JPS63183946A - Flame-retardant styrenic resin composition - Google Patents

Flame-retardant styrenic resin composition

Info

Publication number
JPS63183946A
JPS63183946A JP1511587A JP1511587A JPS63183946A JP S63183946 A JPS63183946 A JP S63183946A JP 1511587 A JP1511587 A JP 1511587A JP 1511587 A JP1511587 A JP 1511587A JP S63183946 A JPS63183946 A JP S63183946A
Authority
JP
Japan
Prior art keywords
flame
retardant
weight
inorganic
styrenic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1511587A
Other languages
Japanese (ja)
Inventor
Kenji Watanabe
健司 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP1511587A priority Critical patent/JPS63183946A/en
Publication of JPS63183946A publication Critical patent/JPS63183946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled composition having excellent rigidity and dimensional accuracy while keeping impact resistance, by blending a flame-retardant styrenic resin with a specific amount of a specific inorganic filler comprising specific glass fibers, etc. CONSTITUTION:(A) 60-90wt.% flame-retardant styrenic resin obtained by blending A1: 60-90wt.% styrenic resin with A2: 10-40wt.% one or more of an inorganic flame-retardant and an organic flame-retardant (e.g. tetrabromobisphenol A, chlorinated polyethylene, etc.) is blended with (B) 10-40wt.% inorganic filler consisting of B1: 50-80wt.% glass fibers having >=20 L/D and 5-15mum fiber diameter and B2: 20-50wt.% scaly glass flakes having 1-10mum thickness and 20-500mum size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は無機質充填剤を含有した難燃性スチレン系樹脂
組成物に係わり、更に詳しくは剛性が優れ、寸法精度の
優れた難燃性樹脂組成物に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a flame-retardant styrenic resin composition containing an inorganic filler, and more specifically, a flame-retardant resin composition that has excellent rigidity and dimensional accuracy. The present invention relates to a composition.

(従来の技術及びその問題点) 一般に、樹脂マトリックス中に無機系難燃剤及び有機系
難燃剤を配合し、更に無機質充填剤を混合充填すること
によシ高剛性組成物が得られることは広く知られている
が、金属グイキャストや、板金製品の代替を考えている
ような用途、例えば、OA機器、事務機器の内部シャー
シー、フレーム等の用途に無機系難燃剤及び有機系難燃
剤を配合し、更に無機質を充填した樹脂組成物からなる
成形品を充当した場合、剛性率は高いが機械的強度特に
耐衝撃性が低く、且つ、成形品の寸法精度が悪いため実
用上使用が困難であった。
(Prior art and its problems) Generally, it is widely known that a highly rigid composition can be obtained by blending an inorganic flame retardant and an organic flame retardant into a resin matrix, and further mixing and filling an inorganic filler. It is well known that inorganic and organic flame retardants are used in applications where replacements for metal guicasting and sheet metal products are being considered, such as internal chassis and frames for OA equipment and office equipment. However, when a molded product made of a resin composition filled with an inorganic substance is used, the rigidity is high, but the mechanical strength, particularly the impact resistance, is low, and the dimensional accuracy of the molded product is poor, making it difficult to use in practice. there were.

高剛性組成物を得る試みは充填剤としてガラスピーズ、
ガラスフレーク、ガラスバルーン、マイカ、タルク、カ
オリン、シリカ、チタン酸カリウム、炭酸力ルシェウム
等を用いて検討されてはいるものの、′#fs撃性が低
く、実用的には使用できず、一方充填剤として繊維状の
ガラス繊維、アスベストJ維、ロックウール、カーゲン
繊維等を用いて検討されたものは、一部の成形品で実用
化されてはいるが、寸法精度を厳しく要求される成形品
には使用されていないのが実情であり、高い剛性を持ち
、実用的な耐衝撃性を保持し、且つ、寸法精度の慶れた
難燃性樹脂組成物が強く要望されていた。
Attempts to obtain a highly rigid composition include glass peas as a filler,
Although studies have been conducted using glass flakes, glass balloons, mica, talc, kaolin, silica, potassium titanate, lucium carbonate, etc., they have low impactivity and cannot be used practically; Although fibrous glass fibers, asbestos J fibers, rock wool, Kagen fibers, etc. have been studied as agents and have been put to practical use in some molded products, they are not suitable for molded products that require strict dimensional accuracy. In reality, flame retardant resin compositions that have high rigidity, practical impact resistance, and excellent dimensional accuracy have been strongly desired.

(問題を解決するだめの手段) 本発明者はかかる状況に鑑み難燃化されたスチレン系樹
脂に、無機質充填剤を配合して得られる成形品の耐衝撃
性を低下させないで高い剛性を維持し、且つ、成形品の
寸法精度を向上させた難燃性樹脂組成物を提供すること
を目的として鋭意研究を進めた結果本発明に到達したも
のであり、その趣旨とするところは、無機系難燃剤及び
有機系難燃剤の一種類あるいは二種類以上配合すること
によって難燃化されたスチレン系樹脂と無機質充填剤と
してガラス繊維と鱗片状のガラスフレークを配合するこ
とにより、高い剛性を持ち、実用的な耐衝撃性を保持し
、且つ、寸法精度の憂れた難燃性スチレン系樹脂組成物
である。
(Another Means to Solve the Problem) In view of this situation, the inventor of the present invention maintains high rigidity without reducing the impact resistance of a molded product obtained by blending an inorganic filler with a flame-retardant styrene resin. The present invention was arrived at as a result of intensive research aimed at providing a flame-retardant resin composition with improved dimensional accuracy of molded products. It has high rigidity by blending styrene resin which has been made flame retardant by blending one or more types of flame retardant and organic flame retardant with glass fiber and scaly glass flakes as inorganic fillers. This is a flame-retardant styrene resin composition that maintains practical impact resistance and has poor dimensional accuracy.

本発明に使用されるスチレン系樹脂とは、例えばスチレ
ンモノマーならびにαメチルスチレンのようなα置換ス
チレン、パラターシャリ−ブチルスチレン、ツクラメチ
ルスチレン、ビニルトルエン、クロロスチレンのような
核置換スチレンなどのスチレン誘導体モノマーの単独も
しくは共重合体、該スチレン系モノマー一種以上と、他
のモノマーの共重合体、例えばスチレン−アクリロニト
リル共重合体(AS樹月飢ポリブタジェン系コ9ムに該
スチレン系モノマー一種以上をあるいはさらに他のモノ
マーとをグラフト重合して得られるグラフト重合体、例
えばスチレングラフト重合体、スチレン−アクリロニト
リルグラフト重合体(ABS樹脂)、さらにはこれらの
スチレン系樹脂にポリブタノエン系ゴムをブレンドせし
めたもの等のがあり、必要に応じてこれらの樹脂の二種
以上を混合したものも等を挙げることが出来る。
The styrenic resin used in the present invention includes, for example, styrene monomers and styrene derivatives such as α-substituted styrenes such as α-methylstyrene, para-tertiary-butylstyrene, Tsukura-methylstyrene, vinyltoluene, and nuclear-substituted styrenes such as chlorostyrene. Single or copolymers of monomers, copolymers of one or more of the styrenic monomers and other monomers, such as styrene-acrylonitrile copolymers (AS Jugeki polybutadiene copolymers with one or more of the styrenic monomers or Furthermore, graft polymers obtained by graft polymerization with other monomers, such as styrene graft polymers, styrene-acrylonitrile graft polymers (ABS resins), and those obtained by blending these styrene resins with polybutanoene rubber, etc. There are also mixtures of two or more of these resins, if necessary.

本発明に於ける無機系難燃剤及び有機系難燃剤としては
、テトラブロモビスフェノール−A1デカブロモビフェ
ニールエーテル、オクタブロモビフェニールエーテル、
ビス(トリブロモフェノキシ)エタン、・P−クロルペ
ンタシクロデカン、ヘキサブロム7りロドデカン、トリ
フェニルホスフェート、トリクレジルホスフェート、ト
リブチルホスフェート、トリス(β−クロルエチル)ホ
スフェート、塩素化ポリエチレン、三酸化アンチモン、
はう酸亜鉛等が夫々単独に、若しくは必要な難燃性のレ
ベルに合わせ2種類以上が混合使用される。
Examples of inorganic flame retardants and organic flame retardants in the present invention include tetrabromobisphenol-A1 decabromobiphenyl ether, octabromobiphenyl ether,
Bis(tribromophenoxy)ethane, ・P-chlorpentacyclodecane, hexabromo7-di-rhododecane, triphenyl phosphate, tricresyl phosphate, tributyl phosphate, tris(β-chloroethyl) phosphate, chlorinated polyethylene, antimony trioxide,
Zinc oxalate and the like can be used alone or in combination of two or more types depending on the required level of flame retardancy.

本発明に於ける無機質充填剤のうち、ガラス繊維はL/
Dが20以上で繊維径は5〜15μmのものでありガラ
ス繊維の製造工程中シラン系力ツノリング剤で処理され
たもの、又は未処理のものであシ、結束剤としてアクリ
ル系、ウレタン系、エポキシ系処理剤等を使用したもの
である。一方、ガラスフレークは厚さが1〜10μmで
、大きさが20〜500μmの鱗片状をしたものであり
、ガラスフレークの製造工程中表面の処理が成されてい
ないものである。
Among the inorganic fillers in the present invention, glass fiber is L/
D is 20 or more, the fiber diameter is 5 to 15 μm, and it must be treated with a silane-based binding agent during the glass fiber manufacturing process, or untreated, and the binding agent may be acrylic, urethane-based, This uses an epoxy treatment agent, etc. On the other hand, glass flakes have a scale-like shape with a thickness of 1 to 10 μm and a size of 20 to 500 μm, and are not surface-treated during the glass flake manufacturing process.

本発明に於ては、スチレン系樹脂の難燃化には必要な難
燃性のレベルに合わせて前述した無機系難燃剤及び有機
系難燃剤が好適に組み合わされて使用されるか、望まし
くはテトラブロモビスフェノール−A、デカブロモビフ
ェニールエーテル、オクタブロモビフェニールエーテル
の主剤と、塩素化ポリエチレン、三酸化アンチモンの組
合せが良く、配合割合はスチレン系樹脂が60〜90重
量・ぞ−セントであって、難燃剤が10〜40重量・や
−セントであり、よシ好ましくはスチレン系樹脂が65
〜85重量パーセントであって、難燃剤が15〜35重
量・f−セントである。難燃剤の配合量が10重量・や
−セント未満であると難燃性が低下し、難燃剤の配合量
が40重量パーセントを超えると成形品の耐衝撃性が著
しく低下する。
In the present invention, the above-mentioned inorganic flame retardants and organic flame retardants are used in a suitable combination depending on the level of flame retardance required to make the styrene resin flame retardant. The main ingredients of tetrabromobisphenol-A, decabromobiphenyl ether, and octabromobiphenyl ether are well combined with chlorinated polyethylene and antimony trioxide, and the blending ratio is 60 to 90% by weight of styrene resin. The flame retardant is 10 to 40 cents by weight, and preferably the styrene resin is 65 cents by weight.
~85 weight percent and 15 to 35 weight f-cents of flame retardant. If the amount of the flame retardant is less than 10 weight percent, the flame retardancy will be reduced, and if the amount of the flame retardant exceeds 40 weight percent, the impact resistance of the molded article will be significantly reduced.

本発明に於ては、難燃化されたスチレン系樹脂60〜9
0重量パーセントに対して無機質充填剤10〜40重量
・や−セントを配合する。即ち、無機質充填剤の配合量
が10重量パーセント以下であると本発明の目的とする
剛性が不十分となり、40重量・!−セントを超えると
成形された製品が脆くなり、表面の平滑性も著しく損な
われる。
In the present invention, flame retardant styrene resin 60-9
10 to 40 cents by weight of inorganic filler is added to 0 weight percent. That is, if the amount of the inorganic filler blended is less than 10% by weight, the rigidity aimed at by the present invention will be insufficient, and the rigidity will be 40% by weight! - If it exceeds cents, the molded product will become brittle and the surface smoothness will be significantly impaired.

上記無機質充填剤としては、L/I)が20以上で繊維
径が5〜15μmのガラス繊維と、厚さ1〜10μmで
大きさが20〜500μmの鱗片状のガラスフレークを
組合せて使用する。ガラス繊維だけでは高剛性で実用的
な耐衝撃性保持するという目的を達成することはできて
も、高配合率で配合すると成形品のそりや、収縮率の差
異が大きくなる点で好ましくない。又鱗片状のガラスフ
レークのみでは強度の点で不足する。ガラス繊維と鱗片
状のガラスフレークの間の割合はガラス繊維が50〜8
0重量%であって、鱗片状のガラスフレークが20〜5
0重量%である。
As the above-mentioned inorganic filler, glass fibers having an L/I) of 20 or more and a fiber diameter of 5 to 15 μm and scaly glass flakes having a thickness of 1 to 10 μm and a size of 20 to 500 μm are used in combination. Although it is possible to achieve the purpose of maintaining high rigidity and practical impact resistance using glass fiber alone, blending at a high blending ratio is undesirable because it increases the warpage of the molded product and the difference in shrinkage rate. Moreover, scaly glass flakes alone are insufficient in strength. The ratio between glass fiber and scaly glass flakes is 50 to 8
0% by weight and 20 to 5 scaly glass flakes
It is 0% by weight.

上記無機質充填剤のうちガラス繊維は径5〜15μmで
L/Dが20以上の短繊維でなくてはならないが、これ
はスチレン系樹脂の補強にL/Dが20より小さい繊維
はあまシ有効でなく、繊維径が15μmよシ大きい繊維
では成形品の外観を損ない、ウェルドライン部での強度
低下率が大きく、依維径が5μmより小さい繊維では機
械的強度が低下する傾向もあシ経済的効果も悪くなる。
Among the above inorganic fillers, the glass fibers must be short fibers with a diameter of 5 to 15 μm and an L/D of 20 or more, but fibers with an L/D of less than 20 are not effective for reinforcing styrene resin. In addition, fibers with a fiber diameter larger than 15 μm impair the appearance of the molded product, and the strength decrease rate at the weld line is large, and fibers with a fiber diameter smaller than 5 μm tend to reduce mechanical strength. The effect will also be worse.

一方、鱗片状ガラスフレークは大きさが500μmを超
えると成形品の外観を損ない、ウェルドライン部での強
度低下率が大きくなり好ましくない。
On the other hand, if the size of the scaly glass flakes exceeds 500 μm, the appearance of the molded product will be impaired, and the rate of decrease in strength at the weld line portion will increase, which is not preferable.

本発明の樹脂組成物の調整は上記の規程範囲内でスチレ
ン系樹脂と難燃剤及び無機質充填剤であるガラス線維、
ガラスフレークとを夫々採り、V型タンブラ−等を用い
て定法により均一に混合することによって成される。調
整された組成物は通常の押出成形または射出成形に供さ
れる。尚、樹脂組成物の調整にさいしてはスチレン系樹
脂がその一部量としてスチレン系樹脂に通常添加して用
いられる、染顔料、可塑剤、安定剤、酸化防止剤、紫外
線吸収剤、滑剤、及びその他の添加剤や無機質充填剤、
を充填する場合に使用される分散助剤等を含んでいても
よいことは勿論である。
The resin composition of the present invention is prepared within the above-mentioned regulation range by combining a styrene resin, a flame retardant, and glass fiber as an inorganic filler.
This is done by taking the respective glass flakes and uniformly mixing them using a V-shaped tumbler or the like according to a conventional method. The prepared composition is subjected to conventional extrusion or injection molding. In addition, when preparing the resin composition, the styrene resin is used as a part of the styrene resin, dyes and pigments, plasticizers, stabilizers, antioxidants, ultraviolet absorbers, lubricants, and other additives and inorganic fillers,
Of course, it may also contain a dispersion aid and the like used when filling.

(実施例) 以下に本発明を実施例をあ1げて説明する。(Example) The present invention will be explained below by giving examples.

実施例1〜4 比較例1〜4 AS樹脂−A(アクリロニトリル−スチレン共重合体−
結合アクリロニトリル26wt%、溶液粘度0.9ηs
p/c)とABS樹脂−A(アクリロニトリル−ブタジ
ェン−スチレン三元共重合体−含有コゝム分27 wt
% )に、市販の難燃剤−A(テトラブロモビスフェノ
ール−A)、市販の難燃剤−B(塩素化ポリエチレン)
、市販の難燃剤−C(三酸化アンチモン)に、市販ガラ
ス繊維−A(直径11μm、平均繊維長4訓、製造工程
中でシラン処理、アクリル系収束剤処理したガラス繊維
)と、市販のガラスフレーク−A(平均粒度150メツ
シユ、平均厚味3μm、製造工程中で無処理品)の7成
分を表−1に示す組成となるようにV型ブレンダーでよ
く混合した。
Examples 1-4 Comparative Examples 1-4 AS resin-A (acrylonitrile-styrene copolymer-
Bound acrylonitrile 26wt%, solution viscosity 0.9ηs
p/c) and ABS resin-A (acrylonitrile-butadiene-styrene terpolymer-containing comb content: 27 wt)
%), commercially available flame retardant-A (tetrabromobisphenol-A), commercially available flame retardant-B (chlorinated polyethylene)
, commercially available flame retardant-C (antimony trioxide), commercially available glass fiber-A (diameter 11 μm, average fiber length 4 fibers, glass fiber treated with silane and acrylic sizing agent during the manufacturing process), and commercially available glass fiber. Seven components of Flake-A (average particle size: 150 mesh, average thickness: 3 μm, untreated during the manufacturing process) were thoroughly mixed in a V-type blender to obtain the composition shown in Table 1.

得られた混合物を40111111φのベントタイプの
押出機を用いて210℃で押出、直径3〜5朋φ、長さ
4〜7岨の4レツトに成形後、80℃、3時間以上の十
分な乾燥を経たのち、スクリュウインライン式射出成型
機を用いて成形温度210℃で物性測定用試験片と成形
収縮率測定用の平板(120X120X2+IIII+
t1 フィルムク0−ト)を作製した。
The obtained mixture was extruded at 210°C using a 40111111φ vent type extruder, formed into 4 pieces with a diameter of 3 to 5 mm and a length of 4 to 7 mm, and then thoroughly dried at 80°C for 3 hours or more. After that, a test piece for physical property measurement and a flat plate for mold shrinkage measurement (120X120X2+III+
A film sheet (t1) was prepared.

その物性は表−1に掲げるようにいずれも難燃性レベル
が1/16“厚味でUL94V−0であり、充填剤の配
合率が増加すると剛性率は高くなる傾向を示し、しかも
実用的に使用可能であるアイゾツト衝撃強度を保持し、
外観、表面平滑性も良く、更には本発明の主目的である
寸法精度の指標である樹脂の流動方向とその直角方向と
の成形収縮率の差異が0.2%以下であシ、高す寸法精
度が必要とされる用途には使用可能な樹脂組成物である
ことが確認出来た。
As for the physical properties, as listed in Table 1, the flame retardancy level is 1/16" thick and UL94V-0, and the rigidity tends to increase as the filler content increases, and it is also practical. Retains Izotsu impact strength that can be used for
The appearance and surface smoothness are good, and the difference in molding shrinkage rate between the flow direction of the resin and the direction perpendicular to it, which is an index of dimensional accuracy which is the main purpose of the present invention, is 0.2% or less. It was confirmed that this resin composition can be used in applications that require dimensional accuracy.

尚、上記実施例と比較のために、無機質充填剤を含まな
いポリマーペースでは比較例1に示すごとく、成形収縮
率の差は0.02q6と非常に小さいが剛性率が232
00 klil/cm2と著しく低く、無機質充填剤が
ガラス繊維−Aだけの場合、成形収縮率の差異が0.3
0%以上と大きく、無機質充填剤量が40重量・や−セ
ントを超えると、外観、表面平滑性が低下した成形品し
た得られなかった。
For comparison with the above examples, as shown in Comparative Example 1, a polymer paste containing no inorganic filler has a very small difference in molding shrinkage rate of 0.02q6, but a rigidity of 232
00 klil/cm2, which is extremely low, and when the inorganic filler is only glass fiber-A, the difference in molding shrinkage rate is 0.3
If the amount of inorganic filler exceeds 40% by weight or more, a molded product with poor appearance and surface smoothness may not be obtained.

実施例5〜9 比較例5〜7 ?リマーペースとして、 ASit(脂−B(結合アク
リロニトリル25 wt%、溶液粘度0.6ηsp/c
 )とABS樹脂−B(含有ゴム分18wt%、α−メ
チルスチレン45wt%)に実施例1〜4で用いたと同
じ市販の難燃剤−A(テトラブロモビスフェノール−A
)、市販の難燃剤−C(三酸化アンチモン)K、新シく
市販の難燃剤−D(デカブロモビフェニールエーテル)
に、実施例1〜4で用いたと同じ市販のガラス線維−A
(直径11μφ、平均繊維長4聰、製造工程中でシラン
処理、アクリル系収束剤処理したガラス繊維)と、市販
のガラスフレーク−A(平均粒度150メツシユ、°平
均厚味3μm1製造工程中で無処理品)の5〜6成分を
表−2に示す組成となるようにV型ブレンダーでよく混
合し、実施例1〜4と同じ方法(但し押出温度230℃
、成型温度2301?:)で物性測定用試験片と成形収
縮率測定用の平板(120X 12ox2闘t、フィル
ムケ”−))を作製した。
Examples 5-9 Comparative Examples 5-7? ASit (fat-B (bonded acrylonitrile 25 wt%, solution viscosity 0.6ηsp/c
) and the same commercially available flame retardant A (tetrabromobisphenol-A
), commercially available flame retardant -C (antimony trioxide) K, new commercially available flame retardant -D (decabromo biphenyl ether)
The same commercially available glass fiber-A used in Examples 1 to 4 was used for
(diameter 11 μφ, average fiber length 4 strands, glass fiber treated with silane and acrylic sizing agent during the manufacturing process) and commercially available glass flakes-A (average particle size 150 mesh, ° average thickness 3 μm 1) 5 to 6 components of the processed product) were thoroughly mixed in a V-type blender to obtain the composition shown in Table 2, and the same method as in Examples 1 to 4 was used (however, the extrusion temperature was 230°C).
, molding temperature 2301? :) A test piece for measuring physical properties and a flat plate for measuring mold shrinkage (120×12ox2 mm, film size) were prepared.

その物性は表−2に掲げるようにいずれも難燃性レベル
が1/16“厚味でUL94v−Qであり、充填剤の配
合率が増加すると剛性率は高くなる傾向を示し、しかも
実用的に使用可能で・あるアイゾツト衝撃強度を保持し
、外観、表面平滑性も良く、更には本発明の主目的であ
る寸法精度の指標である樹脂の流動方向とその直角方向
との成形収縮率の差異が0.2%以下であり、高い寸法
精度が必要とされる用途には使用可能な樹脂組成物であ
ることが確認できた。
As for the physical properties, as listed in Table 2, the flame retardancy level is 1/16" thick and UL94v-Q, and the rigidity tends to increase as the filler content increases, and it is also practical. It maintains a certain izot impact strength, has good appearance and surface smoothness, and also has low molding shrinkage in the flow direction of the resin and in the direction perpendicular to it, which is an indicator of dimensional accuracy, which is the main objective of the present invention. The difference was 0.2% or less, and it was confirmed that the resin composition could be used in applications requiring high dimensional accuracy.

尚、上記実施例と比較した比較例5〜7でガラス繊維−
A単独配合した比較例7,8は、成形収縮率の差異がo
、28%以上と大きく、比較例9のようにガラス繊維の
配合貴が20wt%を超えると外観、表面平滑性が低下
した成形品しか得られなかった。
In addition, in Comparative Examples 5 to 7 compared with the above examples, glass fiber
In Comparative Examples 7 and 8, in which A alone was blended, the difference in molding shrinkage rate was o.
, 28% or more, and when the glass fiber content exceeded 20 wt% as in Comparative Example 9, only molded products with poor appearance and surface smoothness were obtained.

実施例10〜11 比較例8〜11 実施例5〜9と同じAS樹脂−B(結合アクリロニトリ
ル25 wt%、溶液粘度Q、 6 ηap/c )と
ABS樹脂−B(含有ゴム分18wt%、α−メチルス
チレン45wt%)、市販の難燃剤−C(三酸化アンチ
モン)、市販の難燃剤−D(デカブロモビフェニールエ
ーテル)に、実施例1〜4で用いたと同じ市販のガラス
繊維−人(直径11μφ、平均僚維長4糖、製造工程中
でシラン処理、アクリル系収束剤処理したガラス線維)
と、市販のがラスフレーク−A(平均粒度150メツシ
エ、平均厚味3μm1製造工程中で無処理品)を用い、
更に、ガラス繊維として市販のガラス線維−B(直径6
μφ、平均繊維長4#、製造工程中でシラン処理、アク
リル系収束剤処理したガラス線維)と市販のガラス繊維
−〇(直径11μφ、平均繊維長80μm1製造工程中
でシラン処理、アクリル系収束剤処浬したガラス繊維、
しΦ=5〜6)と、市販のガラスフレーク−B(48メ
ツシュ篩残分、粒度500〜2000μm、平均厚味5
μm、製造工程中で無処理品)の6成分を表−3に示す
組成となるようにV型ブレンダーでよく混合し、実施例
1〜4と同じ方法(但し押出温度230℃、成型温度2
30℃)で物性測定用試験片と成形収縮率測定用の平板
(120X120X2闘t、フィルムケ゛−ト)を作製
した。
Examples 10 to 11 Comparative Examples 8 to 11 Same AS resin-B as Examples 5 to 9 (bonded acrylonitrile 25 wt%, solution viscosity Q, 6 ηap/c) and ABS resin-B (rubber content 18 wt%, α - 45 wt% of methylstyrene), a commercially available flame retardant -C (antimony trioxide), a commercially available flame retardant -D (decabromo biphenyl ether), and the same commercially available glass fibers (diameter) used in Examples 1 to 4. 11μφ, average fiber length tetrasaccharide, glass fiber treated with silane and acrylic sizing agent during the manufacturing process)
Using commercially available Las Flake-A (average particle size 150 mesh, average thickness 3 μm, untreated product during the manufacturing process),
Furthermore, commercially available glass fiber-B (diameter 6
μφ, average fiber length 4 #, glass fiber treated with silane and acrylic sizing agent during the manufacturing process) and commercially available glass fiber -〇 (diameter 11 μφ, average fiber length 80 μm 1 treated with silane and acrylic sizing agent during the manufacturing process) processed glass fiber,
Φ = 5-6) and commercially available glass flakes-B (48 mesh sieve residue, particle size 500-2000 μm, average thickness 5
μm, untreated product during the manufacturing process) were thoroughly mixed in a V-type blender to obtain the composition shown in Table 3.
A test piece for measuring physical properties and a flat plate (120 x 120 x 2 mm, film case) for measuring mold shrinkage were prepared at 30°C.

その物性は表−3に掲げるようにいずれも難燃性レベル
がl/16“厚味でUL94V−0であり、実用的に使
用可能であるアイゾツト衝繋強度を保持し、外観、表面
平滑性も良く、更には本発明の主目的である寸法精度の
指標である樹脂の流動方向とその直角方向との成形収縮
率の差異が0.2 %以下であり、高い寸法精度が必要
とされる用途には使用可能な樹脂組成物であることが確
認できた。
As for the physical properties, as listed in Table 3, all of them have a flame retardant level of 1/16" thick and UL94V-0, maintain an Izot impact strength that can be used practically, and have good appearance and surface smoothness. Moreover, the difference in molding shrinkage between the flow direction of the resin and the direction perpendicular thereto, which is an index of dimensional accuracy, which is the main objective of the present invention, is 0.2% or less, and high dimensional accuracy is required. It was confirmed that the resin composition was usable for this purpose.

尚、上記実施例と比較した比較例8〜11はいずれも成
形収縮率の差異が0.21以下であり、高い寸法精度を
示したが、反面比較例8.9.11は、曲げ弾性率が低
く、しかも耐衝撃性が実用に耐え得ない値を示し、比較
例10は耐衝撃性が低下し、外観が悪くなったため実用
に適さなかった。
In addition, Comparative Examples 8 to 11 compared with the above-mentioned Examples all had a difference in molding shrinkage rate of 0.21 or less and showed high dimensional accuracy. was low, and the impact resistance showed a value that could not withstand practical use, and Comparative Example 10 was not suitable for practical use because the impact resistance decreased and the appearance deteriorated.

(発明の効果) 以上に示したように本発明の組成物は押出成形−または
射出成形に供し、極めて容易に成形品を得ることができ
、しかも成形品は従来のガラス繊維強化難燃性スチレン
系樹脂に比べ物理的特性、及び外観、表面平滑性のバラ
ンスがとれ、しかも寸法精度の点では大巾に改良され金
属ダイカストに次ぐものであった。従って、熱可塑性樹
脂特有のデデインの多様性があり、部品点数をまとめて
成形できるため、組立工数の大巾な削減、易加工性と相
俟って産業資材として実用上顕著な効果がある。
(Effects of the Invention) As shown above, the composition of the present invention can be subjected to extrusion molding or injection molding to obtain a molded article very easily, and the molded article can be made from conventional glass fiber reinforced flame retardant styrene. Compared to other resins, it has a better balance of physical properties, appearance, and surface smoothness, and in terms of dimensional accuracy, it has been greatly improved and is second only to metal die casting. Therefore, there is a diversity of design characteristics unique to thermoplastic resins, and since a number of parts can be molded together, it has a significant practical effect as an industrial material due to the large reduction in assembly man-hours and easy processability.

Claims (1)

【特許請求の範囲】 1、無機系難燃剤及び有機系難燃剤の一種類あるいは二
種類以上の組合せ配合によって難燃化されたスチレン系
樹脂60〜90重量パーセントに対して、無機質充填剤
10〜40重量パーセントを配合してなる組成物に於て
、この無機質充填剤のうち50〜80パーセントはL/
D20以上で繊維径は5〜15μmのガラス繊維からな
り、20〜50パーセントは厚さが1〜10μm、大き
さが20〜500μmの鱗片状のガラスフレークからな
るように配合された難燃性スチレン系樹脂組成物。 2、無機系難燃剤及び有機系難燃剤がテトラブロモビス
フェノール−A、デカブロモビフェニールエーテル、オ
クタブロモビフェニールエーテル、ビス(トリブロモフ
ェノキシ)エタン、パークロルペンタシクロデカン、ヘ
キサブロムシクロドデカン、トリフェニルホスフェート
、トリクレジルホスフェート、トリブチルホスフェート
、トリス(β−クロルエチル)ホスフェート、塩素化ポ
リエチレン、三酸化アンチモン、ほう酸亜鉛の一種類あ
るいは二種類以上の組合せであり、配合比率はスチレン
系樹脂が60〜90重量パーセントであり無機系難燃剤
及び有機系難燃剤が10〜40重量パーセントであるこ
とを特徴とする特許請求の範囲第1項記載の難燃性スチ
レン系樹脂組成物。
[Scope of Claims] 1. 10 to 90% by weight of a styrenic resin made flame retardant by one or a combination of inorganic flame retardants and organic flame retardants; In a composition containing 40% by weight, 50 to 80% of this inorganic filler is L/
Flame-retardant styrene blended with D20 or higher, consisting of glass fibers with a fiber diameter of 5 to 15 μm, and 20 to 50% composed of scaly glass flakes with a thickness of 1 to 10 μm and a size of 20 to 500 μm. based resin composition. 2. Inorganic flame retardants and organic flame retardants include tetrabromobisphenol-A, decabromobiphenyl ether, octabromobiphenyl ether, bis(tribromophenoxy)ethane, perchloropentacyclodecane, hexabromocyclododecane, and triphenylphosphate. , tricresyl phosphate, tributyl phosphate, tris(β-chloroethyl) phosphate, chlorinated polyethylene, antimony trioxide, and zinc borate, or a combination of two or more thereof, and the blending ratio is 60 to 90% by weight of styrene resin. 2. The flame-retardant styrenic resin composition according to claim 1, wherein the inorganic flame retardant and the organic flame retardant are present in an amount of 10 to 40 percent by weight.
JP1511587A 1987-01-27 1987-01-27 Flame-retardant styrenic resin composition Pending JPS63183946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1511587A JPS63183946A (en) 1987-01-27 1987-01-27 Flame-retardant styrenic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1511587A JPS63183946A (en) 1987-01-27 1987-01-27 Flame-retardant styrenic resin composition

Publications (1)

Publication Number Publication Date
JPS63183946A true JPS63183946A (en) 1988-07-29

Family

ID=11879829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1511587A Pending JPS63183946A (en) 1987-01-27 1987-01-27 Flame-retardant styrenic resin composition

Country Status (1)

Country Link
JP (1) JPS63183946A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111305A (en) * 1980-12-29 1982-07-10 Mitsubishi Monsanto Chem Co Production of thermoplastic resin composition containing inorganic reinforcing material
JPS58201807A (en) * 1982-05-18 1983-11-24 Mitsubishi Monsanto Chem Co Preparation of highly concentration thermoplastic resin composition containing inorganic filler
JPS59122535A (en) * 1982-12-28 1984-07-16 Mitsubishi Monsanto Chem Co Preparation of concentrated thermoplastic resin composition containing inorganic filler
JPS612746A (en) * 1984-06-15 1986-01-08 Mitsubishi Chem Ind Ltd Polyester resin composition
JPS62109855A (en) * 1985-11-08 1987-05-21 Asahi Chem Ind Co Ltd Amorphous thermoplastic resin composition having excellent dimensional accuracy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111305A (en) * 1980-12-29 1982-07-10 Mitsubishi Monsanto Chem Co Production of thermoplastic resin composition containing inorganic reinforcing material
JPS58201807A (en) * 1982-05-18 1983-11-24 Mitsubishi Monsanto Chem Co Preparation of highly concentration thermoplastic resin composition containing inorganic filler
JPS59122535A (en) * 1982-12-28 1984-07-16 Mitsubishi Monsanto Chem Co Preparation of concentrated thermoplastic resin composition containing inorganic filler
JPS612746A (en) * 1984-06-15 1986-01-08 Mitsubishi Chem Ind Ltd Polyester resin composition
JPS62109855A (en) * 1985-11-08 1987-05-21 Asahi Chem Ind Co Ltd Amorphous thermoplastic resin composition having excellent dimensional accuracy

Similar Documents

Publication Publication Date Title
US5109068A (en) Styrene-based polymer composition, stretched molding thereof and process for producing the same
US4806586A (en) Reinforced molding resin composition
GB1592668A (en) Reinforced thermoplastic polyester composition
CN108912642B (en) Antistatic, low-smoke, halogen-free and flame-retardant PC/ABS alloy material and preparation process thereof
JPS59155459A (en) Polyester resin composition
JPS63183946A (en) Flame-retardant styrenic resin composition
JP2670775B2 (en) Impact resistant flame retardant resin composition
KR102145797B1 (en) Thermoplastic flame retardant resin composition, method for preparing the resin composition and molding product comprising the resin composition
US3927234A (en) Impregnating compound for fiber glass mats
KR20170079295A (en) Eco-friendly thermoplastic resin composition having excellent electro-plating property
JPS6088072A (en) Amorphous resin composition
KR101859011B1 (en) Eco-friendly thermoplastic resin composition having superior electro-plating property
JPH032245A (en) Styrene-based resin composition
KR20160128534A (en) Thermoplastic resin composition and molded parts using the same
JP2835596B2 (en) High rigidity vibration damping resin composition
JP3388854B2 (en) Flame retardant resin composition
JPS63183947A (en) Styrenic resin composition
KR102402962B1 (en) Antistatic resin composition comprising thermoplastic reson and conductive filler
KR102402957B1 (en) Antistatic resin composition, molded articel thereof, and method of manufacturing the same
KR102569295B1 (en) Thermoplastic flame retardant resin composition and flame retardant resin molded articles produced by the same
JPH02308840A (en) Styrene-based resin composition
JPH0423850A (en) Styrene-based resin composition
JP3388855B2 (en) Flame retardant resin composition
JP2003292799A (en) Filler master batch and thermoplastic elastomer composition
JPH032246A (en) Styrene-based resin composition