JPS63184383A - Wavelength calibrating apparatus for wavelength-tunable laser - Google Patents

Wavelength calibrating apparatus for wavelength-tunable laser

Info

Publication number
JPS63184383A
JPS63184383A JP1580587A JP1580587A JPS63184383A JP S63184383 A JPS63184383 A JP S63184383A JP 1580587 A JP1580587 A JP 1580587A JP 1580587 A JP1580587 A JP 1580587A JP S63184383 A JPS63184383 A JP S63184383A
Authority
JP
Japan
Prior art keywords
wavelength
light
calibration
crystal
half mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1580587A
Other languages
Japanese (ja)
Other versions
JPH0362311B2 (en
Inventor
Yasutsugu Osumi
大隅 安次
Nobuhiro Morita
森田 伸廣
Hideo Suzuki
英夫 鈴木
Yuji Kobayashi
祐二 小林
Yasushi Obayashi
寧 大林
Osamu Matsumoto
修 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP1580587A priority Critical patent/JPS63184383A/en
Publication of JPS63184383A publication Critical patent/JPS63184383A/en
Publication of JPH0362311B2 publication Critical patent/JPH0362311B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate calibrating the wavelength scale of a wavelength reader for an output light and adjusting a light axis by a light axis regulator simultaneously by introducing a calibration light to the position of the light axis regulator in the latter stage of an optical parametric oscillator through a half mirror. CONSTITUTION:A continuous laser beam with a known wavelength, for instance the 2nd harmonic of an Nd-YAG laser device which is a laser beam with a wavelength of 530 nm, is generated and reflected and refracted by a half mirror 10 and transmitted through a light axis regulator 11 to a spectroscope 7. In the spectroscope 7, if there is a difference between a read sc ale value and the real wavelength of an inputted calibration light, the difference is calibrated. After the calibration in the spectroscope 7, a control signal is outputted and the crystal 5 of an optical parametric oscillator 6 is turned to vary the wavelength of the output light of the oscillator 6 so as to make the wavelength 530 nm which is equal to the wavelength of the calibration light in the spectroscope 7. As a discrepancy (d) of the light axis 8 of the output light is produced by the turn of the crystal 5, the calibration light is inputted so as to coincide with the cross point of the light from a wavelength calibration light source generator 18 axis 8 which is moved by the discrepancy (d) and the half mirror 10. Then a control signal is outputted from a light axis adjustment driving circuit 24 and the dielectric 17 of the light axis regulator 11 to adjust the light axis.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は非線形光学結晶を用いた光パラメトリック発振
器において、出力光の波長読とり装置の波長目盛較正と
光軸補正装置による光軸調整とを同時に可能にした波長
可変レーザの波長較正装置に関するものである。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to an optical parametric oscillator using a nonlinear optical crystal, in which wavelength scale calibration of a wavelength reading device for output light and optical axis adjustment by an optical axis correction device are performed. The present invention relates to a wavelength calibrating device for a wavelength tunable laser that can be used at the same time.

「従来の技術」 一般に、波長可変レーザ方式には、色素レーザ方式、温
度同調方式、光パラメトリック発振方式、アレキサンド
ライトレーザ方式などがある。このうち、光パラメトリ
ック発振方式を用いた波長可変レーザ装置は第2図に示
すように、コリメータレンズ(1)、入力反射ミラー(
2)、出力反射ミラー(3)、回転テーブル(4)上に
設置された非線形光学結晶(5)等によって光パラメト
リック発振部(6)を構成している。
"Prior Art" Generally, wavelength tunable laser systems include a dye laser system, a temperature tuning system, an optical parametric oscillation system, an alexandrite laser system, and the like. Among these, the wavelength tunable laser device using the optical parametric oscillation method has a collimator lens (1), an input reflection mirror (
2) An optical parametric oscillator (6) is composed of an output reflection mirror (3), a nonlinear optical crystal (5) placed on a rotary table (4), and the like.

このような構成において、励起光として例えば355n
mのパルスレーザを入力すると、非線形光学結晶(5)
から元の波長(355nm)と異なる波長の光が発生す
る。回転角(θ)が90度のときは、500nmと12
30nmの2つの光が発生する。結晶(5)の回転角(
0)を変えると2つの光の波長が互いに接近する方向に
連続的に変化する。これらの光は微弱なため、2枚の入
出力反射ミラー(2) (3)間で共振させて増幅して
出力する。
In such a configuration, for example, 355n is used as the excitation light.
When a pulsed laser of m is input, a nonlinear optical crystal (5)
Light with a wavelength different from the original wavelength (355 nm) is generated. When the rotation angle (θ) is 90 degrees, 500 nm and 12
Two lights of 30 nm are generated. Rotation angle of crystal (5) (
0), the wavelengths of the two lights change continuously in the direction of approaching each other. Since these lights are weak, they are amplified by resonance between the two input and output reflecting mirrors (2) and (3), and then output.

「発明が解決しようとする問題点」 光パラメトリック発振器の出力光の波長を正しい値に較
正するには第2図に示すように波長読とり装置として予
め既知の光源を用いて較正された分光器(7)を使用し
、この分光器(7)の実際の読とり目盛と正しい波長と
の差違を検出して較正する。
``Problems to be Solved by the Invention'' In order to calibrate the wavelength of the output light of the optical parametric oscillator to the correct value, as shown in Figure 2, a spectroscope must be calibrated in advance using a known light source as a wavelength reading device. (7) is used to detect and calibrate the difference between the actual reading scale of this spectrometer (7) and the correct wavelength.

しかるに、非線形光学結晶(5)の回転角(O)を変化
すると、発振波長が変化するため、結晶(5)からの出
力光の光軸(8)もずれ(cl)が生じる。この出力光
を、光学系の調整や種々の測定に用いる場合、光軸(8
)がずれると被測定物との測定位置が変化して好ましく
ない。そこで、従来は、この光軸ずれの補正を、分光器
の波長目盛較正とは別個に行っていたため、補正と調整
に非常に手間がかかっていた。また、光パラメトリック
発振器(16)の出力光は低周波のパルスレーザ光であ
るため、この低周波のパルスレーザ光で光学系の調整を
することは極めて困難であるという問題があった。
However, when the rotation angle (O) of the nonlinear optical crystal (5) is changed, the oscillation wavelength changes, so that the optical axis (8) of the output light from the crystal (5) also shifts (cl). When using this output light for optical system adjustment or various measurements, the optical axis (8
) shifts, the measurement position with respect to the object to be measured changes, which is undesirable. Therefore, in the past, correction of this optical axis deviation was performed separately from wavelength scale calibration of the spectrometer, which required a great deal of time and effort for correction and adjustment. Furthermore, since the output light of the optical parametric oscillator (16) is a low-frequency pulsed laser beam, there is a problem in that it is extremely difficult to adjust the optical system using this low-frequency pulsed laser beam.

「問題点を解決するための手段j 本発明は上述のような点に鑑み、波長読とり装置の波長
目盛較正と光学系の光軸補正の調整とを、波長較正時に
できるようにしたもので、非線形光学結晶をパルスレー
ザ光で励起し、この結晶から入力光と異なる波長の出力
光を得るとともに、前記結晶の回転角により出力光の波
長を変化せしめるようにした光パラメトリック発振器に
おいて、前記結晶の出力側に、波長較正用光源導入ハー
フミラー、光軸補正装置および波長読とり装置を順次配
置してなるものである。
``Means for Solving the Problems j'' In view of the above-mentioned points, the present invention enables the wavelength scale calibration of the wavelength reading device and the adjustment of the optical axis correction of the optical system to be performed at the time of wavelength calibration. , an optical parametric oscillator in which a nonlinear optical crystal is excited with a pulsed laser beam, an output light having a wavelength different from that of the input light is obtained from the crystal, and the wavelength of the output light is changed depending on the rotation angle of the crystal. A wavelength calibration light source introduction half mirror, an optical axis correction device, and a wavelength reading device are arranged in this order on the output side of the device.

「作用」 光パラメトリック発振器の出力光軸と一致せしめてハー
フミラ−によって予め波長のわがっている連続光からな
る較正光を導入し、波長読とり装置としての分光器の波
長目盛を較正する。較正された分光器によって光パラメ
トリック発振器からの出力光を読とり、分光器の読とり
目盛値が較正−3= 光の波長と一致するように、結晶の回転角を制御する。
"Operation" Calibration light consisting of continuous light of different wavelengths is introduced by a half mirror to coincide with the output optical axis of the optical parametric oscillator, and the wavelength scale of the spectrometer as a wavelength reading device is calibrated. The output light from the optical parametric oscillator is read by a calibrated spectrometer, and the rotation angle of the crystal is controlled so that the reading scale value of the spectrometer matches the calibrated −3=wavelength of the light.

この結晶の回転によって出力光の光軸にずれが生じるの
で、ハーフミラ−を介して連続時の較正光を導入し、光
軸補正装置によって光軸を補正する。このときの結晶の
回転角と光軸補正値とをCPUのメモリに記憶する。つ
ぎに、異なる波長の較正光によって、同様の操作を数回
繰返えし、その都度CPUのメモリに記憶する。以上の
ようにして較正されたデータにより校正光以外の波長に
ついて類推するデータを演算してCPUのメモリに記憶
する。
Since this rotation of the crystal causes a shift in the optical axis of the output light, continuous calibration light is introduced through a half mirror, and the optical axis is corrected by an optical axis correction device. The rotation angle of the crystal and the optical axis correction value at this time are stored in the memory of the CPU. Next, the same operation is repeated several times using calibration light of different wavelengths, and each time is stored in the memory of the CPU. Using the data calibrated as described above, analogous data for wavelengths other than the calibration light is calculated and stored in the memory of the CPU.

つぎに、通常の使用に際してはハーフミラ−を光軸から
外す。そして、目的の波長の出力光を得るため結晶を回
転すると、予めメモリに記憶されたデータに基づき、回
転角と一定の関係をもって光軸も自動的に補正される。
Next, during normal use, the half mirror is removed from the optical axis. When the crystal is rotated to obtain output light of a desired wavelength, the optical axis is automatically corrected in a certain relationship with the rotation angle based on data stored in the memory in advance.

「実施例」 以下、本発明の一実施例を図面に基づき説明する。"Example" Hereinafter, one embodiment of the present invention will be described based on the drawings.

(6)は光パラメトリック発振器(以下OP○という)
で、このOP O(6)は第2図と同様、コリメータレ
ンズ(1)、入力反射ミラー(2)、出力反射ミラー(
3)、回転テーブル(4)上の非線形光学結晶(5)に
よって基本的に構成されている。
(6) is an optical parametric oscillator (hereinafter referred to as OP○)
As shown in Figure 2, this OPO (6) consists of a collimator lens (1), an input reflection mirror (2), and an output reflection mirror (
3), basically consists of a nonlinear optical crystal (5) on a rotary table (4).

との○P○(6)の出力側の光軸(8)上であって、X
−Yステージ(9)上には、ハーフミラ−(10)、光
軸補正装置(11)、波長読とり装置としての分光器(
7)、出力光の強度検出器(12)が順次設けられてい
る。
on the optical axis (8) on the output side of ○P○ (6) with
- On the Y stage (9), there is a half mirror (10), an optical axis correction device (11), and a spectrometer (as a wavelength reading device).
7) and output light intensity detectors (12) are sequentially provided.

前記ハーフミラ−(10)は光軸(8)と直交するリニ
アガイド(13) (13)上を移動自在のリニアテー
ブル(14) kこ設けられ、このリニアテーブル(1
4)はモータ(15)によって移動するように構成され
ている。
The half mirror (10) is provided with a linear table (14) that is movable on a linear guide (13) perpendicular to the optical axis (8).
4) is configured to be moved by a motor (15).

前記光軸補正装置(11)は回転テーブル(16)上に
透明なガラスなどの誘電体(17)を取付けてなるもの
である。また、前記ハーフミラ−(10)に臨ませて波
長較正用光源発生器(18)が設けられている。
The optical axis correction device (11) is constructed by attaching a dielectric material (17) such as transparent glass to a rotary table (16). Further, a wavelength calibration light source generator (18) is provided facing the half mirror (10).

つぎに、(19)はCPUで、このCP U (19)
には、入力装置としてのキーボード(20)、プログラ
ム等を記憶したR OM (21,)、データを記憶す
るRAM(22)が結合され、さらに、X−Yステージ
駆動回路(23)、光軸補正用駆動回路(24)、ハー
フミラ−駆動回路(25)、回転角制御用駆動回路(2
6)が結合されている。
Next, (19) is the CPU, and this CPU (19)
is connected to a keyboard (20) as an input device, a ROM (21,) that stores programs, etc., and a RAM (22) that stores data, and further includes an X-Y stage drive circuit (23), an optical axis Correction drive circuit (24), half mirror drive circuit (25), rotation angle control drive circuit (2
6) are combined.

以上のような構成における作用を説明する。The operation of the above configuration will be explained.

波長較正用光源発生器(18)から予め波長のわかって
いる連続レーザ光、例えばNd−YAGレーザ装置の第
2高調波である530nmのレーザ光を発生せしめ、ハ
ーフミラ−(10)で反射屈折し、光軸補正装置(11
)を透過して分光器(7)に送る。分光器(7)では読
みとった目盛の値と、入力した較正光の真の波長とに差
違があればこれを較正する。
A continuous laser beam whose wavelength is known in advance, for example, a 530 nm laser beam which is the second harmonic of an Nd-YAG laser device, is generated from a wavelength calibration light source generator (18), and is reflected and refracted by a half mirror (10). , optical axis correction device (11
) is transmitted to the spectrometer (7). In the spectrometer (7), if there is a difference between the value read on the scale and the true wavelength of the input calibration light, this is calibrated.

分光器(7)の較正後、キーボード(20)からの入力
信号で、CP U (19)を介して回転角制御用駆動
回路(26)から制御信号を出力し、o p O(6)
の結晶(5)を回転してその出力光の波長を変化させ、
分光器(7)で波長を較正光と同じ530nmにする。
After calibrating the spectrometer (7), a control signal is output from the rotation angle control drive circuit (26) via the CPU (19) in response to an input signal from the keyboard (20), and the O P O (6)
rotate the crystal (5) to change the wavelength of its output light,
The wavelength is set to 530 nm, the same as the calibration light, using a spectrometer (7).

このときの回転角(θ)のデータをRA M (22)
に記憶する。前記結晶(5)の回転により出力光の光軸
(8)にずれ(d)が生じるので、このずれ(d)によ
って移動した光軸(8)のハーフミラ−(10)との交
点に、波長較正用光源発生器(18)から較正光を一致
させて入力する。そしてキーボード(20)からの入力
信号で、CP U (19)を介して光軸補正用駆動回
路(24)から制御信号を出力し、光軸補正装置(11
)の誘電体(17)を回転して光軸を補正する。このと
きの光軸補正のデータもRA M (22)に記憶する
。なお、ハーフミラ−(10)における○P○(6)か
らの出力光と較正光とを完全に一致させるためには、キ
ーボード(20)、CP U (19)、X−Yステー
ジ駆動回路(23)を介してX−Yステージ(9)をX
、Y方向に微動して、検出器(12)で検出した出力が
最大のときの位置データをCP U (19)を介して
RA M (22)に記憶する。
The data of the rotation angle (θ) at this time is RAM (22)
to be memorized. The rotation of the crystal (5) causes a shift (d) in the optical axis (8) of the output light, so the wavelength Calibration light is matched and inputted from the calibration light source generator (18). Then, in response to input signals from the keyboard (20), a control signal is output from the optical axis correction drive circuit (24) via the CPU (19), and the optical axis correction device (11)
) is rotated to correct the optical axis. The optical axis correction data at this time is also stored in RAM (22). In addition, in order to completely match the output light from ○P○ (6) in the half mirror (10) with the calibration light, the keyboard (20), CPU (19), and X-Y stage drive circuit (23 ) through the X-Y stage (9)
, and the position data when the output detected by the detector (12) is maximum is stored in the RAM (22) via the CPU (19).

以上の操作によって530nmの較正光による目盛の較
正と光軸の調整を終了する。つぎに、他の波長、例えば
632.8nmのHe−Neレーザ較正光によって同様
の操作をして、結晶(5)と光軸補正装置(11)の回
転角データおよびX−Yステージ(9)の移動データを
RA M (22)に記憶し、さらに、例えば514n
mのアルゴンイオンレーザ較正光によって同様の操作を
してそのデータをRA M (22)に記憶する。
The above operations complete calibration of the scale and adjustment of the optical axis using the 530 nm calibration light. Next, similar operations are performed using He-Ne laser calibration light of another wavelength, for example, 632.8 nm, to obtain rotation angle data of the crystal (5) and optical axis correction device (11) and the X-Y stage (9). The movement data of 514n is stored in RAM (22), and further, for example, 514n
A similar operation is performed using the argon ion laser calibration light of m, and the data is stored in RAM (22).

以上のようにして波長の異なる複数の較正光によって得
られた各データにより校正光以外の波長について類推す
るデータを演算してRA M (22)に記憶する。
As described above, using each data obtained using a plurality of calibration lights having different wavelengths, analogous data for wavelengths other than the calibration light is calculated and stored in the RAM (22).

結晶(5)により変化する全範囲の波長のデータが演算
されてRA M (22)に記憶された後、CPU(1
9)を介してハーフミラ−駆動回路(25)から信号が
出て、モータ(15)を駆動しリニアテーブル(14)
に固着したハーフミラ−(10)を光軸(8)から外し
て通常の使用状態に入る。
After the data of the entire range of wavelengths changed by the crystal (5) is calculated and stored in the RAM (22), the CPU (1
9), a signal is output from the half mirror drive circuit (25) to drive the motor (15) and drive the linear table (14).
The half mirror (10) fixed to the lens is removed from the optical axis (8) to enter the normal use state.

前記実施例において、較正光は連続発振光を用いたが、
外来ノイズである迷光と分離させるためには、較正光を
チョッパ等でIKHz程度の高周波光に変調したものを
用いてもよい。また、ホロカソードランプのような放電
管によるスペクトル光を校正光光源として利用する場合
は電気的な継続または振幅変調してもよい。この場合、
分光器(7)における受光部では、フィルタ回路で較正
光に同調した光だけを抽出する。
In the above examples, continuous wave light was used as the calibration light, but
In order to separate the calibration light from stray light which is external noise, the calibration light may be modulated into high frequency light of approximately IKHz using a chopper or the like. Furthermore, when using spectrum light from a discharge tube such as a hollow cathode lamp as a calibration light source, it may be electrically continuous or amplitude modulated. in this case,
In the light receiving section of the spectrometer (7), only the light tuned to the calibration light is extracted by a filter circuit.

「発明の効果」 本発明は上述のように、光パラメトリック発振器の後段
の光軸補正装置の位置に、ハーフミラ−を介して較正光
を導入するようにしたので、波長読とり装置の波長読と
り数値較正と、波長変化による光軸変化の調整を同じ較
正光にて行うことができる。
"Effects of the Invention" As described above, the present invention introduces the calibration light through a half mirror to the position of the optical axis correction device after the optical parametric oscillator. Numerical calibration and adjustment of optical axis changes due to wavelength changes can be performed using the same calibration light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による波長可変レーザの波長較正装置の
一実施例を示す説明図、第2図は従来の波長較正装置の
説明図である。 (4)・・・回転テーブル、(5)・・・○Po結晶、
(6)・・・光パラメトリック発振器(OP○)、(7
)・・・波長読とり装置(分光器)、(8)・・・光軸
、(11)・・・光軸補正装置、(12)・・・検出器
、(18)・・・波長較正用光源発生器、(19)・・
・CPU、(20)・・・キーボード、(21)・・・
ROM、(22)・・・RAM。 出願人  浜松ホトニクス株式会社 手続補正書(帥) 昭和62年06月09日
FIG. 1 is an explanatory diagram showing an embodiment of a wavelength calibrating device for a wavelength tunable laser according to the present invention, and FIG. 2 is an explanatory diagram of a conventional wavelength calibrating device. (4)...rotary table, (5)...○Po crystal,
(6)...Optical parametric oscillator (OP○), (7
)...Wavelength reading device (spectroscope), (8)...Optical axis, (11)...Optical axis correction device, (12)...Detector, (18)...Wavelength calibration Light source generator for (19)...
・CPU, (20)...Keyboard, (21)...
ROM, (22)...RAM. Applicant Hamamatsu Photonics Co., Ltd. Procedural Amendment (Chief) June 9, 1988

Claims (3)

【特許請求の範囲】[Claims] (1)非線形光学結晶をパルスレーザ光で励起し、この
結晶から入力光と異なる波長の出力光を得るとともに、
前記結晶の回転角により出力光の波長を変化せしめるよ
うにした光パラメトリック発振器において、前記結晶の
出力側に、波長較正用光源導入ハーフミラー、光軸補正
装置および波長読とり装置を順次配置してなることを特
徴とする波長可変レーザの波長較正装置。
(1) Excite a nonlinear optical crystal with pulsed laser light, obtain output light from this crystal with a wavelength different from that of the input light, and
In the optical parametric oscillator in which the wavelength of the output light is changed by the rotation angle of the crystal, a light source introduction half mirror for wavelength calibration, an optical axis correction device, and a wavelength reading device are arranged in sequence on the output side of the crystal. A wavelength calibration device for a wavelength tunable laser, characterized in that:
(2)波長読とり装置は分光器からなる特許請求の範囲
第1項記載の波長可変レーザの波長較正装置。
(2) A wavelength calibrating device for a wavelength tunable laser according to claim 1, wherein the wavelength reading device comprises a spectrometer.
(3)波長較正用光源導入ハーフミラーは較正後光軸か
ら外すようにした特許請求の範囲第1項記載の波長可変
レーザの波長較正装置。
(3) A wavelength calibrating device for a wavelength tunable laser according to claim 1, wherein the light source introduction half mirror for wavelength calibration is removed from the optical axis after calibration.
JP1580587A 1987-01-26 1987-01-26 Wavelength calibrating apparatus for wavelength-tunable laser Granted JPS63184383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1580587A JPS63184383A (en) 1987-01-26 1987-01-26 Wavelength calibrating apparatus for wavelength-tunable laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1580587A JPS63184383A (en) 1987-01-26 1987-01-26 Wavelength calibrating apparatus for wavelength-tunable laser

Publications (2)

Publication Number Publication Date
JPS63184383A true JPS63184383A (en) 1988-07-29
JPH0362311B2 JPH0362311B2 (en) 1991-09-25

Family

ID=11899054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1580587A Granted JPS63184383A (en) 1987-01-26 1987-01-26 Wavelength calibrating apparatus for wavelength-tunable laser

Country Status (1)

Country Link
JP (1) JPS63184383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848381B2 (en) 2008-02-15 2010-12-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multiple-wavelength tunable laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848381B2 (en) 2008-02-15 2010-12-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multiple-wavelength tunable laser

Also Published As

Publication number Publication date
JPH0362311B2 (en) 1991-09-25

Similar Documents

Publication Publication Date Title
US3983507A (en) Tunable laser systems and method
US3914055A (en) Instrument for high resolution spectral analysis with large optical throughput
US3962576A (en) Method and apparatus for automatic generation of phase-adapted coherent secondary radiation in a non-linear crystal
US3762817A (en) Spectral densitometer
US5357336A (en) Method and apparatus for multivariate characterization of optical instrument response
JP2005069840A (en) Optical path difference compensation mechanism for obtaining time sequential signal of time sequence conversion pulse spectrum measuring device
US3973134A (en) Generation of coherent rotational anti-Stokes spectra
JP2006215222A (en) Terahertz wave generator and spectrometric apparatus
US6462825B1 (en) Nonvolatile digital potentiometer trimmed ring laser gyroscope
US5313270A (en) Method and apparatus for measurement of reflectivity for high quality mirrors
US5317150A (en) Polarimeter calibration method and apparatus
US5696586A (en) Optical correlation gas analyzer
JPS63184383A (en) Wavelength calibrating apparatus for wavelength-tunable laser
JP2000205955A (en) Apparatus and method for calculating calibration data for polychrometer
Zhan et al. High‐resolution photoacoustic Ti: sapphire/dye ring laser spectrometer
JP2942654B2 (en) Optical spectrum analyzer
US5357342A (en) Process and apparatus for measuring degree of polarization and angle of major axis of polarized beam of light
CA1068122A (en) Generation of coherent rotational anti-stokes spectra
US4624573A (en) Total optical loss measurement device
US7045772B2 (en) Device and method for controlling the optical power in a microscope
JPH02262023A (en) Optical spectrum analyzer
US4172637A (en) Common beam aperture for dual beam spectrophotometers
JP3322539B2 (en) Laser wavelength setting device
CN117664525A (en) Device and method for measuring wavelength and linewidth of dual-wavelength laser
JPH0459457U (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees