream products because they are very smooth and non-sticky to the skin, and excellent skin affinity and chemical stability. Due to its unique properties, it is useful in a wide range of pharmaceutical applications, such as being used as an oil component in ointments, especially in eye ointments and suppository products. Furthermore, the present compounds are stable to heat and light, and do not easily decompose even at temperatures of, for example, 150°C. This compound is generally sparingly soluble in water and soluble in organic solvents such as alcohols, chloroform, acetone, and ether. This substance has a high boiling point and flash point, and is a stable compound without being oxidized even when left in the air for a long time. Since the compound obtained by the present invention has not been described in any literature, the proof was made using an infrared absorption spectrum. That is, in the infrared absorption spectrum, the absorption of carboxyl groups disappears and a new strong absorption corresponding to hydroxyl groups is observed around 3300 cm -1 , which confirms the production of this compound. The method of the present invention will be explained below with reference to Examples, but it is not limited thereto. Note that Reference Example-1 shows the raw material compound of (), and Reference Example-2 shows a production example of compound (). Reference example 1 Dissolve 70g of isoprene (2-methyl-1,3-butadiene) in 300ml of methanol, add 80g of cyclohexanone, 80g of 35% hydrogen peroxide and
After adding 3.5 g of 98% sulfuric acid and stirring at 20±5°C for 0.5 hour, 250 g of ferrous sulfate (heptahydrate) was gradually added while maintaining the temperature at 0 to -5°C. After reaction, 60%
After adding 18 g of sulfuric acid and stirring, the mixture was allowed to stand until it separated into two layers. The upper layer was separated, washed with dilute sulfuric acid and water, and dried to obtain a compound with the following structure () () as an oily substance.
132 g of a mixture of dimethyl esters of and ()
I got it. This product was purified by column chromatography using silica gel and then subjected to the following instrumental analysis. (a) Infrared absorption spectrum (liquid film method, cm -1 )
2925, 2850, 1735, 1430, 1390, 1370. (b) Gas chromatography mass spectrometry - Γ Model used: Shimadzu GCMS QP-100 type Γ Analysis conditions: Separation column Silicon OV-172
% on Chromosorb W 2m, column temperature
150-310℃, vaporization chamber temperature 270℃, ion source temperature
250℃, ionization method EI method, ionization voltage
70eV & 20eV, scanning range 40~500 masses. Γ Analysis result (m/e): 326 (M + ), 295 (M + −
OCH 3 ) 294 (M + −CH 3 OH), 198 [M + ―
CH 3 OCO (CH 2 ) 4 CH], 197 [M + ―CH 3 OCO―
(CH 2 ) 5 ], 184 [M + —CH 3 OCO (CH 2 ) 5 CH],
183 [M + - CH 3 OCO (CH 2 ) 5 CH 2 ], 165 (198 -
OCH 3 ), 152 (183― OCH 3 ), 151 (183―
CH3OH ). (c) Gas chromatography - Γ Model used: Shimadzu GC-9A Γ Analysis conditions Column: inner diameter 3 mm, length 2.1 m Packing material Silicon OV-1, 1.5%, 80~
100mesh Detector FID/Carrier gas N 2 Column temperature 130°C to 300°C (temperature increase) Vaporization chamber temperature 320°C Γ Analysis results (weight% of each compound relative to the entire mixture) Dimethyl ester of compound () 79.1% Dimethyl of compound () Ester 17.1% Dimethyl ester of compound () 3.8% It is difficult to positively prove the structure of compounds (), (), and dimethyl ester of () by instrumental analysis, and it is difficult to prove the structure of compounds (), (), and dimethyl ester of () based on the reagents used in the reaction and the reaction conditions. This is the structure obtained by estimation. Regarding the ratio, when the reaction was carried out more than 10 times under the same conditions as in the reference example above, and the resulting product was analyzed by gas chromatography, the same results as above were obtained, and the ratio was as follows. Ta. Dimethyl ester of compound () Approx. 76-82% Dimethyl ester of compound () Approx. 15-19% Dimethyl ester of compound () Approx. 2.5-6% Dimethyl ester of compound (), () and () obtained above The mixture was hydrolyzed in a dilute aqueous sodium hydroxide solution under heating according to a conventional method to obtain compounds (), () and (). It was confirmed by gas chromatography similar to the above that the mixing ratio of these compounds (), (), and () did not change due to hydrolysis. Reference example 2 Production method of mixed dibasic acid with 17 carbon atoms () Unsaturated side chain dibasic acid (), () and ()
Dissolve 50g of the mixture in 500ml acetic acid to give 5% pd/c2
After catalytic hydrogenation for about 12 hours at 60°C and 5 atmospheres of hydrogen using g as a catalyst, the catalyst was filtered off and the filtrate was concentrated under reduced pressure, washed with hot water, dehydrated and mixed with saturated side chains of the target product. 47 g of dibasic acid (2) was obtained as a colorless and transparent oil. Acid value 372, saponification value 374, iodine value 1.2. The mixing ratio of the three types of dibasic acids in the obtained oil was the same as in the compounds (), () and () obtained in the above reference example. Furthermore, the presence of a double bond is ruled out based on the iodine value, and it is certain that the structure is the one of the general formula () that has undergone catalytic reduction. In addition, in the infrared absorption spectrum, an absorption characteristic of carboxylic acid is clearly observed at 1730 to 1740 cm -1 . Example 1 Method for producing mixed dihydric alcohol with 17 carbon atoms () 3 g of a mixture of dibasic acids with mixed side chains () was dissolved in 20 ml of methanol, 1 drop of concentrated sulfuric acid was added thereto, and the mixture was refluxed for 5 to 6 hours. let Neutralize with dilute Na 2 CO 3 water, distill off methanol, and extract with ether. The ether layer is dried over Na 2 SO 4 , the ether is distilled off, and the residue is distilled under reduced pressure to obtain a dimethyl ester.
Next, the dimethyl ester was added to 50 ml of absolute ethanol and 3 g of metallic Na was added to reduce the mixture. After reduction, water 7
ml and reflux for about 1 hour. The ethanol is distilled off and the residue is extracted with ether. The ether layer is anhydrous
After drying with Na 2 CO 4 , the ether is distilled off and decolorized to obtain the target mixed dihydric alcohol with 17 side chains ().
Obtained in 81% yield. This product is a colorless and transparent liquid. Hydroxyl value 412 (calculated value 412.6) Example 2 Production method of mixed dihydric alcohols with 17 carbon atoms () Dimethyl ester of mixed dibasic acids with side chains ()
Dissolve 3.3g in 100ml of ether, add 1.0g of lithium aluminum hydride suspension in 50ml of ether.
ml was added dropwise under ice-cooling and stirring, and after the completion of the dropwise addition, the mixture was stirred for 3 hours under ice-cooling and then at room temperature for 3 hours, then the decomposed ether layer was separated with water, and the aqueous layer was further extracted with ether. Combine the extracts, dry with anhydrous Na 2 SO 4 , and distill off the solvent to obtain the target compound, a mixed dihydric alcohol with 17 side chains ().
was obtained in 93% yield. Hydroxyl value 410