JPS63184375A - Potentiometer - Google Patents

Potentiometer

Info

Publication number
JPS63184375A
JPS63184375A JP62016559A JP1655987A JPS63184375A JP S63184375 A JPS63184375 A JP S63184375A JP 62016559 A JP62016559 A JP 62016559A JP 1655987 A JP1655987 A JP 1655987A JP S63184375 A JPS63184375 A JP S63184375A
Authority
JP
Japan
Prior art keywords
annular plate
magnetoresistive element
plate magnet
rotation angle
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62016559A
Other languages
Japanese (ja)
Other versions
JPH084041B2 (en
Inventor
Kenichi Ao
建一 青
Yoshi Yoshino
吉野 好
Toshikazu Arasuna
荒砂 俊和
Toshikazu Matsushita
松下 利和
Katsuhiko Ariga
勝彦 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62016559A priority Critical patent/JPH084041B2/en
Publication of JPS63184375A publication Critical patent/JPS63184375A/en
Publication of JPH084041B2 publication Critical patent/JPH084041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate obtaining a required nonlinear function output and avoid friction noises by predetermining the rotation angle of a magnetic field at the required value of the rotation angle of an annular plate magnet. CONSTITUTION:A rotary shaft 5 is provided between the center 41 of an annular plate magnet 4 which is radially magnetized and the center 37 of a ferromagnetic magnetoresistance element 3 (in this embodiment, at the position shifted from the center 41 of the annular plate magnet 4 to the radial direction by 2/5 of its radius). Therefore, corresponding to the rotation of the annular plate magnet 4, the rotation angle of a magnetic field 7 applied to the ferromagnetic magnetoresistance element 3 is predetermined as a half of the rotation angle of the annular plate magnet 4. Therefore, an approximate sinusoid nonlinear function output which has peak values at 0 deg. and 180 deg. of the rotation angle of the annular plate magnet 4 corresponding to the rotation of the annular plate magnet 4 is obtained as the output (Vout) of the ferromagnetic magnetoresistance element 3. Moreover, as the approximate sinusoid output can be created by a t method, friction noises can be avoided.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はポテンショメータに関し、特に方向の異なる曲
折状素子帯を有する差動型強磁性磁気抵抗素子を有する
非直線無接触ポテンショメータにかかる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a potentiometer, and more particularly to a non-linear non-contact potentiometer having a differential ferromagnetic magnetoresistive element having bent element bands in different directions.

[従来の技術] 従来より非接触ポテンショメータの磁気回路は、有底円
筒状コアや回転磁性体および永久磁石と共に閉磁路とし
て構成され、回転磁性体の先端部分に形成した間隙に半
導体磁気抵抗素子である)nsbを配置して、回転磁性
体の回転に応じた出力を発生するようになっており、そ
して回転磁性体の先端部分の間隙の大きさを変えること
により、換言すれば回転磁性体の先端を所定の関数形状
になるように加工することにより、InSbから所定の
関数出力を得ている。
[Prior Art] Conventionally, the magnetic circuit of a non-contact potentiometer has been configured as a closed magnetic path together with a bottomed cylindrical core, a rotating magnetic body, and a permanent magnet, and a semiconductor magnetoresistive element is installed in a gap formed at the tip of the rotating magnetic body. )nsb is arranged to generate an output according to the rotation of the rotating magnetic body, and by changing the size of the gap at the tip of the rotating magnetic body, in other words, the rotation of the rotating magnetic body is A predetermined function output is obtained from InSb by processing the tip into a predetermined function shape.

[発明が解決しようとする問題点コ この非接触ポテンショメータを例えば自動車のスロット
ル開度センサに用いた場合、スロットルバルブ(絞り弁
)の開度を検出するためには、すイン曲線近似出力、ま
たはタンジェント曲線近似出力が必要となる。このよう
な関数形状になるように回転磁性体の先端を加工するこ
とは非常に困難である。半導体磁気抵抗素子の代りに強
磁性磁気抵抗素子を使用すれば、容易にサイン曲線近似
出力が得られるが、永久磁石の回転角度は90°以内に
限られているので、所望の非直線関数を得ることは困難
であった。
[Problems to be Solved by the Invention] When this non-contact potentiometer is used, for example, as a throttle opening sensor in an automobile, in order to detect the opening of a throttle valve, it is necessary to use a curve approximation output or Tangent curve approximation output is required. It is extremely difficult to process the tip of a rotating magnetic material so that it has such a functional shape. If a ferromagnetic magnetoresistive element is used instead of a semiconductor magnetoresistive element, a sine curve approximation output can be easily obtained, but since the rotation angle of the permanent magnet is limited to within 90°, it is difficult to obtain the desired nonlinear function. It was difficult to obtain.

さらに摺動型ポテンショメータでは、機械運動する回転
軸やプランジャに直接結合して連動させているため、ポ
テンショメータの寿命やヒス′アリシス特性が障害とな
るので、応答速度の低下、摺動ノイズの発生という問題
点を有し満足なものは得られなかった。
Furthermore, since sliding type potentiometers are directly coupled to and interlocked with mechanically moving rotating shafts and plungers, the life span and hysteresis characteristics of the potentiometers become obstacles, resulting in decreased response speed and generation of sliding noise. There were some problems and nothing satisfactory could be obtained.

本発明は、磁界の回転角度を円環板状磁石の回転角度の
所定の角度に設定することにより、所定の非直線関数出
力を容易に得ることが可能なポテンショメータの提供を
目的とする。
An object of the present invention is to provide a potentiometer that can easily obtain a predetermined nonlinear function output by setting the rotation angle of the magnetic field to a predetermined rotation angle of the annular plate-shaped magnet.

[問題点を解決するための手段] 本発明のポテンショメータは、絶縁基盤上に方向の異な
る曲折(ミアンダ;meander)状素子帯を付着さ
せてなる差動型強磁性磁気抵抗素子と、該強磁性磁気抵
抗素子と所定の間隔を隔てて平行的に配置された放射状
着磁の円環板状磁石と、前記強磁性磁気抵抗素子の中心
と円環板状磁石の中心との中間に設定した回転軸まわり
に、前記円環板状磁石を回転させ、前記強磁性磁気抵抗
素子に作用する前記円環板状磁石の磁界を偏向する回転
手段とを備え、前記磁界の回転角度を前記円環板状磁石
の回転角度の所定の角度に設定して、所定の非直線関数
出力を発生させるという構成を採用した。
[Means for Solving the Problems] The potentiometer of the present invention includes a differential ferromagnetic magnetoresistive element formed by attaching meander-like element bands in different directions on an insulating substrate, and a ferromagnetic A radially magnetized circular plate magnet arranged parallel to the magnetic resistance element at a predetermined distance, and a rotation set between the center of the ferromagnetic magnetic resistance element and the center of the circular plate magnet. rotating means for rotating the annular plate-shaped magnet around an axis and deflecting the magnetic field of the annular plate-shaped magnet acting on the ferromagnetic magnetoresistive element; A configuration is adopted in which the rotation angle of the shaped magnet is set to a predetermined angle to generate a predetermined nonlinear function output.

[作用] 本発明のポテンショメータは上記構成によりつぎの作用
を有する。
[Function] The potentiometer of the present invention has the following function due to the above configuration.

差動型強磁性磁気抵抗素子の中心と放射状着磁の円環板
状磁石の中心との中間に設定した回転軸まわりに円環板
状磁石を回転させて、円環板状磁石から方向の異なる曲
折状素子帯へ作用する磁界を偏向することにより、磁界
の回転角度を円環板状磁石の回転角度の所定の角度に設
定して、所定の非直線関数出力を発生させる。
The circular plate magnet is rotated around a rotation axis set between the center of the differential ferromagnetic magnetoresistive element and the center of the radially magnetized circular plate magnet, and the direction from the circular plate magnet is determined. By deflecting the magnetic field acting on different meandering element bands, the rotation angle of the magnetic field is set to a predetermined rotation angle of the annular plate magnet to generate a predetermined nonlinear function output.

[発明の効果] 本発明のポテンショメータは上記構成および作用により
つぎの効果を奏する。
[Effects of the Invention] The potentiometer of the present invention has the following effects due to the above structure and operation.

無接触で所定の非直線関数用ツノを発生させることがで
き、摩耗しないので半永久的な寿命をもつと共に、摺動
ノイズが発生しない。
A predetermined nonlinear function horn can be generated without contact, and since it does not wear out, it has a semi-permanent life and does not generate sliding noise.

[実施例コ 本発明のポテンショメータを図に示す実施例に基づき説
明する。
[Embodiment] The potentiometer of the present invention will be explained based on the embodiment shown in the drawings.

第1図および第2図は本発明のポテンショメータの第1
実施例を用いた非直線無接触ポテンショメータを示す。
1 and 2 show a first diagram of a potentiometer according to the present invention.
2 shows a non-linear non-contact potentiometer using an example.

本実施例の非直線無接触ポテンショメータ(双手ポテン
ショメータと略す)1は、スロットル開度センサ、ハイ
ドセンサ、または車高センサに用いる。ポテンショメー
タ1は、円形の容器状ハウジング11に設けられており
、このハウジング11には、上112が配されている。
A non-linear non-contact potentiometer (abbreviated as a two-handed potentiometer) 1 of this embodiment is used for a throttle opening sensor, a hide sensor, or a vehicle height sensor. The potentiometer 1 is provided in a circular container-shaped housing 11, and an upper portion 112 is disposed on the housing 11.

またハウジング11の底壁13に固定された円板状の取
付基盤14上には、円板状の絶縁基盤2が固定されてい
る。
Further, on a disk-shaped mounting base 14 fixed to the bottom wall 13 of the housing 11, a disk-shaped insulating base 2 is fixed.

この絶縁基盤2上には、Ni−Fe、Ni −CO等の
薄膜からなる差動型強磁性磁気抵抗素子3が付着されて
いる。強磁性磁気抵抗素子3は、第3図に示すごとく、
絶縁基盤2の中央部21に強磁性磁気抵抗素子3の出力
(Vout)を取り出す出力取出端子31が形成されて
いる。この出力取出端子31は、方向の120°異なる
曲折状素子帯32.34を介して電源電圧(VCC)の
入力端子33および接地(G nd )端子35と接続
されている。入力端子33は、ワイヤーハーネス36を
介して電源(図示せず)に接続している。
A differential ferromagnetic magnetoresistive element 3 made of a thin film of Ni--Fe, Ni--CO, etc. is attached onto the insulating substrate 2. As shown in FIG. 3, the ferromagnetic magnetoresistive element 3 is
An output terminal 31 for extracting the output (Vout) of the ferromagnetic magnetoresistive element 3 is formed in the central portion 21 of the insulating substrate 2 . This output take-out terminal 31 is connected to a power supply voltage (VCC) input terminal 33 and a ground (G nd ) terminal 35 via bent element bands 32 and 34 whose directions differ by 120 degrees. The input terminal 33 is connected to a power source (not shown) via a wire harness 36.

この強磁性磁気抵抗素子3と所定の間隔を隔てて平行に
放射状着磁の円環板状磁石4が配されている。円環板状
磁石4は、回転軸5まわりに円環板状磁石4を回転させ
る回転手段であるロータ6の(第2図において)図示下
面61に取付けられている。
A radially magnetized ring plate magnet 4 is arranged parallel to the ferromagnetic magnetoresistive element 3 at a predetermined interval. The annular plate-shaped magnet 4 is attached to the illustrated lower surface 61 (in FIG. 2) of the rotor 6, which is a rotating means for rotating the annular plate-shaped magnet 4 around the rotating shaft 5.

円環板状磁石4は、永久磁石であり、強磁性磁気抵抗素
子3の中心37と中心41との中間に設定された回転軸
5を回転中心42として、ロータ6と共に強磁性磁気抵
抗素子3に対して相対的に回転する。また円環板状磁石
4は、内周43がわにS極、外周44がわにN極が配さ
れている。円環板状磁石4の回転中心42は、円環板状
磁石4の中心41から半径方向に半径の275ずれた位
置となっている。
The annular plate-shaped magnet 4 is a permanent magnet, and the rotation axis 5 set between the center 37 and the center 41 of the ferromagnetic magnetoresistive element 3 is the rotation center 42, and the ferromagnetic magnetoresistive element 3 is rotated together with the rotor 6. Rotate relative to. Further, the annular plate-shaped magnet 4 has an S pole on the inner periphery 43 and an N pole on the outer periphery 44. The rotation center 42 of the annular plate magnet 4 is radially shifted from the center 41 of the annular plate magnet 4 by 275 radii.

回転軸5の先端51は、ロータ6に一体的に連結され、
円環板状磁石4の回転中心42に対応したロータ6の回
転中心62に固着されている。また回転軸5は、ハウジ
ング11の上蓋12の中央穴15に取付けられた軸受1
6に回転自在に支持されている。ハウジング11の側壁
17の内周18とロータ6の外周64との間には、所定
の間隙が形成されている。
The tip 51 of the rotating shaft 5 is integrally connected to the rotor 6,
It is fixed to the rotation center 62 of the rotor 6 corresponding to the rotation center 42 of the annular plate-shaped magnet 4 . The rotating shaft 5 also has a bearing 1 attached to the center hole 15 of the upper cover 12 of the housing 11.
6 is rotatably supported. A predetermined gap is formed between the inner circumference 18 of the side wall 17 of the housing 11 and the outer circumference 64 of the rotor 6.

つまり回転軸5が回転することにより、円環板状磁石4
およびロータ6は、強磁性磁気抵抗素子3の図示上方を
偏向しながら回転する。また強磁性磁気抵抗素子3に作
用する円環板状磁石4の磁界7は、回転軸5を中心とし
て回転する。よって磁界7もまた強磁性磁気抵抗素子3
の図示上方を偏向しながら回転する。この磁界7の強度
の絶対値は、強磁性磁気抵抗素子3の飽和磁界強度以上
となっている。
In other words, as the rotating shaft 5 rotates, the annular plate-shaped magnet 4
The rotor 6 rotates while being deflected above the ferromagnetic magnetoresistive element 3 in the drawing. Further, the magnetic field 7 of the annular plate-shaped magnet 4 acting on the ferromagnetic magnetoresistive element 3 rotates around the rotating shaft 5 . Therefore, the magnetic field 7 also causes the ferromagnetic magnetoresistive element 3
It rotates while being deflected upward in the illustration. The absolute value of the strength of this magnetic field 7 is greater than or equal to the saturation magnetic field strength of the ferromagnetic magnetoresistive element 3.

まず、強磁性磁気抵抗素子の一般的事項について説明す
る。
First, general matters regarding ferromagnetic magnetoresistive elements will be explained.

強磁性磁気抵抗素子3に飽和磁界強度以上の磁界7を印
加して、磁界7を強磁性磁気抵抗素子3の平面で回転さ
せる。強磁性磁気抵抗素子3は、電流方向が磁界7に平
行な場合と垂直な場合とでは抵抗値にわずかな相違があ
る。このため、出力取出端子31と入力端子33との間
の曲折状素子帯32の抵抗値と、および出力取出端子3
1と接地端子35との間の曲折状素子帯34の抵抗値と
の比により決まる電源電圧(VCC)の分圧値としての
出力(Vout)は、第4図に示すごとく、磁界7の回
転角度90°でピーク値を持つサイン曲線近似出力とな
る。
A magnetic field 7 having a saturation magnetic field strength or higher is applied to the ferromagnetic magnetoresistive element 3 to rotate the magnetic field 7 in the plane of the ferromagnetic magnetoresistive element 3. The ferromagnetic magnetoresistive element 3 has a slight difference in resistance value between when the current direction is parallel to the magnetic field 7 and when it is perpendicular to the magnetic field 7. Therefore, the resistance value of the bent element band 32 between the output terminal 31 and the input terminal 33 and the output terminal 3
As shown in FIG. This is a sine curve approximation output with a peak value at an angle of 90°.

この出力(yout)は、飽和磁界強度以上の磁界7で
あれば一定の出力となり、半導体磁気抵抗素子やホール
素子と比較して安定した出力となっている。よって、強
磁性磁気抵抗素子3の出力(Vout)は、円環板状磁
石4の取付は誤差および着磁強度の多少の変動に対して
何ら依存することがなくなる。
This output (yout) is a constant output if the magnetic field 7 is equal to or higher than the saturation magnetic field strength, and is a stable output compared to a semiconductor magnetoresistive element or a Hall element. Therefore, the output (Vout) of the ferromagnetic magnetoresistive element 3 does not depend at all on errors in mounting the annular plate magnet 4 and slight fluctuations in magnetization strength.

ここで第4図において、磁界7の回転角度0″とは、円
環板状磁石4の点へが強磁性磁気抵抗素子3の中心37
の位置にあるときである。また磁界7の回転方向は、ど
ちらでも良い。
Here, in FIG. 4, a rotation angle of 0'' of the magnetic field 7 means that the center 37 of the ferromagnetic magnetoresistive element 3 reaches the point of the annular plate magnet 4.
when it is in the position. Further, the rotation direction of the magnetic field 7 may be either direction.

つぎに本実施例のポテンショメータ1の作用を図に基づ
き説明する。
Next, the operation of the potentiometer 1 of this embodiment will be explained based on the drawings.

本実施例のポテンショメータ1は、回転軸5を放射状着
磁の円環板状磁石4の中心41と強磁性磁気抵抗素子3
の中心37との間(本実施例では円環板状磁石4の中心
41から半径方向に半径の275ずれた位置)に取付け
ている。このため、円環板状磁石4の回転に対し、強磁
性磁気抵抗素子3に印加される磁界7の回転角度は、第
5図に示すごとく、円環板状磁石4の回転角度の172
の角度に設定される。したがって、強磁性磁気抵抗素子
3の出力(Vout)は、第6図に示すごとく、円環板
状磁石4の回転に対し、円環板状磁石4の回転角度0°
および180°でピーク値を持つサイン曲線近似出力の
非直線関数出力となる。
The potentiometer 1 of this embodiment has a rotating shaft 5 connected to a center 41 of a radially magnetized annular plate magnet 4 and a ferromagnetic magnetoresistive element 3.
(in this embodiment, at a position radially shifted by 275 radii from the center 41 of the annular plate magnet 4). Therefore, with respect to the rotation of the annular plate magnet 4, the rotation angle of the magnetic field 7 applied to the ferromagnetic magnetoresistive element 3 is 172 times the rotation angle of the annular plate magnet 4, as shown in FIG.
The angle is set to . Therefore, as shown in FIG. 6, the output (Vout) of the ferromagnetic magnetoresistive element 3 is determined by the rotation angle of the annular plate magnet 4 at 0° with respect to the rotation of the annular plate magnet 4.
and a nonlinear function output of a sine curve approximation output having a peak value at 180°.

すなわち、本実施例のポテンショメータ1は、機械装置
において、機能の一部を電気手段に置換えることが可能
となり、スロットル開度センサ、ハイドセンサ、または
車高センサに適用することが可能となる。また無接触で
サイン曲線近似出力を発生させることが可能なため、半
永久的な寿命をもち、摺動ノイズの発生もない。
That is, the potentiometer 1 of this embodiment can replace part of its functions with electric means in a mechanical device, and can be applied to a throttle opening sensor, a hide sensor, or a vehicle height sensor. Furthermore, since it is possible to generate a sine curve approximation output without contact, it has a semi-permanent life and does not generate sliding noise.

第7図は本発明のポテンショメータの第2実施例を示す
FIG. 7 shows a second embodiment of the potentiometer of the invention.

本実施例の磁性磁気抵抗素子8は、絶縁基盤2の中央部
21に出力取出端子81が付着されている。
In the magnetic magnetoresistive element 8 of this embodiment, an output terminal 81 is attached to the central portion 21 of the insulating base 2.

この出力取出端子81は、方向の90’異なる曲折状素
子帯82.84を介して入力端子83および接地端子8
5と接続されている。
This output terminal 81 is connected to an input terminal 83 and a ground terminal 8 through bent element bands 82 and 84 whose directions are different by 90'.
5 is connected.

本実施例では、方向の異なった2つの曲折状素子帯の角
度を90°または120°に設定したが、2つの曲折状
素子帯の角度を所定の非直線関数出力を発生させること
が可能な範囲内で種々設定しても良い。
In this example, the angles of the two meandering element bands with different directions are set to 90° or 120°, but it is possible to change the angle of the two meandering element bands to generate a predetermined nonlinear function output. Various settings may be made within the range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を用いた非直線無接触ポテ
ンショメータを示す側面断面図、第2図は本発明の第1
実施例を用いた非直線無接触ポテンショメータを示す正
面図、第3図は本発明の第1実施例にかかる強磁性磁気
抵抗素子を示す正面図、第4図は本発明の第1実施例に
かかる磁界の回転角度と強磁性磁気抵抗素子の出力の値
との関係を示すグラフ、第5図は本発明の第1実施例に
かかる円環板状磁石の回転角度と強磁性磁気抵抗素子に
印加される磁界の回転角度との関係を示すグラフ、第6
図は本発明の第1実施例にかかる円環板状磁石の回転角
度と強磁性磁気抵抗素子の出力の値との関係を示すグラ
フ、第7図は本発明の第2実施例にかかる強磁性磁気抵
抗素子を示す正面図である。 図中 1・・・非直線無接触ポテンショメータ 3.8・・・
強磁性磁気抵抗素子 4・・・円環板状磁石 5・・・
回転軸 6・・・ロータ(回転手段)  7・・・磁界
 41・・・中心
FIG. 1 is a side sectional view showing a non-linear non-contact potentiometer using a first embodiment of the present invention, and FIG.
FIG. 3 is a front view showing a ferromagnetic magnetoresistive element according to the first embodiment of the present invention, and FIG. 4 is a front view showing a non-linear contactless potentiometer according to the first embodiment of the present invention. FIG. 5 is a graph showing the relationship between the rotation angle of the magnetic field and the output value of the ferromagnetic magnetoresistive element, and FIG. Graph showing the relationship between the applied magnetic field and the rotation angle, No. 6
The figure is a graph showing the relationship between the rotation angle of the annular plate magnet and the output value of the ferromagnetic magnetoresistive element according to the first embodiment of the present invention, and FIG. FIG. 2 is a front view showing a magnetic magnetoresistive element. In the figure 1...Non-linear non-contact potentiometer 3.8...
Ferromagnetic magnetoresistive element 4... Annular plate magnet 5...
Rotating shaft 6... Rotor (rotating means) 7... Magnetic field 41... Center

Claims (1)

【特許請求の範囲】 1)絶縁基盤上に方向の異なる曲折状素子帯を付着させ
てなる差動型強磁性磁気抵抗素子と、該強磁性磁気抵抗
素子と所定の間隔を隔てて平行的に配置された放射状着
磁の円環板状磁石と、前記強磁性磁気抵抗素子の中心と
円環板状磁石の中心との中間に設定した回転軸まわりに
、前記円環板状磁石を回転させ、前記強磁性磁気抵抗素
子に作用する前記円環板状磁石の磁界を偏向する回転手
段とを備え、 前記磁界の回転角度を前記円環板状磁石の回転角度の所
定の角度に設定して、所定の非直線関数出力を発生させ
ることを特徴とするポテンショメータ。
[Claims] 1) A differential ferromagnetic magnetoresistive element formed by attaching bent element bands in different directions on an insulating substrate, and a differential ferromagnetic magnetoresistive element arranged parallel to the ferromagnetic magnetoresistive element at a predetermined distance. Rotating the annular plate magnet around a rotation axis set between the center of the arranged radially magnetized annular plate magnet and the center of the ferromagnetic magnetoresistive element and the center of the annular plate magnet. , a rotation means for deflecting the magnetic field of the annular plate-shaped magnet acting on the ferromagnetic magnetoresistive element, and a rotation angle of the magnetic field is set to a predetermined rotation angle of the annular plate-shaped magnet. , a potentiometer characterized in that it generates a predetermined nonlinear function output.
JP62016559A 1987-01-27 1987-01-27 Potentiometer Expired - Lifetime JPH084041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62016559A JPH084041B2 (en) 1987-01-27 1987-01-27 Potentiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016559A JPH084041B2 (en) 1987-01-27 1987-01-27 Potentiometer

Publications (2)

Publication Number Publication Date
JPS63184375A true JPS63184375A (en) 1988-07-29
JPH084041B2 JPH084041B2 (en) 1996-01-17

Family

ID=11919637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016559A Expired - Lifetime JPH084041B2 (en) 1987-01-27 1987-01-27 Potentiometer

Country Status (1)

Country Link
JP (1) JPH084041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641165U (en) * 1992-11-05 1994-05-31 株式会社三協精機製作所 Magnetoresistive element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028989A (en) * 1973-07-13 1975-03-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028989A (en) * 1973-07-13 1975-03-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641165U (en) * 1992-11-05 1994-05-31 株式会社三協精機製作所 Magnetoresistive element

Also Published As

Publication number Publication date
JPH084041B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
AU689838B2 (en) Internal combustion engine throttle position sensor
US6124709A (en) Magnetic position sensor having a variable width magnet mounted into a rotating disk and a hall effect sensor
US5159268A (en) Rotational position sensor with a Hall effect device and shaped magnet
US7508102B2 (en) Brushless motor having a circuit board having a central hole and escape holes
US6576890B2 (en) Linear output non-contacting angular position sensor
EP0578299B1 (en) Magnetic position sensor with variable area coupling
US4835509A (en) Noncontact potentiometer
US7301328B2 (en) Through the hole rotary position sensor with a pair of pole pieces disposed around the periphery of the circular magnet
US6614223B2 (en) Analog angle encoder having a single piece magnet assembly surrounding an air gap
US6414482B1 (en) Non-contact type rotational angle sensor and sensor core used in the sensor
JPH02291005A (en) Target value setting device for integrated circuit
JP3605968B2 (en) Rotation angle sensor
US4904936A (en) Automotive wheel speed sensor including ferromagnetic flux carrying cup closing an opening in the wheel bearing housing
US4970462A (en) Automotive wheel speed sensor assembly with rotor and stator, one of which has only a few poles
JPS63184375A (en) Potentiometer
US4954775A (en) Automotive wheel speed sensor assembly with multipole rotor mounted on wheel bearing spindle
JPH042914A (en) Angle sensor
US4968933A (en) Automotive wheel speed sensor assembly with stator pole piece carried within aperture of field coil
JP2001133212A (en) Non-contact type rotation angle sensor and sensor core
JP2007010581A (en) Noncontact type potentiometer
KR100384441B1 (en) Apparatus for detecting the differential range in an accelerator and clutch pedal for use in a car
JP3623432B2 (en) Non-contact rotation angle sensor and its sensor core
JP4373157B2 (en) Angle detector
JPH06221807A (en) Noncontact throttle opening sensor
JPH0396287A (en) Noncontact position sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term